2
0
mirror of https://github.com/xcat2/xNBA.git synced 2024-12-16 00:01:34 +00:00
xNBA/src/net/ipv4.c

487 lines
13 KiB
C
Raw Normal View History

#include <string.h>
#include <stdint.h>
#include <errno.h>
#include <byteswap.h>
2006-06-16 00:19:46 +00:00
#include <malloc.h>
#include <vsprintf.h>
2006-06-16 00:19:46 +00:00
#include <gpxe/list.h>
#include <gpxe/in.h>
2006-06-16 00:19:46 +00:00
#include <gpxe/arp.h>
#include <gpxe/if_ether.h>
#include <gpxe/pkbuff.h>
#include <gpxe/netdevice.h>
#include "uip/uip.h"
2006-06-16 00:19:46 +00:00
#include <gpxe/ip.h>
#include <gpxe/interface.h>
/** @file
*
* IPv4 protocol
*
* The gPXE IP stack is currently implemented on top of the uIP
* protocol stack. This file provides wrappers around uIP so that
* higher-level protocol implementations do not need to talk directly
* to uIP (which has a somewhat baroque API).
*
*/
/* Unique IP datagram identification number */
static uint16_t next_ident = 0;
struct net_protocol ipv4_protocol;
2006-06-16 00:19:46 +00:00
/** An IPv4 address/routing table entry */
struct ipv4_miniroute {
/** List of miniroutes */
struct list_head list;
/** Network device */
struct net_device *netdev;
/** IPv4 address */
struct in_addr address;
/** Subnet mask */
struct in_addr netmask;
/** Gateway address */
struct in_addr gateway;
};
2006-06-16 00:19:46 +00:00
/** List of IPv4 miniroutes */
static LIST_HEAD ( miniroutes );
/**
2006-06-16 00:19:46 +00:00
* Add IPv4 interface
*
2006-06-16 00:19:46 +00:00
* @v netdev Network device
* @v address IPv4 address
* @v netmask Subnet mask
* @v gateway Gateway address (or @c INADDR_NONE for no gateway)
* @ret rc Return status code
*
*/
2006-06-16 00:19:46 +00:00
int add_ipv4_address ( struct net_device *netdev, struct in_addr address,
struct in_addr netmask, struct in_addr gateway ) {
struct ipv4_miniroute *miniroute;
/* Allocate and populate miniroute structure */
miniroute = malloc ( sizeof ( *miniroute ) );
if ( ! miniroute )
return -ENOMEM;
miniroute->netdev = netdev;
miniroute->address = address;
miniroute->netmask = netmask;
miniroute->gateway = gateway;
/* Add to end of list if we have a gateway, otherwise to start
* of list.
*/
if ( gateway.s_addr != INADDR_NONE ) {
list_add_tail ( &miniroute->list, &miniroutes );
} else {
list_add ( &miniroute->list, &miniroutes );
}
return 0;
}
/**
2006-06-16 00:19:46 +00:00
* Remove IPv4 interface
*
2006-06-16 00:19:46 +00:00
* @v netdev Network device
*/
2006-06-16 00:19:46 +00:00
void del_ipv4_address ( struct net_device *netdev ) {
struct ipv4_miniroute *miniroute;
2006-06-16 00:19:46 +00:00
list_for_each_entry ( miniroute, &miniroutes, list ) {
if ( miniroute->netdev == netdev ) {
list_del ( &miniroute->list );
break;
}
}
}
2006-06-26 16:01:24 +00:00
/**
* Dump IPv4 packet header
*
* @v iphdr IPv4 header
*/
static void ipv4_dump ( struct iphdr *iphdr __unused ) {
DBG ( "IP4 header at %p+%zx\n", iphdr, sizeof ( *iphdr ) );
DBG ( "\tVersion = %d\n", ( iphdr->verhdrlen & IP_MASK_VER ) / 16 );
DBG ( "\tHeader length = %d\n", iphdr->verhdrlen & IP_MASK_HLEN );
