Fix sensors and add board-info.txt

This commit is contained in:
charansingh 2011-01-24 16:46:24 +05:30
parent 490631c4c5
commit 338d768a66
25 changed files with 2098 additions and 2387 deletions

3
board-info.txt Normal file
View File

@ -0,0 +1,3 @@
require mid=P*
require board=bravo | leo | htcleo
require version-microp=031d

20
liblights/Android.mk Normal file → Executable file
View File

@ -12,24 +12,20 @@
# See the License for the specific language governing permissions and
# limitations under the License.
LOCAL_PATH:= $(call my-dir)
ifneq ($(TARGET_SIMULATOR),true)
# HAL module implemenation, not prelinked and stored in
# hw/<COPYPIX_HARDWARE_MODULE_ID>.<ro.board.platform>.so
include $(CLEAR_VARS)
LOCAL_MODULE := lights.htcleo
LOCAL_SRC_FILES := lights.c
LOCAL_PRELINK_MODULE := false
LOCAL_MODULE_PATH := $(TARGET_OUT_SHARED_LIBRARIES)/hw
LOCAL_MODULE_TAGS := optional
LOCAL_SHARED_LIBRARIES := liblog
LOCAL_SRC_FILES := lights_leo.c \
events.c
LOCAL_SHARED_LIBRARIES := liblog libcutils
LOCAL_PRELINK_MODULE := false
##LOCAL_MODULE := lights.$(TARGET_BOARD_PLATFORM)
LOCAL_MODULE := lights.htcleo
include $(BUILD_SHARED_LIBRARY)
endif # !TARGET_SIMULATOR

0
liblights/MODULE_LICENSE_APACHE2 Normal file → Executable file
View File

2
liblights/NOTICE Normal file → Executable file
View File

@ -1,5 +1,5 @@
Copyright (c) 2005-2008, The Android Open Source Project
Copyright (c) 2008, The Android Open Source Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.

View File

@ -1,82 +0,0 @@
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdio.h>
#include <stdlib.h>
#include <fcntl.h>
#include <dirent.h>
#include <sys/poll.h>
#include <linux/input.h>
#include "events.h"
#define MAX_DEVICES 16
static struct pollfd ev_fds[MAX_DEVICES];
static unsigned ev_count = 0;
int ev_init(void)
{
DIR *dir;
struct dirent *de;
int fd;
dir = opendir("/dev/input");
if(dir != 0) {
while((de = readdir(dir))) {
// fprintf(stderr,"/dev/input/%s\n", de->d_name);
if(strncmp(de->d_name,"event",5)) continue;
fd = openat(dirfd(dir), de->d_name, O_RDONLY);
if(fd < 0) continue;
ev_fds[ev_count].fd = fd;
ev_fds[ev_count].events = POLLIN;
ev_count++;
if(ev_count == MAX_DEVICES) break;
}
}
return 0;
}
void ev_exit(void)
{
while (ev_count > 0) {
close(ev_fds[--ev_count].fd);
}
}
int ev_get(struct input_event *ev, unsigned dont_wait)
{
int r;
unsigned n;
do {
r = poll(ev_fds, ev_count, dont_wait ? 0 : -1);
if(r > 0) {
for(n = 0; n < ev_count; n++) {
if(ev_fds[n].revents & POLLIN) {
r = read(ev_fds[n].fd, ev, sizeof(*ev));
if(r == sizeof(*ev)) return 0;
}
}
}
} while(dont_wait == 0);
return -1;
}

View File

@ -1,29 +0,0 @@
/*
* Copyright (C) 2007 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef _EVENTS_H_
#define _EVENTS_H_
// input event structure, include <linux/input.h> for the definition.
// see http://www.mjmwired.net/kernel/Documentation/input/ for info.
struct input_event;
int ev_init(void);
int ev_get(struct input_event *ev, unsigned dont_wait);
void ev_exit(void);
#endif

682
liblights/lights.c Normal file → Executable file
View File

@ -1,4 +1,5 @@
/*
* Copyright (C) 2010 Danijel Posilovic aka dan1j3l
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
@ -29,54 +30,80 @@
#include <sys/ioctl.h>
#include <sys/types.h>
#include <hardware/lights.h>
#include <linux/input.h>
#include <time.h>
#include <sys/stat.h>
/******************************************************************************/
static pthread_once_t g_init = PTHREAD_ONCE_INIT;
static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
static struct light_state_t g_notification;
static struct light_state_t g_battery;
static int g_backlight = 255;
static int g_buttons = 0;
static int g_attention = 0;
static int g_backlight = 255;
static int g_buttons = 0;
static int g_attention = 0;
static int button_state = 0;
static int screen_suspended = 1;
static int last_battery_state = 0;
static time_t time_to_off;
// working threads
static pthread_t t_timed_off = 0;
static pthread_t t_button_checker = 0;
static pthread_t t_battery_checker = 0;
static pthread_t t_blink_button_backlight = 0;
static int blink_button = 1;
static int battery_thread_led = 1;
static int was_blinking_notification = 0;
static int g_brightnessMode = 0;
// HTC LEO LEDS
char const*const GREEN_LED_FILE
= "/sys/class/leds/green/brightness";
char const*const GREEN_BLINK_FILE
= "/sys/class/leds/green/blink";
char const*const AMBER_LED_FILE
= "/sys/class/leds/amber/brightness";
char const*const AMBER_BLINK_FILE
= "/sys/class/leds/amber/blink";
char const*const LCD_FILE
= "/sys/class/leds/lcd-backlight/brightness";
char const*const AMBER_BLINK_FILE
= "/sys/class/leds/amber/blink";
char const*const GREEN_BLINK_FILE
= "/sys/class/leds/green/blink";
char const*const BUTTON_FILE
= "/sys/class/leds/button-backlight/brightness";
char const*const WIMAX_FILE
= "/sys/class/leds/wimax/brightness";
char const*const BUTTON_STATE_DEV
= "/dev/input/event3";
char const*const BATTERY_STATUS_FILE
= "/sys/class/power_supply/battery/status";
char const*const LS_FILE
= "/sys/devices/platform/htcleo-backlight/auto_bl";
/**
* device methods
*/
device methods
*/
void init_globals(void)
{
void init_globals(void){
// init the mutex
pthread_mutex_init(&g_lock, NULL);
}
static int
write_int(char const* path, int value)
{
static int write_int(char const* path, int value){
int fd;
static int already_warned = 0;
@ -96,204 +123,485 @@ write_int(char const* path, int value)
}
}
static int
is_lit(struct light_state_t const* state)
{
static int is_lit(struct light_state_t const* state){
return state->color & 0x00ffffff;
}
static int
handle_trackball_light_locked(struct light_device_t* dev)
{
//no trackball light for inc
static int rgb_to_brightness(struct light_state_t const* state){
int color = state->color & 0x00ffffff;
return ((77*((color>>16)&0x00ff))+ (150*((color>>8)&0x00ff)) + (29*(color&0x00ff))) >> 8;
}
// dan1j3l EXPERIMENTAL - ONLY FOR SENSE BUILDS !!!
// TODO: Add sense detection and start this thread only in sense builds !!!
// Battery checking service !
void *battery_state_checker(void *arg){
int fd,size, rs;
char state[20];
struct timespec t;
t.tv_nsec = 0;
t.tv_sec = 5;
struct timespec t2;
t.tv_nsec = 0;
t.tv_sec = 1;
while (battery_thread_led){
memset(&state[0], 0, sizeof(state));
fd = open(BATTERY_STATUS_FILE,O_RDONLY);
read(fd, state,20);
close(fd);
rs=0;
rs = sprintf(state,"%s",state);
if ( !was_blinking_notification && last_battery_state != rs){
last_battery_state=rs;
if ( rs == 9){ // Charging
write_int(GREEN_LED_FILE, 0);
write_int(AMBER_BLINK_FILE, 0);
nanosleep(&t2,NULL);
write_int(AMBER_LED_FILE, 1);
}else if(rs == 5){ // FULL
write_int(AMBER_LED_FILE, 0);
write_int(GREEN_BLINK_FILE, 0);
nanosleep(&t2,NULL);
write_int(GREEN_LED_FILE, 1);
}else{
write_int(AMBER_LED_FILE, 0);
write_int(GREEN_LED_FILE, 0);
}
}
nanosleep(&t,NULL);
}
t_battery_checker = 0;
return 0;
}
static int
rgb_to_brightness(struct light_state_t const* state)
{
int color = state->color & 0x00ffffff;
return ((77*((color>>16)&0x00ff))
+ (150*((color>>8)&0x00ff)) + (29*(color&0x00ff))) >> 8;
void start_battery_checker(){
if (t_button_checker == 0)
pthread_create(&t_battery_checker, NULL, battery_state_checker, NULL);
}
static int
set_light_backlight(struct light_device_t* dev,
struct light_state_t const* state)
{
// Functions for timed powering on buttons
void *button_state_checker(void *arg) {
struct input_event ev[64];
struct timespec t;
int fd, size = sizeof (struct input_event);
t.tv_nsec= 0;
t.tv_sec = 1;
fd = open(BUTTON_STATE_DEV,O_RDONLY);
while (1){
if (screen_suspended == 1 ){
write_int(BUTTON_FILE,0);
button_state = 0;
break;
}
read (fd, ev, size * 64);
if (ev[0].value == 1){
write_int(BUTTON_FILE,1);
button_state = 1;
button_timed_off();
nanosleep(&t,NULL);
}
}
close(fd);
t_button_checker = 0; // reset thread so we can recreate it later
return 0;
}
int do_check_button_state() {
if (t_button_checker == 0) // create thread only if does not exist
pthread_create(&t_button_checker, NULL, button_state_checker, NULL);
return 0;
}
void *blink_button_backlight(void *arg) {
struct timespec t;
t.tv_nsec= 0;
t.tv_sec = 1;
blink_button = 1;
while (blink_button){
write_int(BUTTON_FILE,1);
nanosleep(&t,NULL);
write_int(BUTTON_FILE,0);
nanosleep(&t,NULL);
}
t_blink_button_backlight = 0; // reset thread so we can recreate it later
return 0;
}
int do_blink_button_backlight() {
if (t_blink_button_backlight == 0) // create thread only if does not exist
pthread_create(&t_blink_button_backlight, NULL, blink_button_backlight, NULL);
return 0;
}
// Functions for timed powering off buttons
void *timer_button_off(void *arg) {
struct timespec t;
time_t secs;
t.tv_nsec = 0;
t.tv_sec = 1;
secs = time(NULL);
// wait untill is time for power off buttons
while (secs < time_to_off){
secs = time(NULL);
nanosleep(&t, NULL);
};
// if screen is suspended and buttons already turned off we exit thread
if (screen_suspended == 1 && button_state == 0) {
t_timed_off = 0; // reset thread
return 0;
}
// turn off button lights
write_int(BUTTON_FILE,0);
button_state=0;
// we check button states only if screen is active, else we close both threads
if (screen_suspended == 0) do_check_button_state();
t_timed_off = 0; // reset thread
return 0;
}
int button_timed_off() {
// we set time for power off (time now + 10 secs)
time_to_off = time(NULL) + 10;
if (t_timed_off == 0) // if thread does not exist, we crate it
pthread_create(&t_timed_off, NULL, timer_button_off, NULL);
return 0;
}
static int set_light_buttons(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_buttons");
int err = 0;
/*int on = is_lit(state);
pthread_mutex_lock(&g_lock);
g_buttons = on;
err = write_int(BUTTON_FILE, on?255:0);
pthread_mutex_unlock(&g_lock);
*/
return err;
}
static int set_light_backlight(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_backlight");
int err = 0;
int brightness = rgb_to_brightness(state);
pthread_mutex_lock(&g_lock);
g_backlight = brightness;
err = write_int(LCD_FILE, brightness);
// On/Off Buttons
if (g_brightnessMode != state->brightnessMode) {
g_brightnessMode = state->brightnessMode;
LOGD("Switched brightnessMode=%d brightness=%d\n",g_brightnessMode,
brightness);
write_int(LS_FILE, state->brightnessMode);
}
// if we switched to user mode, allow for setting the backlight immedeately
if (g_brightnessMode == BRIGHTNESS_MODE_USER || brightness==0 || g_backlight==0){
LOGD("Setting brightnessMode=%d brightness=%d\n", g_brightnessMode,
brightness);
err = write_int(LCD_FILE, brightness);
}
if (brightness == 0 && button_state == 1) {
// LOGD("button off");
if(g_backlight) err = write_int(BUTTON_FILE,0);
button_state=0;
screen_suspended = 1;
}else if (brightness > 0 && button_state == 0){
// LOGD("button on");
if(!g_backlight) err = write_int(BUTTON_FILE,1);
button_state=1;
screen_suspended = 0;
// after powering buttons off, it's time to shut them down after declared amount of time (for now 10 sec)
button_timed_off();
}
g_backlight = brightness;
pthread_mutex_unlock(&g_lock);
return err;
}
static int
set_light_buttons(struct light_device_t* dev,
struct light_state_t const* state)
{
int err = 0;
int on = is_lit(state);
pthread_mutex_lock(&g_lock);
g_buttons = on;
err = write_int(BUTTON_FILE, on?255:0);
pthread_mutex_unlock(&g_lock);
return err;
}
static int
set_wimax_light_locked(struct light_device_t* dev,
struct light_state_t const* state)
{
int blink;
int green, amber, blue;
unsigned int colorRGB;
switch (state->flashMode) {
case LIGHT_FLASH_NONE:
blink = 0;
break;
default:
blink = 1;
break;
}
colorRGB = state->color;
amber = (colorRGB >> 16) & 0xFF;
green = (colorRGB >> 8) & 0xFF;
blue = colorRGB & 0xFF;
LOGD("set_wimax_light_locked colorRGB=%08X, green=%d, amber=%d blue=%d flashMode=%d\n",
colorRGB, green, amber, blue, state->flashMode);
if ((green || blue) && blink) {
write_int(WIMAX_FILE, 3);
} else if (amber && blink) {
write_int(WIMAX_FILE, 5);
} else {
write_int(WIMAX_FILE, 0);
}
// dan1j3l: maybe remove this funct
static int set_light_keyboard(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_keyboard");
// Nothing to do in leo
return 0;
}
static int
set_speaker_light_locked(struct light_device_t* dev,
struct light_state_t const* state)
{
int len;
int alpha, red, green, blue;
int blink, freq, pwm;
int onMS, offMS;
unsigned int colorRGB;
static void blinkLed(unsigned int color, int blink){
struct timespec t;
int red, green, blue;
t.tv_nsec = 0;
t.tv_sec = 1;
red = (color >> 16) & 0xFF;
green = (color >> 8) & 0xFF;
blue = color & 0xFF;
if (red) { // Amber on / blink
//if(blink){
// battery_thread_led = 0; // turn off battery thread for a while
//}
write_int(GREEN_LED_FILE, 0);
write_int(AMBER_LED_FILE, 1);
nanosleep(&t, NULL);
if(blink) write_int(AMBER_BLINK_FILE, blink);
LOGD("amber on, blink:%d",blink);
} else if (green || blue || color == 0x1) { // Green on / blink
write_int(AMBER_LED_FILE, 0);
write_int(GREEN_LED_FILE, 1);
nanosleep(&t, NULL);
if(blink) write_int(GREEN_BLINK_FILE, blink);
LOGD("green on, blink:%d",blink);
} else { // Leds off
write_int(GREEN_LED_FILE, 0);
write_int(AMBER_LED_FILE, 0);
write_int(AMBER_BLINK_FILE, 0);
write_int(GREEN_BLINK_FILE, 0);
//start_battery_checker();
LOGD("leds off");
}
LOGD("light-colors red:%d green:%d blue:%d",red,green,blue);
}
// dan1j3l TODO: Refactor, and simplify this funct
static int set_speaker_light_locked(struct light_device_t* dev,struct light_state_t const* state){
int blink;
unsigned int colorRGB;
LOGD("set_speaker_light_locked");
// Blink or solid
switch (state->flashMode) {
case LIGHT_FLASH_TIMED:
blink = 1;
onMS = state->flashOnMS;
offMS = state->flashOffMS;
break;
case LIGHT_FLASH_HARDWARE:
blink = 1;
onMS = state->flashOnMS;
offMS = state->flashOffMS;
break;
case LIGHT_FLASH_NONE:
blink = 0;
onMS = 0;
offMS = 0;
break;
default:
blink = 1;
onMS = 0;
offMS = 0;
blink = 0;
break;
}
// dan1j3l: TODO: simplify color detection
colorRGB = state->color;
LOGD("set_speaker_light_locked colorRGB=%08X, onMS=%d, offMS=%d\n",
colorRGB, onMS, offMS);
// dan1j3l BUG: on some android releases leds needs to be reseted by putting blink & brightness to 0 before enabling them
blinkLed(colorRGB, blink);
return 0;
}
// dan1j3l TODO: Refactor this funct
static void handle_speaker_battery_locked(struct light_device_t* dev){
LOGD("handle_speaker_battery_locked");
if (is_lit(&g_battery)) {
set_speaker_light_locked(dev, &g_battery);
} else {
set_speaker_light_locked(dev, &g_notification);
}
}
static int set_light_battery(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_battery");
pthread_mutex_lock(&g_lock);
g_battery = *state;
handle_speaker_battery_locked(dev);
pthread_mutex_unlock(&g_lock);
return 0;
}
static int set_light_notifications(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_notifications");
pthread_mutex_lock(&g_lock);
g_notification = *state;
handle_speaker_battery_locked(dev);
pthread_mutex_unlock(&g_lock);
return 0;
}
// dan1j3l BUG: Button lights ?
static int set_light_attention(struct light_device_t* dev,struct light_state_t const* state){
pthread_mutex_lock(&g_lock);
/* if (state->flashMode == LIGHT_FLASH_HARDWARE) {
g_attention = state->flashOnMS;
} else if (state->flashMode == LIGHT_FLASH_NONE) {
g_attention = 0;
}
int mode = g_attention;*/
if(is_lit(state) && state->flashOnMS) {
do_blink_button_backlight();
} else {
blink_button = 0;
}
LOGD("set_light_attention: %p(%d,%d,%d)\n", state->color, state->flashMode, state->flashOnMS, state->flashOffMS);
/* if (mode == 7 && g_backlight) {
mode = 0;
}*/
pthread_mutex_unlock(&g_lock);
return 0;
}
/** New stuff */
// dan1j3l TODO: Verify each device and create led detection
static int set_light_bluetooth(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_bluetooth");
return 0;
}
static int set_light_wifi(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_wifi");
return 0;
}
static int set_light_dualled(struct light_device_t* dev,struct light_state_t const* state){
pthread_mutex_lock(&g_lock);
// we only care for blinking states atm
if(is_lit(state) && state->flashOnMS) {
blinkLed(state->color,1);
was_blinking_notification = 1;
} else if(was_blinking_notification && !is_lit(state)) {
blinkLed(0,0);
was_blinking_notification = 0;
}
LOGD("set_light_dualled: %p(%d,%d,%d)\n", state->color, state->flashMode, state->flashOnMS, state->flashOffMS);
pthread_mutex_unlock(&g_lock);
return 0;
/*
// Blink or solid
switch (state->flashMode) {
case LIGHT_FLASH_TIMED:
blink = 1;
break;
case LIGHT_FLASH_HARDWARE:
blink = 1;
break;
case LIGHT_FLASH_NONE:
blink = 0;
break;
default:
blink = 0;
break;
}
LOGD("dl mode:%d, offMS:%d, OnMS:%d, brightness:%d",state->flashMode,state->flashOffMS,state->flashOnMS,state->brightnessMode);
// dan1j3l: TODO: simplify color detection
colorRGB = state->color;
red = (colorRGB >> 16) & 0xFF;
green = (colorRGB >> 8) & 0xFF;
blue = colorRGB & 0xFF;
if (red) {
write_int(GREEN_LED_FILE, 0);
write_int(AMBER_LED_FILE, 1);
if (blink) {
//blink must come after brightness change
write_int(AMBER_BLINK_FILE, 1);
}
} else if (green || blue) {
write_int(AMBER_LED_FILE, 0);
write_int(GREEN_LED_FILE, 1);
if (blink) {
write_int(GREEN_BLINK_FILE, 1);
}
} else {
write_int(GREEN_LED_FILE, 0);
write_int(AMBER_LED_FILE, 0);
// dan1j3l TEST ON DIFFERENT BUILDS !!!
if (state->flashMode == LIGHT_FLASH_NONE && red == 0 && green == 0 && blue == 0){
// turn amber on
LOGD("amber on");
write_int(AMBER_BLINK_FILE,0);
write_int(AMBER_LED_FILE,1);
}else{
//turn amber off
LOGD("amber off");
write_int(AMBER_LED_FILE,0);
}
LOGD("dl fullcolor:%d",state->color);
LOGD("dl-color red:%d green:%d blue:%d",red,green,blue);
return 0;
}
static void
handle_speaker_light_locked(struct light_device_t* dev)
{
set_speaker_light_locked(dev, &g_battery);
}
static void
handle_notification_light_locked(struct light_device_t* dev)
{
set_wimax_light_locked(dev, &g_notification);
}
static int
set_light_battery(struct light_device_t* dev,
struct light_state_t const* state)
{
pthread_mutex_lock(&g_lock);
g_battery = *state;
handle_speaker_light_locked(dev);
*/
pthread_mutex_unlock(&g_lock);
return 0;
}
static int
set_light_notifications(struct light_device_t* dev,
struct light_state_t const* state)
{
pthread_mutex_lock(&g_lock);
g_notification = *state;
handle_notification_light_locked(dev);
pthread_mutex_unlock(&g_lock);
// dan1j3l ???
static int set_light_capsfunc(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_capsfunc");
return 0;
}
static int
set_light_attention(struct light_device_t* dev,
struct light_state_t const* state)
{
//no attention light for supersonic
// dan1j3l - Nothing interesting for leo
static int set_light_jogball(struct light_device_t* dev,struct light_state_t const* state){
LOGD("set_light_jogball");
return 0;
}
/** ****************************************************/
/** Close the lights device */
static int
close_lights(struct light_device_t *dev)
{
static int close_lights(struct light_device_t *dev){
if (dev) {
free(dev);
}
return 0;
}
@ -305,33 +613,63 @@ close_lights(struct light_device_t *dev)
*/
/** Open a new instance of a lights device using name */
static int open_lights(const struct hw_module_t* module, char const* name,
struct hw_device_t** device)
{
int (*set_light)(struct light_device_t* dev,
struct light_state_t const* state);
static int open_lights(const struct hw_module_t* module, char const* name,struct hw_device_t** device){
int (*set_light)(struct light_device_t* dev,struct light_state_t const* state);
if (0 == strcmp(LIGHT_ID_BACKLIGHT, name)) {
set_light = set_light_backlight;
LOGD("init backlight, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_KEYBOARD, name)) { //dan1j3l: Ignored on leo
set_light = set_light_keyboard;
LOGD("init keyboard, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_BUTTONS, name)) {
set_light = set_light_buttons;
LOGD("init buttons, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_BATTERY, name)) {
set_light = set_light_battery;
start_battery_checker(); // needed for sense builds
LOGD("init battery, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_NOTIFICATIONS, name)) {
set_light = set_light_notifications;
LOGD("init notifications, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_ATTENTION, name)) {
set_light = set_light_attention;
LOGD("init attention, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_BLUETOOTH, name)) {
set_light = set_light_bluetooth;
LOGD("init bluetooth, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_WIFI, name)) {
set_light = set_light_wifi;
LOGD("init wifi, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_DUALLED, name)) {
set_light = set_light_dualled;
LOGD("init dualled, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_CAPSFUNC, name)) { // dan1j3l: what is capsfunc ?
set_light = set_light_capsfunc;
LOGD("init capsfunc, id:%s",name);
}
else if (0 == strcmp(LIGHT_ID_JOGBALL, name)) { // dan1j3l: is needed in leo ?
set_light = set_light_jogball;
LOGD("init jogball, id:%s",name);
}
else {
LOGD("Undefined device, id:%s",name);
return -EINVAL;
}
pthread_once(&g_init, init_globals);
pthread_once(&g_init, init_globals);
struct light_device_t *dev = malloc(sizeof(struct light_device_t));
memset(dev, 0, sizeof(*dev));
@ -358,7 +696,7 @@ const struct hw_module_t HAL_MODULE_INFO_SYM = {
.version_major = 1,
.version_minor = 0,
.id = LIGHTS_HARDWARE_MODULE_ID,
.name = "Supersonic lights module",
.author = "CyanogenMod",
.name = "HTC Leo Lights module",
.author = "dan1j3l",
.methods = &lights_module_methods,
};