DBG ( "\tService = %d\n", iphdr->service );
DBG ( "\tTotal length = %d\n", ntohs ( iphdr->len ) );
DBG ( "\tIdent = %d\n", ntohs ( iphdr->ident ) );
DBG ( "\tFrags/Offset = %d\n", ntohs ( iphdr->frags ) );
2006-06-26 16:01:24 +00:00
DBG ( "\tIP TTL = %d\n", iphdr->ttl );
DBG ( "\tProtocol = %d\n", iphdr->protocol );
DBG ( "\tHeader Checksum (at %p) = %x\n", &iphdr->chksum,
ntohs ( iphdr->chksum ) );
2006-06-26 16:01:24 +00:00
DBG ( "\tSource = %s\n", inet_ntoa ( iphdr->src ) );
DBG ( "\tDestination = %s\n", inet_ntoa ( iphdr->dest ) );
}
/**
* Complete the transport-layer checksum
*/
void ipv4_tx_csum ( struct pk_buff *pkb, uint8_t trans_proto ) {
2006-06-26 13:45:24 +00:00
struct iphdr *iphdr = pkb->data;
2006-06-28 09:59:27 +00:00
struct ipv4_pseudo_header pshdr;
void *csum_offset = iphdr + sizeof ( *iphdr ) + ( trans_proto == IP_UDP ? 6 : 16 );
2006-06-26 13:45:24 +00:00
/* Calculate pseudo header */
2006-06-28 09:59:27 +00:00
pshdr.src = iphdr->src;
pshdr.dest = iphdr->dest;
pshdr.zero_padding = 0x00;
pshdr.protocol = iphdr->protocol;
pshdr.len = htons ( pkb_len ( pkb ) - sizeof ( *iphdr ) );
/* Update the checksum value */
2006-06-28 09:59:27 +00:00
*( ( uint16_t* ) csum_offset ) = *( ( uint16_t* ) csum_offset ) + calc_chksum ( &pshdr, IP_PSHLEN );
}
/**
* Calculate the transport-layer checksum while processing packets
*/
uint16_t ipv4_rx_csum ( struct pk_buff *pkb __unused, uint8_t trans_proto __unused ) {
/** This function needs to be implemented. Until then, it will return 0xffffffff every time */
return 0xffff;
}
/**
2006-06-16 00:19:46 +00:00
* Transmit packet constructed by uIP
*
2006-06-16 00:19:46 +00:00
* @v pkb Packet buffer
* @ret rc Return status code
*
*/
int ipv4_uip_tx ( struct pk_buff *pkb ) {
2006-06-16 00:19:46 +00:00
struct iphdr *iphdr = pkb->data;
struct ipv4_miniroute *miniroute;
struct net_device *netdev = NULL;
struct in_addr next_hop;
struct in_addr source;
uint8_t ll_dest_buf[MAX_LL_ADDR_LEN];
const uint8_t *ll_dest = ll_dest_buf;
int rc;
/* Use routing table to identify next hop and transmitting netdev */
next_hop = iphdr->dest;
list_for_each_entry ( miniroute, &miniroutes, list ) {
if ( ( ( ( iphdr->dest.s_addr ^ miniroute->address.s_addr ) &
miniroute->netmask.s_addr ) == 0 ) ||
( miniroute->gateway.s_addr != INADDR_NONE ) ) {
netdev = miniroute->netdev;
source = miniroute->address;
if ( miniroute->gateway.s_addr != INADDR_NONE )
next_hop = miniroute->gateway;
break;
}
2006-06-16 00:19:46 +00:00
}
/* Abort if no network device identified */
if ( ! netdev ) {
DBG ( "No route to %s\n", inet_ntoa ( iphdr->dest ) );
rc = -EHOSTUNREACH;
goto err;
}
/* Determine link-layer destination address */
if ( next_hop.s_addr == INADDR_BROADCAST ) {
/* Broadcast address */
ll_dest = netdev->ll_protocol->ll_broadcast;
} else if ( IN_MULTICAST ( next_hop.s_addr ) ) {
2006-06-26 13:45:24 +00:00
/* Special case: IPv4 multicast over Ethernet. This
2006-06-16 00:19:46 +00:00
* code may need to be generalised once we find out
* what happens for other link layers.