635
liblights/lights.c-mahimahi Executable file
View File

@ -0,0 +1,635 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "lights"
#include <cutils/log.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <hardware/lights.h>
#define LIGHT_ATTENTION 1
#define LIGHT_NOTIFY 2
/******************************************************************************/
static struct light_state_t *g_notify;
static struct light_state_t *g_attention;
static pthread_once_t g_init = PTHREAD_ONCE_INIT;
static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
static int g_backlight = 255;
static int g_buttons = 0;
struct led_prop {
const char *filename;
int fd;
};
struct led {
struct led_prop mode;
struct led_prop brightness;
struct led_prop blink;
struct led_prop color;
struct led_prop period;
};
enum {
JOGBALL_LED,
BUTTONS_LED,
AMBER_LED,
GREEN_LED,
BLUE_LED,
RED_LED,
LCD_BACKLIGHT,
NUM_LEDS,
};
struct led leds[NUM_LEDS] = {
// [JOGBALL_LED] = {
// .brightness = { "/sys/class/leds/jogball-backlight/brightness", 0},
// .color = { "/sys/class/leds/jogball-backlight/color", 0},
// .period = { "/sys/class/leds/jogball-backlight/period", 0},
// },
[BUTTONS_LED] = {
.brightness = { "/sys/class/leds/button-backlight/brightness", 0},
},
// [RED_LED] = {
// .brightness = { "/sys/class/leds/red/brightness", 0},
// .blink = { "/sys/class/leds/red/blink", 0},
// },
[GREEN_LED] = {
.brightness = { "/sys/class/leds/green/brightness", 0},
.blink = { "/sys/class/leds/green/blink", 0},
},
// [BLUE_LED] = {
// .brightness = { "/sys/class/leds/blue/brightness", 0},
// .blink = { "/sys/class/leds/blue/blink", 0},
// },
[AMBER_LED] = {
.brightness = { "/sys/class/leds/amber/brightness", 0},
.blink = { "/sys/class/leds/amber/blink", 0},
},
[LCD_BACKLIGHT] = {
.brightness = { "/sys/class/leds/lcd-backlight/brightness", 0},
},
};
enum {
RGB_BLACK = 0x000000,
RGB_RED = 0xFF0000,
RGB_AMBER = 0xFFFF00, /* note this is actually RGB yellow */
RGB_GREEN = 0x00FF00,
RGB_BLUE = 0x0000FF,
RGB_WHITE = 0xFFFFFF,
RGB_PINK = 0xFFC0CB,
RGB_ORANGE = 0xFFA500,
RGB_YELLOW = 0xFFFF00,
RGB_PURPLE = 0x800080,
RGB_LT_BLUE = 0xADD8E6,
};
/**
* device methods
*/
static int init_prop(struct led_prop *prop)
{
int fd;
prop->fd = -1;
if (!prop->filename)
return 0;
fd = open(prop->filename, O_RDWR);
if (fd < 0) {
LOGE("init_prop: %s cannot be opened (%s)\n", prop->filename,
strerror(errno));
return -errno;
}
prop->fd = fd;
return 0;
}
static void close_prop(struct led_prop *prop)
{
int fd;
if (prop->fd > 0)
close(prop->fd);
return;
}
void init_globals(void)
{
int i;
pthread_mutex_init(&g_lock, NULL);
for (i = 0; i < NUM_LEDS; ++i) {
init_prop(&leds[i].brightness);
init_prop(&leds[i].blink);
// init_prop(&leds[i].mode);
// init_prop(&leds[i].color);
// init_prop(&leds[i].period);
}
g_attention = malloc(sizeof(struct light_state_t));
memset(g_attention, 0, sizeof(*g_attention));
g_notify = malloc(sizeof(struct light_state_t));
memset(g_notify, 0, sizeof(*g_notify));
}
static int
write_int(struct led_prop *prop, int value)
{
char buffer[20];
int bytes;
int amt;
if (prop->fd < 0)
return 0;
LOGV("%s %s: 0x%x\n", __func__, prop->filename, value);
bytes = snprintf(buffer, sizeof(buffer), "%d\n", value);
while (bytes > 0) {
amt = write(prop->fd, buffer, bytes);
if (amt < 0) {
if (errno == EINTR)
continue;
return -errno;
}
bytes -= amt;
}
return 0;
}
static int
write_rgb(struct led_prop *prop, int red, int green, int blue)
{
char buffer[20];
int bytes;
int amt;
if (prop->fd < 0)
return 0;
LOGV("%s %s: red:%d green:%d blue:%d\n",
__func__, prop->filename, red, green, blue);
bytes = snprintf(buffer, sizeof(buffer), "%d %d %d\n", red, green, blue);
while (bytes > 0) {
amt = write(prop->fd, buffer, bytes);
if (amt < 0) {
if (errno == EINTR)
continue;
return -errno;
}
bytes -= amt;
}
return 0;
}
static unsigned int
set_rgb(int red, int green, int blue)
{
return(((red << 16) & 0x00ff0000) |
((green << 8) & 0x0000ff00) |
(blue & 0x000000ff));
}
static int
is_lit(struct light_state_t const* state)
{
return state->color & 0x00ffffff;
}
static int
set_button_light(struct light_state_t const* state)
{
static int button_mode = 0;
int rc = 0;
int mode = state->flashMode;
int red, blue, green;
int period = 0;
if (state->flashMode == LIGHT_FLASH_HARDWARE) {
mode = state->flashOnMS;
period = state->flashOffMS;
}
// LOGD("%s color=%08x mode=%d period %d\n", __func__,state->color, mode, period);
if (mode != 0) {
write_int(&leds[BUTTONS_LED].brightness,1);
}
// If the value isn't changing, don't set it, because this
// can reset the timer on the breathing mode, which looks bad.
if (button_mode == mode) {
return 0;
}
button_mode = mode;
LOGD("set_button_light mode:%d",mode);
return write_int(&leds[BUTTONS_LED].brightness, mode);
}
static void
handle_button_light_locked(int type)
{
LOGD("handle_button_light_locked");
struct light_state_t *new_state = 0;
int attn_mode = 0;
if (g_attention->flashMode == LIGHT_FLASH_HARDWARE)
attn_mode = g_attention->flashOnMS;
//LOGD("%s type %d attention %p notify %p\n",__func__, type, g_attention, g_notify);
switch (type) {
case LIGHT_ATTENTION: {
if (attn_mode == 0) {
/* go back to notify state */
new_state = g_notify;
} else {
new_state = g_attention;
}
break;
}
case LIGHT_NOTIFY: {
if (attn_mode != 0) {
/* attention takes priority over notify state */
new_state = g_attention;
} else {
new_state = g_notify;
}
break;
}
}
if (new_state == 0) {
LOGD("%s: unknown type (%d)\n", __func__, type);
return;
}
LOGD("%s new state %p\n", __func__, new_state);
set_button_light(new_state);
return;
}
static int
rgb_to_brightness(struct light_state_t const* state)
{
int color = state->color & 0x00ffffff;
return ((77*((color>>16)&0x00ff))
+ (150*((color>>8)&0x00ff)) + (29*(color&0x00ff))) >> 8;
}
static int
set_light_backlight(struct light_device_t* dev,
struct light_state_t const* state)
{
LOGD("set_light_backlight");
int err = 0;
int brightness = rgb_to_brightness(state);
//LOGD("%s brightness=%d color=0x%08x",__func__,brightness, state->color);
pthread_mutex_lock(&g_lock);
g_backlight = brightness;
err = write_int(&leds[LCD_BACKLIGHT].brightness, brightness);
pthread_mutex_unlock(&g_lock);
return err;
}
static int
set_light_keyboard(struct light_device_t* dev,
struct light_state_t const* state)
{
/* nothing to do on mahimahi*/
return 0;
}
static int
set_light_buttons(struct light_device_t* dev,
struct light_state_t const* state)
{
LOGD("set_light_buttons");
int err = 0;
int on = is_lit(state);
pthread_mutex_lock(&g_lock);
g_buttons = on;
err = write_int(&leds[BUTTONS_LED].brightness, on?255:0);
pthread_mutex_unlock(&g_lock);
return err;
}
static int
set_speaker_light_locked(struct light_device_t* dev,
struct light_state_t const* state)
{
LOGD("set_speaker_light_locked");
int len;
unsigned int colorRGB;
/* Red = amber_led, blue or green = green_led */
colorRGB = state->color & 0xFFFFFF;
switch (state->flashMode) {
case LIGHT_FLASH_TIMED:
switch (colorRGB) {
case RGB_RED:
LOGD("flash red");
write_int(&leds[RED_LED].blink, 1);
break;
case RGB_AMBER:
LOGD("flash amber");
write_int(&leds[AMBER_LED].blink, 2);
break;
case RGB_GREEN:
LOGD("flash green");
write_int(&leds[GREEN_LED].blink, 1);
break;
case RGB_BLUE:
LOGD("flash blue");
write_int(&leds[BLUE_LED].blink, 1);
break;
case RGB_BLACK: /*off*/
LOGD("flash off");
write_int(&leds[GREEN_LED].blink, 0);
write_int(&leds[AMBER_LED].blink, 0);
break;
default:
break;
}
break;
case LIGHT_FLASH_NONE:
switch (colorRGB) {
case RGB_AMBER:
LOGD("solid amber");
write_int(&leds[GREEN_LED].brightness, 0);
write_int(&leds[AMBER_LED].blink, 0);
write_int(&leds[AMBER_LED].brightness, 1);
break;
case RGB_GREEN:
LOGD("solid green");
write_int(&leds[AMBER_LED].brightness, 0);
write_int(&leds[GREEN_LED].blink, 0);
write_int(&leds[GREEN_LED].brightness, 1);
break;
case RGB_BLACK: /*off*/
LOGD("all off");
write_int(&leds[GREEN_LED].brightness, 0);
write_int(&leds[AMBER_LED].brightness, 0);
break;
default:
break;
}
break;
default:
break;
}
return 0;
}
static int
set_light_battery(struct light_device_t* dev,
struct light_state_t const* state)
{
pthread_mutex_lock(&g_lock);
LOGD("set_light_battery");
LOGD("%s mode=%d color=0x%08x",
__func__,state->flashMode, state->color);
set_speaker_light_locked(dev, state);
pthread_mutex_unlock(&g_lock);
return 0;
}
static int
set_light_notifications(struct light_device_t* dev,
struct light_state_t const* state)
{
pthread_mutex_lock(&g_lock);
LOGD("set_light_notification");
LOGD("%s mode=%d color=0x%08x On=%d Off=%d\n",
__func__,state->flashMode, state->color,
state->flashOnMS, state->flashOffMS);
/*
** TODO Allow for user settings of color and interval
** Setting 60% brightness
*/
switch (state->color & 0x00FFFFFF) {
case RGB_BLACK:
g_notify->color = set_rgb(0, 0, 0);
break;
case RGB_WHITE:
g_notify->color = set_rgb(50, 127, 48);
break;
case RGB_RED:
g_notify->color = set_rgb(141, 0, 0);
break;
case RGB_GREEN:
g_notify->color = set_rgb(0, 141, 0);
break;
case RGB_BLUE:
g_notify->color = set_rgb(0, 0, 141);
break;
case RGB_PINK:
g_notify->color = set_rgb(141, 52, 58);
break;
case RGB_PURPLE:
g_notify->color = set_rgb(70, 0, 70);
break;
case RGB_ORANGE:
g_notify->color = set_rgb(141, 99, 0);
break;
case RGB_YELLOW:
g_notify->color = set_rgb(100, 141, 0);
break;
case RGB_LT_BLUE:
g_notify->color = set_rgb(35, 55, 98);
break;
default:
g_notify->color = state->color;
break;
}
if (state->flashMode != LIGHT_FLASH_NONE) {
g_notify->flashMode = LIGHT_FLASH_HARDWARE;
g_notify->flashOnMS = 7;
g_notify->flashOffMS = (state->flashOnMS + state->flashOffMS)/1000;
} else {
g_notify->flashOnMS = 0;
g_notify->flashOffMS = 0;
}
handle_button_light_locked(LIGHT_NOTIFY);
pthread_mutex_unlock(&g_lock);
return 0;
}
static int
set_light_attention(struct light_device_t* dev,
struct light_state_t const* state)
{
unsigned int colorRGB;
LOGD("set_light_attention");
LOGD("%s color=0x%08x mode=0x%08x submode=0x%08x",
__func__, state->color, state->flashMode, state->flashOnMS);
pthread_mutex_lock(&g_lock);
/* tune color for hardware*/
switch (state->color & 0x00FFFFFF) {
case RGB_WHITE:
colorRGB = set_rgb(101, 255, 96);
break;
case RGB_BLUE:
colorRGB = set_rgb(0, 0, 235);
break;
case RGB_BLACK:
colorRGB = set_rgb(0, 0, 0);
break;
default:
LOGD("%s colorRGB=%08X, unknown color\n",
__func__, state->color);
colorRGB = set_rgb(101, 255, 96);
break;
}
g_attention->flashMode = state->flashMode;
g_attention->flashOnMS = state->flashOnMS;
g_attention->color = colorRGB;
g_attention->flashOffMS = 0;
handle_button_light_locked(LIGHT_ATTENTION);
pthread_mutex_unlock(&g_lock);
return 0;
}
/** Close the lights device */
static int
close_lights(struct light_device_t *dev)
{
int i;
LOGD("close_lights");
for (i = 0; i < NUM_LEDS; ++i) {
close_prop(&leds[i].brightness);
close_prop(&leds[i].blink);
close_prop(&leds[i].mode);
}
if (dev) {
free(dev);
}
return 0;
}
/******************************************************************************/
/**
* module methods
*/
/** Open a new instance of a lights device using name */
static int open_lights(const struct hw_module_t* module, char const* name,
struct hw_device_t** device)
{
int (*set_light)(struct light_device_t* dev,
struct light_state_t const* state);
if (0 == strcmp(LIGHT_ID_BACKLIGHT, name)) {
set_light = set_light_backlight;
LOGD("init backlight");
}
else if (0 == strcmp(LIGHT_ID_KEYBOARD, name)) {
set_light = set_light_keyboard;
LOGD("init keyboard");
}
else if (0 == strcmp(LIGHT_ID_BUTTONS, name)) {
set_light = set_light_buttons;
LOGD("init buttons");
}
else if (0 == strcmp(LIGHT_ID_BATTERY, name)) {
set_light = set_light_battery;
LOGD("init battery");
}
else if (0 == strcmp(LIGHT_ID_NOTIFICATIONS, name)) {
set_light = set_light_notifications;
LOGD("init notifications");
}
else if (0 == strcmp(LIGHT_ID_ATTENTION, name)) {
set_light = set_light_attention;
LOGD("init attention");
}
else {
return -EINVAL;
}
pthread_once(&g_init, init_globals);
struct light_device_t *dev = malloc(sizeof(struct light_device_t));
memset(dev, 0, sizeof(*dev));
LOGD("hw device tag:%d",HARDWARE_DEVICE_TAG);
dev->common.tag = HARDWARE_DEVICE_TAG;
dev->common.version = 0;
dev->common.module = (struct hw_module_t*)module;
dev->common.close = (int (*)(struct hw_device_t*))close_lights;
dev->set_light = set_light;
*device = (struct hw_device_t*)dev;
return 0;
}
static struct hw_module_methods_t lights_module_methods = {
.open = open_lights,
};
/*
* The lights Module
*/
const struct hw_module_t HAL_MODULE_INFO_SYM = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = LIGHTS_HARDWARE_MODULE_ID,
.name = "mahimahi lights Module",
.author = "Google, Inc.",
.methods = &lights_module_methods,
};

View File

@ -1,656 +0,0 @@
/*
* Copyright (C) 2009 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define LOG_TAG "lights_leo"
#include <cutils/log.h>
#include <cutils/properties.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <fcntl.h>
#include <pthread.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <hardware/lights.h>
#include <linux/input.h>
#include <time.h>
#include <sys/stat.h>
#include "events.h"
#define LIGHT_ATTENTION 1
#define LIGHT_NOTIFY 2
//#define ENABLE_LCDSAVE
//#define ENABLE_BATTERY_POOL
#define ENABLE_RADIO_POOL
#define LED_DEBUG 1
#if LED_DEBUG
# define D(...) LOGD(__VA_ARGS__)
#else
# define D(...) ((void)0)
#endif
/******************************************************************************/
static struct light_state_t *g_notify;
static struct light_state_t *g_attention;
static pthread_once_t g_init = PTHREAD_ONCE_INIT;
static pthread_mutex_t g_lock = PTHREAD_MUTEX_INITIALIZER;
#ifdef ENABLE_LCDSAVE
static int g_current_backlight = 0;
#endif
static int g_ts = 0;
static int g_backlight = 255;
static int g_buttons = 0;
struct led_prop {
const char *filename;
int fd;
int value;
};
struct led {
struct led_prop brightness;
struct led_prop blink;
};
enum {
BUTTONS_LED,
GREEN_LED,
AMBER_LED,
LCD_BACKLIGHT,
NUM_LEDS,
};
struct led leds[NUM_LEDS] = {
[BUTTONS_LED] = {
.brightness = { "/sys/class/leds/button-backlight/brightness", 0, 0},
.blink = {NULL, 0, 0},
},
[GREEN_LED] = {
.brightness = { "/sys/class/leds/green/brightness", 0, 0},
.blink = { "/sys/class/leds/green/blink", 0, 0},
},
[AMBER_LED] = {
.brightness = { "/sys/class/leds/amber/brightness", 0, 0},
.blink = { "/sys/class/leds/amber/blink", 0, 0},
},
[LCD_BACKLIGHT] = {
.brightness = { "/sys/class/leds/lcd-backlight/brightness", 0, 0},
.blink = {NULL, 0, 0},
},
};
/**
* device methods
*/
static int init_prop(struct led_prop *prop)
{
int fd;
prop->fd = -1;
if (!prop->filename)
return 0;
fd = open(prop->filename, O_RDWR);
if (fd < 0) {
LOGE("init_prop: %s cannot be opened (%s)\n", prop->filename,
strerror(errno));
return -errno;
}
prop->fd = fd;
return 0;
}
static void close_prop(struct led_prop *prop)
{
int fd;
if (prop->fd > 0)
close(prop->fd);
return;
}
void init_globals(void)
{
int i;
pthread_mutex_init(&g_lock, NULL);
for (i = 0; i < NUM_LEDS; ++i) {
init_prop(&leds[i].brightness);
if (leds[i].blink.filename) {
init_prop(&leds[i].blink);
}
}
g_attention = malloc(sizeof(struct light_state_t));
memset(g_attention, 0, sizeof(*g_attention));
g_notify = malloc(sizeof(struct light_state_t));
memset(g_notify, 0, sizeof(*g_notify));
}
static int
write_int(struct led_prop *prop, int value)
{
char buffer[20];
int bytes;
int amt;
if (prop->fd < 0)
return 0;
if (prop->value != value) {
//LOGV("%s %s: 0x%x\n", __func__, prop->filename, value);
bytes = snprintf(buffer, sizeof(buffer), "%d\n", value);
while (bytes > 0) {
amt = write(prop->fd, buffer, bytes);
if (amt < 0) {
if (errno == EINTR)
continue;
return -errno;
}
bytes -= amt;
}
prop->value = value;
}
return 0;
}
static int
is_lit(struct light_state_t const* state)
{
return state->color & 0x00ffffff;
}
static int
rgb_to_brightness(struct light_state_t const* state)
{
int color = state->color & 0x00ffffff;
return ((77*((color>>16)&0x00ff))
+ (150*((color>>8)&0x00ff)) + (29*(color&0x00ff))) >> 8;
}
//=====================================================================================
#ifdef ENABLE_BATTERY_POLL
static pthread_t battery_check_t = 0;
static int last_battery_state = 0;
void *battery_state_thread(void *arg){
int fd,size, rs;
char state[20];
struct timespec t;
t.tv_nsec = 0;
t.tv_sec = 5;
fd = open("/sys/class/power_supply/battery/status",O_RDONLY | O_NDELAY);
if(fd < 0) {
LOGE("Couldn't open /sys/class/power_supply/battery/status\n");
return 0;
}
for (;;) {
memset(&state[0], 0, sizeof(state));
read(fd, state,20);
close(fd);
rs=0;
rs = sprintf(state,"%s",state);
if ( last_battery_state != rs){
last_battery_state=rs;
if ( rs == 9){ // Charging
write_int(&leds[GREEN_LED].brightness, 0);
write_int(&leds[AMBER_LED].brightness, 1);
write_int(&leds[AMBER_LED].blink, 0);
}else if(rs == 5){ // FULL
write_int(&leds[GREEN_LED].brightness, 1);
write_int(&leds[AMBER_LED].brightness, 0);
write_int(&leds[GREEN_LED].blink, 0);
}
}
nanosleep(&t,NULL);
}
close(fd);
return 0;
}
void start_battery_thread(){
if (battery_check_t == 0) //ensure only 1 thread
pthread_create(&battery_check_t, NULL, battery_state_thread, NULL);
return;
}
#endif
//=====================================================================================
#ifdef ENABLE_RADIO_POOL
static int last_radio_state = 0;
#endif
static pthread_t events_ct = 0;
static time_t keys_tm;
#ifdef ENABLE_LCDSAVE
static time_t abs_tm;
static time_t last_activity_tm;
static int user_activity_idle() {
int fd;
int ret =0;
char tmp[20];
fd= open("/sys/android_power/auto_off_timeout",O_RDONLY);
if(fd < 0) {
LOGE("Couldn't open /sys/android_power/auto_off_timeout\n");
return 0;
}
memset(&tmp[0], 0, sizeof(tmp));
read(fd, tmp,20);
D("@@ %s->%s\n", __func__, tmp);
close(fd);
return (ret);
}
#endif
static int
switch_led_button(int on) {
int err = 0;
if (g_buttons!=on) {
//D("@@ %s->%s\n", __func__, g_buttons?"ON":"OFF");
err = write_int(&leds[BUTTONS_LED].brightness, on);
keys_tm = time(NULL) + (8*on); // switch off button keypad after 8 seconds
g_buttons = on;
}
return err;
}
static int
set_led_backlight(int level) {
int err = 0;
//D("%s: [%d %d %d]\n", __func__, level, g_backlight, g_current_backlight);
if (g_backlight != level ){
err = write_int(&leds[LCD_BACKLIGHT].brightness, level);
g_backlight = level;
}
#ifdef ENABLE_LCDSAVE
if (level>=g_current_backlight){
g_current_backlight=level;
abs_tm = time(NULL) + (10);
}
#endif
return err;
}
void *events_cthread(void *arg) {
#ifdef ENABLE_RADIO_POOL
int radio_state = 0;
char sim_state[PROPERTY_VALUE_MAX];
#endif
struct input_event ev;
struct timespec t;
time_t a_tm, k_tm;
//int fd;
t.tv_nsec= 10000*1000;
t.tv_sec = 0;
ev_init();
for (;;) {
/* radio events tracking */
#ifdef ENABLE_RADIO_POOL
radio_state = 0;
if (property_get("gsm.sim.state", sim_state, NULL) && (strcmp(sim_state, "READY")==0)) {
radio_state = 1;
}
//radio state changed
if ( last_radio_state != radio_state){
D("@@ %s: |%s| %d->%d\n", __func__, sim_state, last_radio_state, radio_state );
//green blink if radio is on
write_int(&leds[AMBER_LED].brightness, radio_state?0:1);
write_int(&leds[GREEN_LED].brightness, radio_state?1:0);
write_int(&leds[GREEN_LED].blink, radio_state?1:0);
last_radio_state=radio_state;
}
#endif
/* battery events tracking */
/* button events tracking */
ev_get(&ev, 1);
if (ev.type==EV_KEY) {
if (ev.value == 1){
switch (ev.code) {
case BTN_TOUCH:
#ifdef ENABLE_LCDSAVE
if (g_backlight > 0) && (abs_tm==0)
set_led_backlight(g_current_backlight);
}
#endif
break;
case KEY_SEND:
case KEY_MENU:
case KEY_HOME:
case KEY_BACK:
case KEY_END:
case KEY_POWER:
#ifdef ENABLE_LCDSAVE
if (abs_tm==0) {set_led_backlight(g_current_backlight);}
#endif
switch_led_button(1);
sleep(1);
break;
#ifdef ENABLE_LCDSAVE
case KEY_VOLUMEUP:
case KEY_VOLUMEDOWN:
if (abs_tm==0) { set_led_backlight(g_current_backlight);}
break;
#endif
default:
/*LOGD("keys: code %d, value %d\n", ev.code, ev.value);*/
sleep(1);
break;
}
}
}
//=========================
#ifdef ENABLE_LCDSAVE
if (g_backlight > 0) {
a_tm = time(NULL);
//D("%ld %ld\n", a_tm, abs_tm);
if ((abs_tm>0) && (a_tm >= abs_tm) && (user_activity_idle())) {
//D("LCD_BACKLIGHT->down brightness\n");
set_led_backlight(50);
//write_int(&leds[LCD_BACKLIGHT].brightness, 50);
abs_tm = 0;
}
}
#endif
k_tm = time(NULL);
//D("[%ld][%ld][%d][%d %d %d][%d]\n", tm, keys_tm, ev.type, ev.code, ev.value, g_buttons, g_backlight);
if (g_buttons==1) {
if (k_tm == keys_tm || g_backlight == 0){
switch_led_button(0);
sleep(1);
}
}
//=========================
nanosleep(&t,NULL); //avoid 100% CPU usage by system_server
}
ev_exit();
events_ct = 0;
return 0;
}
void start_events_thread() {
if (events_ct == 0) //ensure only 1 thread
pthread_create(&events_ct, NULL, events_cthread, NULL);
return;
}
//=================================================================================================
static int
set_light_backlight(struct light_device_t* dev,
struct light_state_t const* state) {
int err = 0;
int brightness = rgb_to_brightness(state);
LOGV("%s brightness=%d color=0x%08x",
__func__,brightness, state->color);
pthread_mutex_lock(&g_lock);
set_led_backlight(brightness);
pthread_mutex_unlock(&g_lock);
return err;
}
static int
set_light_buttons(struct light_device_t* dev,
struct light_state_t const* state) {
int err = 0;
int on = is_lit(state);
pthread_mutex_lock(&g_lock);
LOGV("%s mode=%d color=0x%08x",
__func__,state->flashMode, state->color);
switch_led_button(on);
pthread_mutex_unlock(&g_lock);
return err;
}
static int
set_speaker_light_locked(struct light_device_t* dev,
struct light_state_t const* state) {
int len;
unsigned int colorRGB;
colorRGB = state->color & 0xFFFFFF;
D("@@ %s colorRGB=%08X, state->flashMode:%d\n", __func__, colorRGB, state->flashMode);
/*if (colorRGB ==0) return 0;*/
int red = (colorRGB >> 16)&0xFF;
int green = (colorRGB >> 8)&0xFF;
int blue = (colorRGB) & 0xFF;
int g_blink = 0;
switch (state->flashMode) {
case LIGHT_FLASH_HARDWARE:
g_blink = 3;
break;
case LIGHT_FLASH_TIMED:
g_blink = 1;
break;
case LIGHT_FLASH_NONE:
g_blink = 0;
break;
default:
LOGE("set_led_state colorRGB=%08X, unknown mode %d\n",
colorRGB, state->flashMode);
break;
}
if (red) {
D("@@ %s AMBER, blink: %d\n", __func__, g_blink);
write_int(&leds[GREEN_LED].brightness, 0);
write_int(&leds[AMBER_LED].brightness, 1);
write_int(&leds[AMBER_LED].blink, g_blink);
} else if (green) {
D("@@ %s GREEN, blink: %d\n", __func__, g_blink);
write_int(&leds[AMBER_LED].brightness, 0);
write_int(&leds[GREEN_LED].brightness, 1);
write_int(&leds[GREEN_LED].blink, g_blink);
} else {
write_int(&leds[GREEN_LED].brightness, 0);
write_int(&leds[GREEN_LED].blink, 0);
write_int(&leds[AMBER_LED].brightness, 0);
write_int(&leds[AMBER_LED].blink, 0);
}
return 0;
}
static int
set_light_battery(struct light_device_t* dev,
struct light_state_t const* state) {
pthread_mutex_lock(&g_lock);
LOGV("%s mode=%d color=0x%08x",
__func__,state->flashMode, state->color);
set_speaker_light_locked(dev, state);
pthread_mutex_unlock(&g_lock);
return 0;
}
static int
set_light_notifications(struct light_device_t* dev,
struct light_state_t const* state) {
pthread_mutex_lock(&g_lock);
LOGV("%s mode=%d color=0x%08x",
__func__,state->flashMode, state->color);
pthread_mutex_unlock(&g_lock);
return 0;
}
static int
set_light_attention(struct light_device_t* dev,
struct light_state_t const* state) {
LOGV("%s color=0x%08x mode=0x%08x submode=0x%08x",
__func__, state->color, state->flashMode, state->flashOnMS);
pthread_mutex_lock(&g_lock);
/*
/lights_leo( 252): set_light_attention color=0x00ffffff mode=0x00000002 submode=0x00000003
/lights_leo( 252): set_light_attention color=0x00000000 mode=0x00000002 submode=0x00000000
/lights_leo( 252): set_light_attention color=0x00ffffff mode=0x00000002 submode=0x00000007
/lights_leo( 252): set_light_attention color=0x00ffffff mode=0x00000000 submode=0x00000000
*/
#if 0
if (state->flashMode==2 && state->flashOnMS==7){
write_int(&leds[GREEN_LED].brightness, 0);
write_int(&leds[AMBER_LED].brightness, 1);
write_int(&leds[AMBER_LED].blink, 2);
} else {
write_int(&leds[AMBER_LED].brightness, 0);
write_int(&leds[GREEN_LED].brightness, 1);
write_int(&leds[GREEN_LED].blink, 4);
}
#endif
pthread_mutex_unlock(&g_lock);
return 0;
}
static int
set_light_flashlight(struct light_device_t* dev,
struct light_state_t const* state) {
LOGV("%s color=0x%08x mode=0x%08x submode=0x%08x",
__func__, state->color, state->flashMode, state->flashOnMS);
return 0;
}
static int
set_light_function(struct light_device_t* dev,
struct light_state_t const* state) {
LOGV("%s color=0x%08x mode=0x%08x submode=0x%08x",
__func__, state->color, state->flashMode, state->flashOnMS);
return 0;
}
/** Close the lights device */
static int
close_lights(struct light_device_t *dev)
{
int i;
for (i = 0; i < NUM_LEDS; ++i) {
close_prop(&leds[i].brightness);
close_prop(&leds[i].blink);
}
if (dev) {
free(dev);
}
return 0;
}
/******************************************************************************/
/**
* module methods
*/
/** Open a new instance of a lights device using name */
static int open_lights(const struct hw_module_t* module, char const* name,
struct hw_device_t** device)
{
int (*set_light)(struct light_device_t* dev,
struct light_state_t const* state);
LOGV("%s name=%s", __func__, name);
if (0 == strcmp(LIGHT_ID_BACKLIGHT, name)) {
set_light = set_light_backlight;
}
else if (0 == strcmp(LIGHT_ID_BUTTONS, name)) {
set_light = set_light_buttons;
start_events_thread();
}
else if (0 == strcmp(LIGHT_ID_BATTERY, name)) {
set_light = set_light_battery;
#ifdef ENABLE_BATTERY_POLL
start_battery_thread();
#endif
}
else if (0 == strcmp(LIGHT_ID_NOTIFICATIONS, name)) {
set_light = set_light_notifications;
}
else if (0 == strcmp(LIGHT_ID_ATTENTION, name)) {
set_light = set_light_attention;
}
else if (0 == strcmp(LIGHT_ID_FLASHLIGHT, name)) {
set_light = set_light_flashlight;
}
else if (0 == strcmp(LIGHT_ID_FUNC, name)) {
set_light = set_light_function;
}
else {
return -EINVAL;
}
pthread_once(&g_init, init_globals);
struct light_device_t *dev = malloc(sizeof(struct light_device_t));
memset(dev, 0, sizeof(*dev));
dev->common.tag = HARDWARE_DEVICE_TAG;
dev->common.version = 0;
dev->common.module = (struct hw_module_t*)module;
dev->common.close = (int (*)(struct hw_device_t*))close_lights;
dev->set_light = set_light;
*device = (struct hw_device_t*)dev;
return 0;
}
static struct hw_module_methods_t lights_module_methods = {
.open = open_lights,
};
/*
* The lights Module
*/
const struct hw_module_t HAL_MODULE_INFO_SYM = {
.tag = HARDWARE_MODULE_TAG,
.version_major = 1,
.version_minor = 0,
.id = LIGHTS_HARDWARE_MODULE_ID,
.name = "htcleo lights Module",
.author = "Google, Inc.",
.methods = &lights_module_methods,
};