*/
uint8_t *next_hop_bytes = ( uint8_t * ) &next_hop;
ll_dest_buf[0] = 0x01;
ll_dest_buf[0] = 0x00;
ll_dest_buf[0] = 0x5e;
ll_dest_buf[3] = next_hop_bytes[1] & 0x7f;
ll_dest_buf[4] = next_hop_bytes[2];
ll_dest_buf[5] = next_hop_bytes[3];
} else {
2006-06-16 00:19:46 +00:00
/* Unicast address: resolve via ARP */
if ( ( rc = arp_resolve ( netdev, &ipv4_protocol, &next_hop,
&source, ll_dest_buf ) ) != 0 ) {
DBG ( "No ARP entry for %s\n",
inet_ntoa ( iphdr->dest ) );
goto err;
}
}
2006-06-16 00:19:46 +00:00
/* Hand off to link layer */
return net_tx ( pkb, netdev, &ipv4_protocol, ll_dest );
2006-06-16 00:19:46 +00:00
err:
free_pkb ( pkb );
return rc;
}
/**
* Transmit IP packet (without uIP)
*
* @v pkb Packet buffer
* @v trans_proto Transport-layer protocol number
* @v dest Destination network-layer address
* @ret rc Status
*
* This function expects a transport-layer segment and prepends the IP header
*/
int ipv4_tx ( struct pk_buff *pkb, uint16_t trans_proto, struct in_addr *dest ) {
struct iphdr *iphdr = pkb_push ( pkb, sizeof ( *iphdr ) );
2006-06-26 13:45:24 +00:00
struct ipv4_miniroute *miniroute;
struct net_device *netdev = NULL;
struct in_addr next_hop;
uint8_t ll_dest_buf[MAX_LL_ADDR_LEN];
const uint8_t *ll_dest = ll_dest_buf;
int rc;
/* Fill up the IP header, except source address */
iphdr->verhdrlen = ( IP_VER << 4 ) | ( sizeof ( *iphdr ) / 4 );
iphdr->service = IP_TOS;
iphdr->len = htons ( pkb_len ( pkb ) );
iphdr->ident = htons ( next_ident++ );
iphdr->frags = 0;
iphdr->ttl = IP_TTL;
iphdr->protocol = trans_proto;
/* Copy destination address */
iphdr->dest = *dest;
/**
* All fields in the IP header filled in except the source network
* address (which requires routing) and the header checksum (which
* requires the source network address). As the pseudo header requires
* the source address as well and the transport-layer checksum is
* updated after routing.
*
* Continue processing as in ipv4_uip_tx()
*/
2006-06-26 13:45:24 +00:00
/* Use routing table to identify next hop and transmitting netdev */
next_hop = iphdr->dest;
list_for_each_entry ( miniroute, &miniroutes, list ) {
if ( ( ( ( iphdr->dest.s_addr ^ miniroute->address.s_addr ) &
miniroute->netmask.s_addr ) == 0 ) ||
( miniroute->gateway.s_addr != INADDR_NONE ) ) {
netdev = miniroute->netdev;
iphdr->src = miniroute->address;
2006-06-26 13:45:24 +00:00
if ( miniroute->gateway.s_addr != INADDR_NONE )
next_hop = miniroute->gateway;
break;
}
}
/* Abort if no network device identified */
if ( ! netdev ) {
DBG ( "No route to %s\n", inet_ntoa ( iphdr->dest ) );
rc = -EHOSTUNREACH;
goto err;
}
/* Calculate the transport layer checksum */
ipv4_tx_csum ( pkb, trans_proto );
/* Calculate header checksum, in network byte order */
iphdr->chksum = 0;
iphdr->chksum = htons ( calc_chksum ( iphdr, sizeof ( *iphdr ) ) );
2006-06-26 13:45:24 +00:00
/* Print IP4 header for debugging */
2006-06-26 16:01:24 +00:00
ipv4_dump ( iphdr );
2006-06-26 13:45:24 +00:00
/* Determine link-layer destination address */
if ( next_hop.s_addr == INADDR_BROADCAST ) {
/* Broadcast address */
ll_dest = netdev->ll_protocol->ll_broadcast;
} else if ( IN_MULTICAST ( next_hop.s_addr ) ) {
/* Special case: IPv4 multicast over Ethernet. This
* code may need to be generalised once we find out
* what happens for other link layers.
*/
uint8_t *next_hop_bytes = ( uint8_t * ) &next_hop;
ll_dest_buf[0] = 0x01;
ll_dest_buf[0] = 0x00;
ll_dest_buf[0] = 0x5e;
ll_dest_buf[3] = next_hop_bytes[1] & 0x7f;
ll_dest_buf[4] = next_hop_bytes[2];
ll_dest_buf[5] = next_hop_bytes[3];
} else {
/* Unicast address: resolve via ARP */
if ( ( rc = arp_resolve ( netdev, &ipv4_protocol, &next_hop,
&iphdr->src, ll_dest_buf ) ) != 0 ) {
DBG ( "No ARP entry for %s\n",
inet_ntoa ( iphdr->dest ) );
2006-06-26 13:45:24 +00:00
goto err;
}
}
2006-06-26 13:45:24 +00:00
/* Hand off to link layer */
return net_tx ( pkb, netdev, &ipv4_protocol, ll_dest );
err:
2006-06-26 13:45:24 +00:00
free_pkb ( pkb );
return rc;
}
/**
* Process incoming IP packets
*
* @v pkb Packet buffer
* @v netdev Network device
* @v ll_source Link-layer source address
* @ret rc Return status code
*
* This handles IP packets by handing them off to the uIP protocol
* stack.
*/
static int ipv4_uip_rx ( struct pk_buff *pkb,
struct net_device *netdev __unused,
const void *ll_source __unused ) {
/* Transfer to uIP buffer. Horrendously space-inefficient,
* but will do as a proof-of-concept for now.