View File

@ -1,295 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <linux/akm8973.h>
#include <cutils/log.h>
#include "AkmSensor.h"
/*****************************************************************************/
AkmSensor::AkmSensor()
: SensorBase(AKM_DEVICE_NAME, "compass"),
mEnabled(0),
mPendingMask(0),
mInputReader(32)
{
memset(mPendingEvents, 0, sizeof(mPendingEvents));
mPendingEvents[Accelerometer].version = sizeof(sensors_event_t);
mPendingEvents[Accelerometer].sensor = ID_A;
mPendingEvents[Accelerometer].type = SENSOR_TYPE_ACCELEROMETER;
mPendingEvents[Accelerometer].acceleration.status = SENSOR_STATUS_ACCURACY_HIGH;
mPendingEvents[MagneticField].version = sizeof(sensors_event_t);
mPendingEvents[MagneticField].sensor = ID_M;
mPendingEvents[MagneticField].type = SENSOR_TYPE_MAGNETIC_FIELD;
mPendingEvents[MagneticField].magnetic.status = SENSOR_STATUS_ACCURACY_HIGH;
mPendingEvents[Orientation ].version = sizeof(sensors_event_t);
mPendingEvents[Orientation ].sensor = ID_O;
mPendingEvents[Orientation ].type = SENSOR_TYPE_ORIENTATION;
mPendingEvents[Orientation ].orientation.status = SENSOR_STATUS_ACCURACY_HIGH;
for (int i=0 ; i<numSensors ; i++)
mDelays[i] = 200000000; // 200 ms by default
// read the actual value of all sensors if they're enabled already
struct input_absinfo absinfo;
short flags = 0;
open_device();
if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) {
if (flags) {
mEnabled |= 1<<Accelerometer;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_X), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.x = absinfo.value * CONVERT_A_X;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Y), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.y = absinfo.value * CONVERT_A_Y;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ACCEL_Z), &absinfo)) {
mPendingEvents[Accelerometer].acceleration.z = absinfo.value * CONVERT_A_Z;
}
}
}
if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) {
if (flags) {
mEnabled |= 1<<MagneticField;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_X), &absinfo)) {
mPendingEvents[MagneticField].magnetic.x = absinfo.value * CONVERT_M_X;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Y), &absinfo)) {
mPendingEvents[MagneticField].magnetic.y = absinfo.value * CONVERT_M_Y;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_MAGV_Z), &absinfo)) {
mPendingEvents[MagneticField].magnetic.z = absinfo.value * CONVERT_M_Z;
}
}
}
if (!ioctl(dev_fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) {
if (flags) {
mEnabled |= 1<<Orientation;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_YAW), &absinfo)) {
mPendingEvents[Orientation].orientation.azimuth = absinfo.value;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PITCH), &absinfo)) {
mPendingEvents[Orientation].orientation.pitch = absinfo.value;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ROLL), &absinfo)) {
mPendingEvents[Orientation].orientation.roll = -absinfo.value;
}
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_ORIENT_STATUS), &absinfo)) {
mPendingEvents[Orientation].orientation.status = uint8_t(absinfo.value & SENSOR_STATE_MASK);
}
}
}
// disable temperature sensor, since it is not reported
flags = 0;
ioctl(dev_fd, ECS_IOCTL_APP_SET_TFLAG, &flags);
if (!mEnabled) {
close_device();
}
}
AkmSensor::~AkmSensor() {
}
int AkmSensor::enable(int32_t handle, int en)
{
int what = -1;
switch (handle) {
case ID_A: what = Accelerometer; break;
case ID_M: what = MagneticField; break;
case ID_O: what = Orientation; break;
}
if (uint32_t(what) >= numSensors)
return -EINVAL;
int newState = en ? 1 : 0;
int err = 0;
if ((uint32_t(newState)<<what) != (mEnabled & (1<<what))) {
if (!mEnabled) {
open_device();
}
int cmd;
switch (what) {
case Accelerometer: cmd = ECS_IOCTL_APP_SET_AFLAG; break;
case MagneticField: cmd = ECS_IOCTL_APP_SET_MVFLAG; break;
case Orientation: cmd = ECS_IOCTL_APP_SET_MFLAG; break;
}
short flags = newState;
err = ioctl(dev_fd, cmd, &flags);
err = err<0 ? -errno : 0;
LOGE_IF(err, "ECS_IOCTL_APP_SET_XXX failed (%s)", strerror(-err));
if (!err) {
mEnabled &= ~(1<<what);
mEnabled |= (uint32_t(flags)<<what);
update_delay();
}
if (!mEnabled) {
close_device();
}
}
return err;
}
int AkmSensor::setDelay(int32_t handle, int64_t ns)
{
#ifdef ECS_IOCTL_APP_SET_DELAY
int what = -1;
switch (handle) {
case ID_A: what = Accelerometer; break;
case ID_M: what = MagneticField; break;
case ID_O: what = Orientation; break;
}
if (uint32_t(what) >= numSensors)
return -EINVAL;
if (ns < 0)
return -EINVAL;
mDelays[what] = ns;
return update_delay();
#else
return -1;
#endif
}
int AkmSensor::update_delay()
{
if (mEnabled) {
uint64_t wanted = -1LLU;
for (int i=0 ; i<numSensors ; i++) {
if (mEnabled & (1<<i)) {
uint64_t ns = mDelays[i];
wanted = wanted < ns ? wanted : ns;
}
}
short delay = int64_t(wanted) / 1000000;
if (ioctl(dev_fd, ECS_IOCTL_APP_SET_DELAY, &delay)) {
return -errno;
}
}
return 0;
}
int AkmSensor::readEvents(sensors_event_t* data, int count)
{
if (count < 1)
return -EINVAL;
ssize_t n = mInputReader.fill(data_fd);
if (n < 0)
return n;
int numEventReceived = 0;
input_event const* event;
while (count && mInputReader.readEvent(&event)) {
int type = event->type;
if (type == EV_ABS) {
processEvent(event->code, event->value);
mInputReader.next();
} else if (type == EV_SYN) {
int64_t time = timevalToNano(event->time);
for (int j=0 ; count && mPendingMask && j<numSensors ; j++) {
if (mPendingMask & (1<<j)) {
mPendingMask &= ~(1<<j);
mPendingEvents[j].timestamp = time;
if (mEnabled & (1<<j)) {
*data++ = mPendingEvents[j];
count--;
numEventReceived++;
}
}
}
if (!mPendingMask) {
mInputReader.next();
}
} else {
LOGE("AkmSensor: unknown event (type=%d, code=%d)",
type, event->code);
mInputReader.next();
}
}
return numEventReceived;
}
void AkmSensor::processEvent(int code, int value)
{
switch (code) {
case EVENT_TYPE_ACCEL_X:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.x = value * CONVERT_A_X;
break;
case EVENT_TYPE_ACCEL_Y:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.y = value * CONVERT_A_Y;
break;
case EVENT_TYPE_ACCEL_Z:
mPendingMask |= 1<<Accelerometer;
mPendingEvents[Accelerometer].acceleration.z = value * CONVERT_A_Z;
break;
case EVENT_TYPE_MAGV_X:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.x = value * CONVERT_M_X;
break;
case EVENT_TYPE_MAGV_Y:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.y = value * CONVERT_M_Y;
break;
case EVENT_TYPE_MAGV_Z:
mPendingMask |= 1<<MagneticField;
mPendingEvents[MagneticField].magnetic.z = value * CONVERT_M_Z;
break;
case EVENT_TYPE_YAW:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.azimuth = value * CONVERT_O_Y;
break;
case EVENT_TYPE_PITCH:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.pitch = value * CONVERT_O_P;
break;
case EVENT_TYPE_ROLL:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.roll = value * CONVERT_O_R;
break;
case EVENT_TYPE_ORIENT_STATUS:
mPendingMask |= 1<<Orientation;
mPendingEvents[Orientation].orientation.status =
uint8_t(value & SENSOR_STATE_MASK);
break;
}
}

View File

@ -1,62 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_AKM_SENSOR_H
#define ANDROID_AKM_SENSOR_H
#include <stdint.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include "nusensors.h"
#include "SensorBase.h"
#include "InputEventReader.h"
/*****************************************************************************/
struct input_event;
class AkmSensor : public SensorBase {
public:
AkmSensor();
virtual ~AkmSensor();
enum {
Accelerometer = 0,
MagneticField = 1,
Orientation = 2,
numSensors
};
virtual int setDelay(int32_t handle, int64_t ns);
virtual int enable(int32_t handle, int enabled);
virtual int readEvents(sensors_event_t* data, int count);
void processEvent(int code, int value);
private:
int update_delay();
uint32_t mEnabled;
uint32_t mPendingMask;
InputEventCircularReader mInputReader;
sensors_event_t mPendingEvents[numSensors];
uint64_t mDelays[numSensors];
};
/*****************************************************************************/
#endif // ANDROID_AKM_SENSOR_H

13
libsensors/Android.mk Normal file → Executable file
View File

@ -21,22 +21,13 @@ ifneq ($(TARGET_SIMULATOR),true)
# hw/<SENSORS_HARDWARE_MODULE_ID>.<ro.product.board>.so
include $(CLEAR_VARS)
LOCAL_MODULE := sensors.leo
LOCAL_MODULE := sensors.htcleo
LOCAL_MODULE_PATH := $(TARGET_OUT_SHARED_LIBRARIES)/hw
LOCAL_MODULE_TAGS := optional
LOCAL_CFLAGS := -DLOG_TAG=\"Sensors\"
LOCAL_SRC_FILES := \
sensors.c \
nusensors.cpp \
InputEventReader.cpp \
SensorBase.cpp \
LightSensor.cpp \
ProximitySensor.cpp \
AkmSensor.cpp
LOCAL_SRC_FILES := sensors.c
LOCAL_SHARED_LIBRARIES := liblog libcutils
LOCAL_PRELINK_MODULE := false

View File

@ -1,88 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <stdint.h>
#include <errno.h>
#include <unistd.h>
#include <poll.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <linux/input.h>
#include <cutils/log.h>
#include "InputEventReader.h"
/*****************************************************************************/
struct input_event;
InputEventCircularReader::InputEventCircularReader(size_t numEvents)
: mBuffer(new input_event[numEvents * 2]),
mBufferEnd(mBuffer + numEvents),
mHead(mBuffer),
mCurr(mBuffer),
mFreeSpace(numEvents)
{
}
InputEventCircularReader::~InputEventCircularReader()
{
delete [] mBuffer;
}
ssize_t InputEventCircularReader::fill(int fd)
{
size_t numEventsRead = 0;
if (mFreeSpace) {
const ssize_t nread = read(fd, mHead, mFreeSpace * sizeof(input_event));
if (nread<0 || nread % sizeof(input_event)) {
// we got a partial event!!
return nread<0 ? -errno : -EINVAL;
}
numEventsRead = nread / sizeof(input_event);
if (numEventsRead) {
mHead += numEventsRead;
mFreeSpace -= numEventsRead;
if (mHead > mBufferEnd) {
size_t s = mHead - mBufferEnd;
memcpy(mBuffer, mBufferEnd, s * sizeof(input_event));
mHead = mBuffer + s;
}
}
}
return numEventsRead;
}
ssize_t InputEventCircularReader::readEvent(input_event const** events)
{
*events = mCurr;
ssize_t available = (mBufferEnd - mBuffer) - mFreeSpace;
return available ? 1 : 0;
}
void InputEventCircularReader::next()
{
mCurr++;
mFreeSpace++;
if (mCurr >= mBufferEnd) {
mCurr = mBuffer;
}
}

View File

@ -1,47 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_INPUT_EVENT_READER_H
#define ANDROID_INPUT_EVENT_READER_H
#include <stdint.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
/*****************************************************************************/
struct input_event;
class InputEventCircularReader
{
struct input_event* const mBuffer;
struct input_event* const mBufferEnd;
struct input_event* mHead;
struct input_event* mCurr;
ssize_t mFreeSpace;
public:
InputEventCircularReader(size_t numEvents);
~InputEventCircularReader();
ssize_t fill(int fd);
ssize_t readEvent(input_event const** events);
void next();
};
/*****************************************************************************/
#endif // ANDROID_INPUT_EVENT_READER_H

View File

@ -1,154 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <linux/lightsensor.h>
#include <cutils/log.h>
#include "LightSensor.h"
/*****************************************************************************/
LightSensor::LightSensor()
: SensorBase(LS_DEVICE_NAME, "lightsensor-level"),
mEnabled(0),
mInputReader(4),
mHasPendingEvent(false)
{
mPendingEvent.version = sizeof(sensors_event_t);
mPendingEvent.sensor = ID_L;
mPendingEvent.type = SENSOR_TYPE_LIGHT;
memset(mPendingEvent.data, 0, sizeof(mPendingEvent.data));
open_device();
int flags = 0;
if (!ioctl(dev_fd, LIGHTSENSOR_IOCTL_GET_ENABLED, &flags)) {
if (flags) {
mEnabled = 1;
setInitialState();
}
}
if (!mEnabled) {
close_device();
}
}
LightSensor::~LightSensor() {
}
int LightSensor::setInitialState() {
struct input_absinfo absinfo;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_LIGHT), &absinfo)) {
mPendingEvent.light = indexToValue(absinfo.value);
mHasPendingEvent = true;
}
return 0;
}
int LightSensor::enable(int32_t, int en) {
int flags = en ? 1 : 0;
int err = 0;
if (flags != mEnabled) {
if (!mEnabled) {
open_device();
}
err = ioctl(dev_fd, LIGHTSENSOR_IOCTL_ENABLE, &flags);
err = err<0 ? -errno : 0;
LOGE_IF(err, "LIGHTSENSOR_IOCTL_ENABLE failed (%s)", strerror(-err));
if (!err) {
mEnabled = en ? 1 : 0;
if (en) {
setInitialState();
}
}
if (!mEnabled) {
close_device();
}
}
return err;
}
bool LightSensor::hasPendingEvents() const {
return mHasPendingEvent;
}
int LightSensor::readEvents(sensors_event_t* data, int count)
{
if (count < 1)
return -EINVAL;
if (mHasPendingEvent) {
mHasPendingEvent = false;
mPendingEvent.timestamp = getTimestamp();
*data = mPendingEvent;
return mEnabled ? 1 : 0;
}
ssize_t n = mInputReader.fill(data_fd);
if (n < 0)
return n;
int numEventReceived = 0;
input_event const* event;
while (count && mInputReader.readEvent(&event)) {
int type = event->type;
if (type == EV_ABS) {
if (event->code == EVENT_TYPE_LIGHT) {
if (event->value != -1) {
// FIXME: not sure why we're getting -1 sometimes
mPendingEvent.light = indexToValue(event->value);
}
}
} else if (type == EV_SYN) {
mPendingEvent.timestamp = timevalToNano(event->time);
if (mEnabled) {
*data++ = mPendingEvent;
count--;
numEventReceived++;
}
} else {
LOGE("LightSensor: unknown event (type=%d, code=%d)",
type, event->code);
}
mInputReader.next();
}
return numEventReceived;
}
float LightSensor::indexToValue(size_t index) const
{
static const float luxValues[8] = {
10.0, 160.0, 225.0, 320.0,
640.0, 1280.0, 2600.0, 10240.0
};
const size_t maxIndex = sizeof(luxValues)/sizeof(*luxValues) - 1;
if (index > maxIndex)
index = maxIndex;
return luxValues[index];
}