*/
uip_len = pkb_len ( pkb );
memcpy ( uip_buf, pkb->data, uip_len );
free_pkb ( pkb );
/* Hand to uIP for processing */
uip_input ();
if ( uip_len > 0 ) {
pkb = alloc_pkb ( MAX_LL_HEADER_LEN + uip_len );
if ( ! pkb )
return -ENOMEM;
pkb_reserve ( pkb, MAX_LL_HEADER_LEN );
memcpy ( pkb_put ( pkb, uip_len ), uip_buf, uip_len );
ipv4_uip_tx ( pkb );
}
return 0;
}
/**
* Process incoming packets (without uIP)
*
* @v pkb Packet buffer
* @v netdev Network device
* @v ll_source Link-layer destination source
*
* This function expects an IP4 network datagram. It processes the headers
* and sends it to the transport layer.
*/
void ipv4_rx ( struct pk_buff *pkb, struct net_device *netdev __unused,
2006-06-26 13:45:24 +00:00
const void *ll_source __unused ) {
struct iphdr *iphdr = pkb->data;
struct in_addr *src = &iphdr->src;
struct in_addr *dest = &iphdr->dest;
uint16_t chksum;
/* Sanity check */
if ( pkb_len ( pkb ) < sizeof ( *iphdr ) ) {
DBG ( "IP datagram too short (%d bytes)\n",
pkb_len ( pkb ) );
return;
}
2006-06-26 13:45:24 +00:00
/* Print IP4 header for debugging */
2006-06-26 16:01:24 +00:00
ipv4_dump ( iphdr );
2006-06-26 13:45:24 +00:00
/* Validate version and header length */
if ( iphdr->verhdrlen != 0x45 ) {
DBG ( "Bad version and header length %x\n", iphdr->verhdrlen );
return;
}
/* Validate length of IP packet */
if ( ntohs ( iphdr->len ) != pkb_len ( pkb ) ) {
DBG ( "Inconsistent packet length %d\n",
ntohs ( iphdr->len ) );
return;
}
/* Verify the checksum */
if ( ( chksum = ipv4_rx_csum ( pkb, iphdr->protocol ) ) != 0xffff ) {
DBG ( "Bad checksum %x\n", chksum );
}
/* To reduce code size, the following functions are not implemented:
* 1. Check the destination address
* 2. Check the TTL field
* 3. Check the service field
*/
2006-06-26 13:45:24 +00:00
/* Strip header */
pkb_pull ( pkb, sizeof ( *iphdr ) );
2006-06-26 13:45:24 +00:00
/* Send it to the transport layer */
trans_rx ( pkb, iphdr->protocol, src, dest );
}
/**
* Check existence of IPv4 address for ARP
*
* @v netdev Network device
* @v net_addr Network-layer address
* @ret rc Return status code
*/
static int ipv4_arp_check ( struct net_device *netdev, const void *net_addr ) {
const struct in_addr *address = net_addr;
struct ipv4_miniroute *miniroute;
list_for_each_entry ( miniroute, &miniroutes, list ) {
if ( ( miniroute->netdev == netdev ) &&
( miniroute->address.s_addr == address->s_addr ) ) {
/* Found matching address */
return 0;
}
}
return -ENOENT;
}
/**
2006-06-16 00:19:46 +00:00
* Convert IPv4 address to dotted-quad notation
*
2006-06-16 00:19:46 +00:00
* @v in IP address
* @ret string IP address in dotted-quad notation
*/
2006-06-16 00:19:46 +00:00
char * inet_ntoa ( struct in_addr in ) {
static char buf[16]; /* "xxx.xxx.xxx.xxx" */
uint8_t *bytes = ( uint8_t * ) &in;
sprintf ( buf, "%d.%d.%d.%d", bytes[0], bytes[1], bytes[2], bytes[3] );
return buf;
}
/**
* Transcribe IP address
*
* @v net_addr IP address
* @ret string IP address in dotted-quad notation
*
*/
static const char * ipv4_ntoa ( const void *net_addr ) {
2006-06-16 00:19:46 +00:00
return inet_ntoa ( * ( ( struct in_addr * ) net_addr ) );
}
/** IPv4 protocol */
struct net_protocol ipv4_protocol = {
.name = "IP",
.net_proto = htons ( ETH_P_IP ),
.net_addr_len = sizeof ( struct in_addr ),
#if USE_UIP
.rx = ipv4_uip_rx,
#else
.rx = ipv4_rx,
#endif
.ntoa = ipv4_ntoa,
};
NET_PROTOCOL ( ipv4_protocol );
/** IPv4 ARP protocol */
struct arp_net_protocol ipv4_arp_protocol = {
.net_protocol = &ipv4_protocol,
.check = ipv4_arp_check,
};
ARP_NET_PROTOCOL ( ipv4_arp_protocol );