View File

@ -1,52 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_LIGHT_SENSOR_H
#define ANDROID_LIGHT_SENSOR_H
#include <stdint.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include "nusensors.h"
#include "SensorBase.h"
#include "InputEventReader.h"
/*****************************************************************************/
struct input_event;
class LightSensor : public SensorBase {
int mEnabled;
InputEventCircularReader mInputReader;
sensors_event_t mPendingEvent;
bool mHasPendingEvent;
float indexToValue(size_t index) const;
int setInitialState();
public:
LightSensor();
virtual ~LightSensor();
virtual int readEvents(sensors_event_t* data, int count);
virtual bool hasPendingEvents() const;
virtual int enable(int32_t handle, int enabled);
};
/*****************************************************************************/
#endif // ANDROID_LIGHT_SENSOR_H

0
libsensors/MODULE_LICENSE_APACHE2 Normal file → Executable file
View File

0
libsensors/NOTICE Normal file → Executable file
View File

View File

@ -1,144 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <linux/capella_cm3602.h>
#include <cutils/log.h>
#include "ProximitySensor.h"
/*****************************************************************************/
ProximitySensor::ProximitySensor()
: SensorBase(CM_DEVICE_NAME, "proximity"),
mEnabled(0),
mInputReader(4),
mHasPendingEvent(false)
{
mPendingEvent.version = sizeof(sensors_event_t);
mPendingEvent.sensor = ID_P;
mPendingEvent.type = SENSOR_TYPE_PROXIMITY;
memset(mPendingEvent.data, 0, sizeof(mPendingEvent.data));
open_device();
int flags = 0;
if (!ioctl(dev_fd, CAPELLA_CM3602_IOCTL_GET_ENABLED, &flags)) {
mEnabled = 1;
if (flags) {
setInitialState();
}
}
if (!mEnabled) {
close_device();
}
}
ProximitySensor::~ProximitySensor() {
}
int ProximitySensor::setInitialState() {
struct input_absinfo absinfo;
if (!ioctl(data_fd, EVIOCGABS(EVENT_TYPE_PROXIMITY), &absinfo)) {
// make sure to report an event immediately
mHasPendingEvent = true;
mPendingEvent.distance = indexToValue(absinfo.value);
}
return 0;
}
int ProximitySensor::enable(int32_t, int en) {
int newState = en ? 1 : 0;
int err = 0;
if (newState != mEnabled) {
if (!mEnabled) {
open_device();
}
int flags = newState;
err = ioctl(dev_fd, CAPELLA_CM3602_IOCTL_ENABLE, &flags);
err = err<0 ? -errno : 0;
LOGE_IF(err, "CAPELLA_CM3602_IOCTL_ENABLE failed (%s)", strerror(-err));
if (!err) {
mEnabled = newState;
if (en) {
setInitialState();
}
}
if (!mEnabled) {
close_device();
}
}
return err;
}
bool ProximitySensor::hasPendingEvents() const {
return mHasPendingEvent;
}
int ProximitySensor::readEvents(sensors_event_t* data, int count)
{
if (count < 1)
return -EINVAL;
if (mHasPendingEvent) {
mHasPendingEvent = false;
mPendingEvent.timestamp = getTimestamp();
*data = mPendingEvent;
return mEnabled ? 1 : 0;
}
ssize_t n = mInputReader.fill(data_fd);
if (n < 0)
return n;
int numEventReceived = 0;
input_event const* event;
while (count && mInputReader.readEvent(&event)) {
int type = event->type;
if (type == EV_ABS) {
if (event->code == EVENT_TYPE_PROXIMITY) {
mPendingEvent.distance = indexToValue(event->value);
}
} else if (type == EV_SYN) {
mPendingEvent.timestamp = timevalToNano(event->time);
if (mEnabled) {
*data++ = mPendingEvent;
count--;
numEventReceived++;
}
} else {
LOGE("ProximitySensor: unknown event (type=%d, code=%d)",
type, event->code);
}
mInputReader.next();
}
return numEventReceived;
}
float ProximitySensor::indexToValue(size_t index) const
{
return index * PROXIMITY_THRESHOLD_CM;
}

View File

@ -1,52 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_PROXIMITY_SENSOR_H
#define ANDROID_PROXIMITY_SENSOR_H
#include <stdint.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include "nusensors.h"
#include "SensorBase.h"
#include "InputEventReader.h"
/*****************************************************************************/
struct input_event;
class ProximitySensor : public SensorBase {
int mEnabled;
InputEventCircularReader mInputReader;
sensors_event_t mPendingEvent;
bool mHasPendingEvent;
int setInitialState();
float indexToValue(size_t index) const;
public:
ProximitySensor();
virtual ~ProximitySensor();
virtual int readEvents(sensors_event_t* data, int count);
virtual bool hasPendingEvents() const;
virtual int enable(int32_t handle, int enabled);
};
/*****************************************************************************/
#endif // ANDROID_PROXIMITY_SENSOR_H

View File

@ -1,122 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <fcntl.h>
#include <errno.h>
#include <math.h>
#include <poll.h>
#include <unistd.h>
#include <dirent.h>
#include <sys/select.h>
#include <cutils/log.h>
#include <linux/input.h>
#include "SensorBase.h"
/*****************************************************************************/
SensorBase::SensorBase(
const char* dev_name,
const char* data_name)
: dev_name(dev_name), data_name(data_name),
dev_fd(-1), data_fd(-1)
{
data_fd = openInput(data_name);
}
SensorBase::~SensorBase() {
if (data_fd >= 0) {
close(data_fd);
}
if (dev_fd >= 0) {
close(dev_fd);
}
}
int SensorBase::open_device() {
if (dev_fd<0 && dev_name) {
dev_fd = open(dev_name, O_RDONLY);
LOGE_IF(dev_fd<0, "Couldn't open %s (%s)", dev_name, strerror(errno));
}
return 0;
}
int SensorBase::close_device() {
if (dev_fd >= 0) {
close(dev_fd);
dev_fd = -1;
}
return 0;
}
int SensorBase::getFd() const {
return data_fd;
}
int SensorBase::setDelay(int32_t handle, int64_t ns) {
return 0;
}
bool SensorBase::hasPendingEvents() const {
return false;
}
int64_t SensorBase::getTimestamp() {
struct timespec t;
t.tv_sec = t.tv_nsec = 0;
clock_gettime(CLOCK_MONOTONIC, &t);
return int64_t(t.tv_sec)*1000000000LL + t.tv_nsec;
}
int SensorBase::openInput(const char* inputName) {
int fd = -1;
const char *dirname = "/dev/input";
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
fd = open(devname, O_RDONLY);
if (fd>=0) {
char name[80];
if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
name[0] = '\0';
}
if (!strcmp(name, inputName)) {
break;
} else {
close(fd);
fd = -1;
}
}
}
closedir(dir);
LOGE_IF(fd<0, "couldn't find '%s' input device", inputName);
return fd;
}

View File

@ -1,64 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SENSOR_BASE_H
#define ANDROID_SENSOR_BASE_H
#include <stdint.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
/*****************************************************************************/
struct sensors_event_t;
class SensorBase {
protected:
const char* dev_name;
const char* data_name;
int dev_fd;
int data_fd;
static int openInput(const char* inputName);
static int64_t getTimestamp();
static int64_t timevalToNano(timeval const& t) {
return t.tv_sec*1000000000LL + t.tv_usec*1000;
}
int open_device();
int close_device();
public:
SensorBase(
const char* dev_name,
const char* data_name);
virtual ~SensorBase();
virtual int readEvents(sensors_event_t* data, int count) = 0;
virtual bool hasPendingEvents() const;
virtual int getFd() const;
virtual int setDelay(int32_t handle, int64_t ns);
virtual int enable(int32_t handle, int enabled) = 0;
};
/*****************************************************************************/
#endif // ANDROID_SENSOR_BASE_H

View File

@ -1,228 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <hardware/sensors.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <math.h>
#include <poll.h>
#include <pthread.h>
#include <linux/input.h>
#include <cutils/atomic.h>
#include <cutils/log.h>
#include "nusensors.h"
#include "LightSensor.h"
#include "ProximitySensor.h"
#include "AkmSensor.h"
/*****************************************************************************/
struct sensors_poll_context_t {
struct sensors_poll_device_t device; // must be first
sensors_poll_context_t();
~sensors_poll_context_t();
int activate(int handle, int enabled);
int setDelay(int handle, int64_t ns);
int pollEvents(sensors_event_t* data, int count);
private:
enum {
light = 0,
proximity = 1,
akm = 2,
numSensorDrivers,
numFds,
};
static const size_t wake = numFds - 1;
static const char WAKE_MESSAGE = 'W';
struct pollfd mPollFds[numFds];
int mWritePipeFd;
SensorBase* mSensors[numSensorDrivers];
int handleToDriver(int handle) const {
switch (handle) {
case ID_A:
case ID_M:
case ID_O:
return akm;
case ID_P:
return proximity;
case ID_L:
return light;
}
return -EINVAL;
}
};
/*****************************************************************************/
sensors_poll_context_t::sensors_poll_context_t()
{
mSensors[light] = new LightSensor();
mPollFds[light].fd = mSensors[light]->getFd();
mPollFds[light].events = POLLIN;
mPollFds[light].revents = 0;
mSensors[proximity] = new ProximitySensor();
mPollFds[proximity].fd = mSensors[proximity]->getFd();
mPollFds[proximity].events = POLLIN;
mPollFds[proximity].revents = 0;
mSensors[akm] = new AkmSensor();
mPollFds[akm].fd = mSensors[akm]->getFd();
mPollFds[akm].events = POLLIN;
mPollFds[akm].revents = 0;
int wakeFds[2];
int result = pipe(wakeFds);
LOGE_IF(result<0, "error creating wake pipe (%s)", strerror(errno));
fcntl(wakeFds[0], F_SETFL, O_NONBLOCK);
fcntl(wakeFds[1], F_SETFL, O_NONBLOCK);
mWritePipeFd = wakeFds[1];
mPollFds[wake].fd = wakeFds[0];
mPollFds[wake].events = POLLIN;
mPollFds[wake].revents = 0;
}
sensors_poll_context_t::~sensors_poll_context_t() {
for (int i=0 ; i<numSensorDrivers ; i++) {
delete mSensors[i];
}
close(mPollFds[wake].fd);
close(mWritePipeFd);
}
int sensors_poll_context_t::activate(int handle, int enabled) {
int index = handleToDriver(handle);
if (index < 0) return index;
int err = mSensors[index]->enable(handle, enabled);
if (enabled && !err) {
const char wakeMessage(WAKE_MESSAGE);
int result = write(mWritePipeFd, &wakeMessage, 1);
LOGE_IF(result<0, "error sending wake message (%s)", strerror(errno));
}
return err;
}
int sensors_poll_context_t::setDelay(int handle, int64_t ns) {
int index = handleToDriver(handle);
if (index < 0) return index;
return mSensors[index]->setDelay(handle, ns);
}
int sensors_poll_context_t::pollEvents(sensors_event_t* data, int count)
{
int nbEvents = 0;
int n = 0;
do {
// see if we have some leftover from the last poll()
for (int i=0 ; count && i<numSensorDrivers ; i++) {
SensorBase* const sensor(mSensors[i]);
if ((mPollFds[i].revents & POLLIN) || (sensor->hasPendingEvents())) {
int nb = sensor->readEvents(data, count);
if (nb < count) {
// no more data for this sensor
mPollFds[i].revents = 0;
}
count -= nb;
nbEvents += nb;
data += nb;
}
}
if (count) {
// we still have some room, so try to see if we can get
// some events immediately or just wait if we don't have
// anything to return
n = poll(mPollFds, numFds, nbEvents ? 0 : -1);
if (n<0) {
LOGE("poll() failed (%s)", strerror(errno));
return -errno;
}
if (mPollFds[wake].revents & POLLIN) {
char msg;
int result = read(mPollFds[wake].fd, &msg, 1);
LOGE_IF(result<0, "error reading from wake pipe (%s)", strerror(errno));
LOGE_IF(msg != WAKE_MESSAGE, "unknown message on wake queue (0x%02x)", int(msg));
mPollFds[wake].revents = 0;
}
}
// if we have events and space, go read them
} while (n && count);
return nbEvents;
}
/*****************************************************************************/
static int poll__close(struct hw_device_t *dev)
{
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
if (ctx) {
delete ctx;
}
return 0;
}
static int poll__activate(struct sensors_poll_device_t *dev,
int handle, int enabled) {
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->activate(handle, enabled);
}
static int poll__setDelay(struct sensors_poll_device_t *dev,
int handle, int64_t ns) {
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->setDelay(handle, ns);
}
static int poll__poll(struct sensors_poll_device_t *dev,
sensors_event_t* data, int count) {
sensors_poll_context_t *ctx = (sensors_poll_context_t *)dev;
return ctx->pollEvents(data, count);
}
/*****************************************************************************/
int init_nusensors(hw_module_t const* module, hw_device_t** device)
{
int status = -EINVAL;
sensors_poll_context_t *dev = new sensors_poll_context_t();
memset(&dev->device, 0, sizeof(sensors_poll_device_t));
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = const_cast<hw_module_t*>(module);
dev->device.common.close = poll__close;
dev->device.activate = poll__activate;
dev->device.setDelay = poll__setDelay;
dev->device.poll = poll__poll;
*device = &dev->device.common;
status = 0;
return status;
}

View File

@ -1,108 +0,0 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef ANDROID_SENSORS_H
#define ANDROID_SENSORS_H
#include <stdint.h>
#include <errno.h>
#include <sys/cdefs.h>
#include <sys/types.h>
#include <linux/input.h>
#include <hardware/hardware.h>
#include <hardware/sensors.h>
__BEGIN_DECLS
/*****************************************************************************/
int init_nusensors(hw_module_t const* module, hw_device_t** device);
/*****************************************************************************/
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define ID_A (0)
#define ID_M (1)
#define ID_O (2)
#define ID_P (3)
#define ID_L (4)
/*****************************************************************************/
/*
* The SENSORS Module
*/
/* the CM3602 is a binary proximity sensor that triggers around 9 cm on
* this hardware */
#define PROXIMITY_THRESHOLD_CM 9.0f
/*****************************************************************************/
#define AKM_DEVICE_NAME "/dev/akm8973_aot"
#define CM_DEVICE_NAME "/dev/cm3602"
#define LS_DEVICE_NAME "/dev/lightsensor"
#define EVENT_TYPE_ACCEL_X ABS_X
#define EVENT_TYPE_ACCEL_Y ABS_Z
#define EVENT_TYPE_ACCEL_Z ABS_Y
#define EVENT_TYPE_ACCEL_STATUS ABS_WHEEL
#define EVENT_TYPE_YAW ABS_RX
#define EVENT_TYPE_PITCH ABS_RY
#define EVENT_TYPE_ROLL ABS_RZ
#define EVENT_TYPE_ORIENT_STATUS ABS_RUDDER
#define EVENT_TYPE_MAGV_X ABS_HAT0X
#define EVENT_TYPE_MAGV_Y ABS_HAT0Y
#define EVENT_TYPE_MAGV_Z ABS_BRAKE
#define EVENT_TYPE_TEMPERATURE ABS_THROTTLE
#define EVENT_TYPE_STEP_COUNT ABS_GAS
#define EVENT_TYPE_PROXIMITY ABS_DISTANCE
#define EVENT_TYPE_LIGHT ABS_MISC
// 720 LSG = 1G
#define LSG (720.0f)
// conversion of acceleration data to SI units (m/s^2)
#define CONVERT_A (GRAVITY_EARTH / LSG)
#define CONVERT_A_X (-CONVERT_A)
#define CONVERT_A_Y (CONVERT_A)
#define CONVERT_A_Z (-CONVERT_A)
// conversion of magnetic data to uT units
#define CONVERT_M (1.0f/16.0f)
#define CONVERT_M_X (-CONVERT_M)
#define CONVERT_M_Y (-CONVERT_M)
#define CONVERT_M_Z (CONVERT_M)
#define CONVERT_O (1.0f)
#define CONVERT_O_Y (CONVERT_O)
#define CONVERT_O_P (CONVERT_O)
#define CONVERT_O_R (-CONVERT_O)
#define SENSOR_STATE_MASK (0x7FFF)
/*****************************************************************************/
__END_DECLS
#endif // ANDROID_SENSORS_H

947
libsensors/sensors.c Normal file → Executable file
View File

@ -1,4 +1,5 @@
/*
* Copyright (C) 2010 Danijel Posilovic - dan1j3l
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
@ -14,16 +15,91 @@
* limitations under the License.
*/
#include <hardware/sensors.h>
#define LOG_TAG "Sensors"
#include "nusensors.h"
#define LOG_NDEBUG 1
#include <hardware/sensors.h>
#include <fcntl.h>
#include <errno.h>
#include <dirent.h>
#include <math.h>
#include <poll.h>
#include <pthread.h>
#include <sys/select.h>
#include <linux/input.h>
#include <linux/akm8973.h>
#include <linux/capella_cm3602.h>
#include <linux/lightsensor.h>
#include <cutils/atomic.h>
#include <cutils/log.h>
#include <cutils/native_handle.h>
#define __MAX(a,b) ((a)>=(b)?(a):(b))
/*****************************************************************************/
#define MAX_NUM_SENSORS 6
#define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
#define ID_A (0)
#define ID_M (1)
#define ID_O (2)
#define ID_T (3)
#define ID_P (4)
#define ID_L (5)
static int id_to_sensor[MAX_NUM_SENSORS] = {
[ID_A] = SENSOR_TYPE_ACCELEROMETER,
[ID_M] = SENSOR_TYPE_MAGNETIC_FIELD,
[ID_O] = SENSOR_TYPE_ORIENTATION,
[ID_T] = SENSOR_TYPE_TEMPERATURE,
[ID_P] = SENSOR_TYPE_PROXIMITY,
[ID_L] = SENSOR_TYPE_LIGHT,
};
#define SENSORS_AKM_ACCELERATION (1<<ID_A)
#define SENSORS_AKM_MAGNETIC_FIELD (1<<ID_M)
#define SENSORS_AKM_ORIENTATION (1<<ID_O)
#define SENSORS_AKM_TEMPERATURE (1<<ID_T)
#define SENSORS_AKM_GROUP ((1<<ID_A)|(1<<ID_M)|(1<<ID_O)|(1<<ID_T))
#define SENSORS_CM_PROXIMITY (1<<ID_P)
#define SENSORS_CM_GROUP (1<<ID_P)
#define SENSORS_LIGHT (1<<ID_L)
#define SENSORS_LIGHT_GROUP (1<<ID_L)
/*****************************************************************************/
struct sensors_control_context_t {
struct sensors_control_device_t device; // must be first
int akmd_fd;
int cmd_fd;
int lsd_fd;
uint32_t active_sensors;
};
struct sensors_data_context_t {
struct sensors_data_device_t device; // must be first
int events_fd[3];
sensors_data_t sensors[MAX_NUM_SENSORS];
uint32_t pendingSensors;
};
/*
* The SENSORS Module
*/
/* the CM3602 is a binary proximity sensor that triggers around 9 cm on
* this hardware */
#define PROXIMITY_THRESHOLD_CM 9.0f
/*
* the AK8973 has a 8-bit ADC but the firmware seems to average 16 samples,
* or at least makes its calibration on 12-bits values. This increases the
@ -34,25 +110,36 @@ static const struct sensor_t sSensorList[] = {
{ "BMA150 3-axis Accelerometer",
"Bosh",
1, SENSORS_HANDLE_BASE+ID_A,
SENSOR_TYPE_ACCELEROMETER, 4.0f*9.81f, (4.0f*9.81f)/256.0f, 0.2f, 0, { } },
SENSOR_TYPE_ACCELEROMETER, 4.0f*9.81f, (4.0f*9.81f)/256.0f, 0.2f, { } },
{ "AK8973 3-axis Magnetic field sensor",
"Asahi Kasei",
1, SENSORS_HANDLE_BASE+ID_M,
SENSOR_TYPE_MAGNETIC_FIELD, 2000.0f, 1.0f/16.0f, 6.8f, 0, { } },
SENSOR_TYPE_MAGNETIC_FIELD, 2000.0f, 1.0f/16.0f, 6.8f, { } },
{ "AK8973 Orientation sensor",
"Asahi Kasei",
1, SENSORS_HANDLE_BASE+ID_O,
SENSOR_TYPE_ORIENTATION, 360.0f, 1.0f, 7.0f, 0, { } },
SENSOR_TYPE_ORIENTATION, 360.0f, 1.0f, 7.0f, { } },
{ "CM3602 Proximity sensor",
"Capella Microsystems",
1, SENSORS_HANDLE_BASE+ID_P,
SENSOR_TYPE_PROXIMITY,
PROXIMITY_THRESHOLD_CM, PROXIMITY_THRESHOLD_CM,
0.5f, 0, { } },
0.5f, { } },
{ "CM3602 Light sensor",
"Capella Microsystems",
1, SENSORS_HANDLE_BASE+ID_L,
SENSOR_TYPE_LIGHT, 10240.0f, 1.0f, 0.5f, 0, { } },
SENSOR_TYPE_LIGHT, 10240.0f, 1.0f, 0.5f, { } },
};
static const float sLuxValues[8] = {
10.0,
160.0,
225.0,
320.0,
640.0,
1280.0,
2600.0,
10240.0
};
static int open_sensors(const struct hw_module_t* module, const char* name,
@ -84,8 +171,852 @@ const struct sensors_module_t HAL_MODULE_INFO_SYM = {
/*****************************************************************************/
#define AKM_DEVICE_NAME "/dev/akm8973_aot"
#define CM_DEVICE_NAME "/dev/cm3602"
#define LS_DEVICE_NAME "/dev/lightsensor"
// sensor IDs must be a power of two and
// must match values in SensorManager.java
#define EVENT_TYPE_ACCEL_X ABS_X
#define EVENT_TYPE_ACCEL_Y ABS_Z
#define EVENT_TYPE_ACCEL_Z ABS_Y
#define EVENT_TYPE_ACCEL_STATUS ABS_WHEEL
#define EVENT_TYPE_YAW ABS_RX
#define EVENT_TYPE_PITCH ABS_RY
#define EVENT_TYPE_ROLL ABS_RZ
#define EVENT_TYPE_ORIENT_STATUS ABS_RUDDER
#define EVENT_TYPE_MAGV_X ABS_HAT0X
#define EVENT_TYPE_MAGV_Y ABS_HAT0Y
#define EVENT_TYPE_MAGV_Z ABS_BRAKE
#define EVENT_TYPE_TEMPERATURE ABS_THROTTLE
#define EVENT_TYPE_STEP_COUNT ABS_GAS
#define EVENT_TYPE_PROXIMITY ABS_DISTANCE
#define EVENT_TYPE_LIGHT ABS_MISC
// 720 LSG = 1G
#define LSG (720.0f)
// conversion of acceleration data to SI units (m/s^2)
#define CONVERT_A (GRAVITY_EARTH / LSG)
#define CONVERT_A_X (-CONVERT_A)
#define CONVERT_A_Y (CONVERT_A)
#define CONVERT_A_Z (-CONVERT_A)
// conversion of magnetic data to uT units
#define CONVERT_M (1.0f/16.0f)
#define CONVERT_M_X (-CONVERT_M)
#define CONVERT_M_Y (-CONVERT_M)
#define CONVERT_M_Z (CONVERT_M)
#define SENSOR_STATE_MASK (0x7FFF)
/*****************************************************************************/
static int open_inputs(int mode, int *akm_fd, int *p_fd, int *l_fd)
{
/* scan all input drivers and look for "compass" */
int fd = -1;
const char *dirname = "/dev/input";
char devname[PATH_MAX];
char *filename;
DIR *dir;
struct dirent *de;
dir = opendir(dirname);
if(dir == NULL)
return -1;
strcpy(devname, dirname);
filename = devname + strlen(devname);
*filename++ = '/';
*akm_fd = *p_fd = -1;
while((de = readdir(dir))) {
if(de->d_name[0] == '.' &&
(de->d_name[1] == '\0' ||
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
continue;
strcpy(filename, de->d_name);
fd = open(devname, mode);
if (fd>=0) {
char name[80];
if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
name[0] = '\0';
}
if (!strcmp(name, "compass")) {
LOGV("using %s (name=%s)", devname, name);
*akm_fd = fd;
}
else if (!strcmp(name, "proximity")) {
LOGV("using %s (name=%s)", devname, name);
*p_fd = fd;
}
else if (!strcmp(name, "lightsensor-level")) {
LOGV("using %s (name=%s)", devname, name);
*l_fd = fd;
}
else
close(fd);
}
}
closedir(dir);
fd = 0;
if (*akm_fd < 0) {
LOGE("Couldn't find or open 'compass' driver (%s)", strerror(errno));
fd = -1;
}
if (*p_fd < 0) {
LOGE("Couldn't find or open 'proximity' driver (%s)", strerror(errno));
fd = -1;
}
if (*l_fd < 0) {
LOGE("Couldn't find or open 'light' driver (%s)", strerror(errno));
fd = -1;
}
return fd;
}
static int open_akm(struct sensors_control_context_t* dev)
{
if (dev->akmd_fd < 0) {
dev->akmd_fd = open(AKM_DEVICE_NAME, O_RDONLY);
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->akmd_fd);
LOGE_IF(dev->akmd_fd<0, "Couldn't open %s (%s)",
AKM_DEVICE_NAME, strerror(errno));
if (dev->akmd_fd >= 0) {
dev->active_sensors &= ~SENSORS_AKM_GROUP;
}
}
return dev->akmd_fd;
}
static void close_akm(struct sensors_control_context_t* dev)
{
if (dev->akmd_fd >= 0) {
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->akmd_fd);
close(dev->akmd_fd);
dev->akmd_fd = -1;
}
}
static uint32_t read_akm_sensors_state(int fd)
{
short flags;
uint32_t sensors = 0;
// read the actual value of all sensors
if (!ioctl(fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) {
if (flags) sensors |= SENSORS_AKM_ORIENTATION;
else sensors &= ~SENSORS_AKM_ORIENTATION;
}
if (!ioctl(fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) {
if (flags) sensors |= SENSORS_AKM_ACCELERATION;
else sensors &= ~SENSORS_AKM_ACCELERATION;
}
if (!ioctl(fd, ECS_IOCTL_APP_GET_TFLAG, &flags)) {
if (flags) sensors |= SENSORS_AKM_TEMPERATURE;
else sensors &= ~SENSORS_AKM_TEMPERATURE;
}
if (!ioctl(fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) {
if (flags) sensors |= SENSORS_AKM_MAGNETIC_FIELD;
else sensors &= ~SENSORS_AKM_MAGNETIC_FIELD;
}
return sensors;
}
static uint32_t enable_disable_akm(struct sensors_control_context_t *dev,
uint32_t active, uint32_t sensors,
uint32_t mask)
{
uint32_t now_active_akm_sensors;
int fd = open_akm(dev);
if (fd < 0)
return 0;
LOGV("(before) akm sensors = %08x, real = %08x",
sensors, read_akm_sensors_state(fd));
short flags;
if (mask & SENSORS_AKM_ORIENTATION) {
flags = (sensors & SENSORS_AKM_ORIENTATION) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_MFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_MFLAG error (%s)", strerror(errno));
}
}
if (mask & SENSORS_AKM_ACCELERATION) {
flags = (sensors & SENSORS_AKM_ACCELERATION) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_AFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_AFLAG error (%s)", strerror(errno));
}
}
if (mask & SENSORS_AKM_TEMPERATURE) {
flags = (sensors & SENSORS_AKM_TEMPERATURE) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_TFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_TFLAG error (%s)", strerror(errno));
}
}
if (mask & SENSORS_AKM_MAGNETIC_FIELD) {
flags = (sensors & SENSORS_AKM_MAGNETIC_FIELD) ? 1 : 0;
if (ioctl(fd, ECS_IOCTL_APP_SET_MVFLAG, &flags) < 0) {
LOGE("ECS_IOCTL_APP_SET_MVFLAG error (%s)", strerror(errno));
}
}
now_active_akm_sensors = read_akm_sensors_state(fd);
LOGV("(after) akm sensors = %08x, real = %08x",
sensors, now_active_akm_sensors);
if (!sensors)
close_akm(dev);
return now_active_akm_sensors;
}
static uint32_t read_cm_sensors_state(int fd)
{
int flags;
uint32_t sensors = 0;
// read the actual value of all sensors
if (!ioctl(fd, CAPELLA_CM3602_IOCTL_GET_ENABLED, &flags)) {
if (flags) sensors |= SENSORS_CM_PROXIMITY;
else sensors &= ~SENSORS_CM_PROXIMITY;
}
return sensors;
}
static int open_cm(struct sensors_control_context_t* dev)
{
if (dev->cmd_fd < 0) {
dev->cmd_fd = open(CM_DEVICE_NAME, O_RDONLY);
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->cmd_fd);
LOGE_IF(dev->cmd_fd<0, "Couldn't open %s (%s)",
CM_DEVICE_NAME, strerror(errno));
if (dev->cmd_fd >= 0) {
dev->active_sensors &= ~SENSORS_CM_GROUP;
}
}
return dev->cmd_fd;
}
static void close_cm(struct sensors_control_context_t* dev)
{
if (dev->cmd_fd >= 0) {
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->cmd_fd);
close(dev->cmd_fd);
dev->cmd_fd = -1;
}
}
static int enable_disable_cm(struct sensors_control_context_t *dev,
uint32_t active, uint32_t sensors, uint32_t mask)
{
int rc = 0;
uint32_t now_active_cm_sensors;
int fd = open_cm(dev);
if (fd < 0) {
LOGE("Couldn't open %s (%s)", CM_DEVICE_NAME, strerror(errno));
return 0;
}
LOGV("(before) cm sensors = %08x, real = %08x",
sensors, read_cm_sensors_state(fd));
if (mask & SENSORS_CM_PROXIMITY) {
int flags = (sensors & SENSORS_CM_PROXIMITY) ? 1 : 0;
rc = ioctl(fd, CAPELLA_CM3602_IOCTL_ENABLE, &flags);
if (rc < 0)
LOGE("CAPELLA_CM3602_IOCTL_ENABLE error (%s)", strerror(errno));
}
now_active_cm_sensors = read_cm_sensors_state(fd);
LOGV("(after) cm sensors = %08x, real = %08x",
sensors, now_active_cm_sensors);
return now_active_cm_sensors;
}
static uint32_t read_ls_sensors_state(int fd)
{
int flags;
uint32_t sensors = 0;
// read the actual value of all sensors
if (!ioctl(fd, LIGHTSENSOR_IOCTL_GET_ENABLED, &flags)) {
if (flags) sensors |= SENSORS_LIGHT;
else sensors &= ~SENSORS_LIGHT;
}
return sensors;
}
static int open_ls(struct sensors_control_context_t* dev)
{
if (dev->lsd_fd < 0) {
dev->lsd_fd = open(LS_DEVICE_NAME, O_RDONLY);
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->lsd_fd);
LOGE_IF(dev->lsd_fd<0, "Couldn't open %s (%s)",
LS_DEVICE_NAME, strerror(errno));
if (dev->lsd_fd >= 0) {
dev->active_sensors &= ~SENSORS_LIGHT_GROUP;
}
}
return dev->lsd_fd;
}
static void close_ls(struct sensors_control_context_t* dev)
{
if (dev->lsd_fd >= 0) {
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->lsd_fd);
close(dev->lsd_fd);
dev->lsd_fd = -1;
}
}
static int enable_disable_ls(struct sensors_control_context_t *dev,
uint32_t active, uint32_t sensors, uint32_t mask)
{
int rc = 0;
uint32_t now_active_ls_sensors;
int fd = open_ls(dev);
if (fd < 0) {
LOGE("Couldn't open %s (%s)", LS_DEVICE_NAME, strerror(errno));
return 0;
}
LOGV("(before) ls sensors = %08x, real = %08x",
sensors, read_ls_sensors_state(fd));
if (mask & SENSORS_LIGHT) {
int flags = (sensors & SENSORS_LIGHT) ? 1 : 0;
rc = ioctl(fd, LIGHTSENSOR_IOCTL_ENABLE, &flags);
if (rc < 0)
LOGE("LIGHTSENSOR_IOCTL_ENABLE error (%s)", strerror(errno));
}
now_active_ls_sensors = read_ls_sensors_state(fd);
LOGV("(after) ls sensors = %08x, real = %08x",
sensors, now_active_ls_sensors);
return now_active_ls_sensors;
}
/*****************************************************************************/
static native_handle_t* control__open_data_source(struct sensors_control_context_t *dev)
{
native_handle_t* handle;
int akm_fd, p_fd, l_fd;
if (open_inputs(O_RDONLY, &akm_fd, &p_fd, &l_fd) < 0 ||
akm_fd < 0 || p_fd < 0 || l_fd < 0) {
return NULL;
}
handle = native_handle_create(3, 0);
handle->data[0] = akm_fd;
handle->data[1] = p_fd;
handle->data[2] = l_fd;
return handle;
}
static int control__activate(struct sensors_control_context_t *dev,
int handle, int enabled)
{
if ((handle < SENSORS_HANDLE_BASE) ||
(handle >= SENSORS_HANDLE_BASE+MAX_NUM_SENSORS))
return -1;
uint32_t mask = (1 << handle);
uint32_t sensors = enabled ? mask : 0;
uint32_t active = dev->active_sensors;
uint32_t new_sensors = (active & ~mask) | (sensors & mask);
uint32_t changed = active ^ new_sensors;
if (changed) {
if (!active && new_sensors)
// force all sensors to be updated
changed = SUPPORTED_SENSORS;
dev->active_sensors =
enable_disable_akm(dev,
active & SENSORS_AKM_GROUP,
new_sensors & SENSORS_AKM_GROUP,
changed & SENSORS_AKM_GROUP) |
enable_disable_cm(dev,
active & SENSORS_CM_GROUP,
new_sensors & SENSORS_CM_GROUP,
changed & SENSORS_CM_GROUP) |
enable_disable_ls(dev,
active & SENSORS_LIGHT_GROUP,
new_sensors & SENSORS_LIGHT_GROUP,
changed & SENSORS_LIGHT_GROUP);
}
return 0;
}
static int control__set_delay(struct sensors_control_context_t *dev, int32_t ms)
{
#ifdef ECS_IOCTL_APP_SET_DELAY
if (dev->akmd_fd <= 0) {
return -1;
}
short delay = ms;
if (!ioctl(dev->akmd_fd, ECS_IOCTL_APP_SET_DELAY, &delay)) {
return -errno;
}
return 0;
#else
return -1;
#endif
}
static int control__wake(struct sensors_control_context_t *dev)
{
int err = 0;
int akm_fd, p_fd, l_fd;
if (open_inputs(O_RDWR, &akm_fd, &p_fd, &l_fd) < 0 ||
akm_fd < 0 || p_fd < 0 || l_fd < 0) {
return -1;
}
struct input_event event[1];
event[0].type = EV_SYN;
event[0].code = SYN_CONFIG;
event[0].value = 0;
err = write(akm_fd, event, sizeof(event));
LOGV_IF(err<0, "control__wake(compass), fd=%d (%s)",
akm_fd, strerror(errno));
close(akm_fd);
err = write(p_fd, event, sizeof(event));
LOGV_IF(err<0, "control__wake(proximity), fd=%d (%s)",
p_fd, strerror(errno));
close(p_fd);
err = write(l_fd, event, sizeof(event));
LOGV_IF(err<0, "control__wake(light), fd=%d (%s)",
l_fd, strerror(errno));
close(l_fd);
return err;
}
/*****************************************************************************/
static int data__data_open(struct sensors_data_context_t *dev, native_handle_t* handle)
{
int i;
struct input_absinfo absinfo;
memset(&dev->sensors, 0, sizeof(dev->sensors));
for (i = 0; i < MAX_NUM_SENSORS; i++) {
// by default all sensors have high accuracy
// (we do this because we don't get an update if the value doesn't
// change).
dev->sensors[i].vector.status = SENSOR_STATUS_ACCURACY_HIGH;
}
dev->sensors[ID_A].sensor = SENSOR_TYPE_ACCELEROMETER;
dev->sensors[ID_M].sensor = SENSOR_TYPE_MAGNETIC_FIELD;
dev->sensors[ID_O].sensor = SENSOR_TYPE_ORIENTATION;
dev->sensors[ID_T].sensor = SENSOR_TYPE_TEMPERATURE;
dev->sensors[ID_P].sensor = SENSOR_TYPE_PROXIMITY;
dev->sensors[ID_L].sensor = SENSOR_TYPE_LIGHT;
dev->events_fd[0] = dup(handle->data[0]);
dev->events_fd[1] = dup(handle->data[1]);
dev->events_fd[2] = dup(handle->data[2]);
LOGV("data__data_open: compass fd = %d", handle->data[0]);
LOGV("data__data_open: proximity fd = %d", handle->data[1]);
LOGV("data__data_open: light fd = %d", handle->data[2]);
// Framework will close the handle
native_handle_delete(handle);
dev->pendingSensors = 0;
if (!ioctl(dev->events_fd[1], EVIOCGABS(ABS_DISTANCE), &absinfo)) {
LOGV("proximity sensor initial value %d\n", absinfo.value);
dev->pendingSensors |= SENSORS_CM_PROXIMITY;
// FIXME: we should save here absinfo.{minimum, maximum, etc}
// and use them to scale the return value according to
// the sensor description.
dev->sensors[ID_P].distance = (float)absinfo.value;
}
else LOGE("Cannot get proximity sensor initial value: %s\n",
strerror(errno));
return 0;
}
static int data__data_close(struct sensors_data_context_t *dev)
{
if (dev->events_fd[0] >= 0) {
//LOGV("(data close) about to close compass fd=%d", dev->events_fd[0]);
close(dev->events_fd[0]);
dev->events_fd[0] = -1;
}
if (dev->events_fd[1] >= 0) {
//LOGV("(data close) about to close proximity fd=%d", dev->events_fd[1]);
close(dev->events_fd[1]);
dev->events_fd[1] = -1;
}
if (dev->events_fd[2] >= 0) {
//LOGV("(data close) about to close light fd=%d", dev->events_fd[1]);
close(dev->events_fd[2]);
dev->events_fd[2] = -1;
}
return 0;
}
static int pick_sensor(struct sensors_data_context_t *dev,
sensors_data_t* values)
{
uint32_t mask = SUPPORTED_SENSORS;
while (mask) {
uint32_t i = 31 - __builtin_clz(mask);
mask &= ~(1<<i);
if (dev->pendingSensors & (1<<i)) {
dev->pendingSensors &= ~(1<<i);
*values = dev->sensors[i];
values->sensor = id_to_sensor[i];
LOGV_IF(0, "%d [%f, %f, %f]",
values->sensor,
values->vector.x,
values->vector.y,
values->vector.z);
return i;
}
}
LOGE("no sensor to return: pendingSensors = %08x", dev->pendingSensors);
return -1;
}
static uint32_t data__poll_process_akm_abs(struct sensors_data_context_t *dev,
int fd __attribute__((unused)),
struct input_event *event)
{
uint32_t new_sensors = 0;
if (event->type == EV_ABS) {
LOGV("compass type: %d code: %d value: %-5d time: %ds",
event->type, event->code, event->value,
(int)event->time.tv_sec);
switch (event->code) {
case EVENT_TYPE_ACCEL_X:
new_sensors |= SENSORS_AKM_ACCELERATION;
dev->sensors[ID_A].acceleration.x = event->value * CONVERT_A_X;
break;
case EVENT_TYPE_ACCEL_Y:
new_sensors |= SENSORS_AKM_ACCELERATION;
dev->sensors[ID_A].acceleration.y = event->value * CONVERT_A_Y;
break;
case EVENT_TYPE_ACCEL_Z:
new_sensors |= SENSORS_AKM_ACCELERATION;
dev->sensors[ID_A].acceleration.z = event->value * CONVERT_A_Z;
break;
case EVENT_TYPE_MAGV_X:
new_sensors |= SENSORS_AKM_MAGNETIC_FIELD;
dev->sensors[ID_M].magnetic.x = event->value * CONVERT_M_X;
break;
case EVENT_TYPE_MAGV_Y:
new_sensors |= SENSORS_AKM_MAGNETIC_FIELD;
dev->sensors[ID_M].magnetic.y = event->value * CONVERT_M_Y;
break;
case EVENT_TYPE_MAGV_Z:
new_sensors |= SENSORS_AKM_MAGNETIC_FIELD;
dev->sensors[ID_M].magnetic.z = event->value * CONVERT_M_Z;
break;
case EVENT_TYPE_YAW:
new_sensors |= SENSORS_AKM_ORIENTATION;
dev->sensors[ID_O].orientation.azimuth = event->value;
break;
case EVENT_TYPE_PITCH:
new_sensors |= SENSORS_AKM_ORIENTATION;
dev->sensors[ID_O].orientation.pitch = event->value;
break;
case EVENT_TYPE_ROLL:
new_sensors |= SENSORS_AKM_ORIENTATION;
dev->sensors[ID_O].orientation.roll = -event->value;
break;
case EVENT_TYPE_TEMPERATURE:
new_sensors |= SENSORS_AKM_TEMPERATURE;
dev->sensors[ID_T].temperature = event->value;
break;
case EVENT_TYPE_STEP_COUNT:
// step count (only reported in MODE_FFD)
// we do nothing with it for now.
break;
case EVENT_TYPE_ACCEL_STATUS:
// accuracy of the calibration (never returned!)
//LOGV("G-Sensor status %d", event->value);
break;
case EVENT_TYPE_ORIENT_STATUS: {
// accuracy of the calibration
uint32_t v = (uint32_t)(event->value & SENSOR_STATE_MASK);
LOGV_IF(dev->sensors[ID_O].orientation.status != (uint8_t)v,
"M-Sensor status %d", v);
dev->sensors[ID_O].orientation.status = (uint8_t)v;
}
break;
}
}
return new_sensors;
}
static uint32_t data__poll_process_cm_abs(struct sensors_data_context_t *dev,
int fd __attribute__((unused)),
struct input_event *event)
{
uint32_t new_sensors = 0;
if (event->type == EV_ABS) {
LOGV("proximity type: %d code: %d value: %-5d time: %ds",
event->type, event->code, event->value,
(int)event->time.tv_sec);
if (event->code == EVENT_TYPE_PROXIMITY) {
new_sensors |= SENSORS_CM_PROXIMITY;
/* event->value seems to be 0 or 1, scale it to the threshold */
dev->sensors[ID_P].distance = event->value * PROXIMITY_THRESHOLD_CM;
}
}
return new_sensors;
}
static uint32_t data__poll_process_ls_abs(struct sensors_data_context_t *dev,
int fd __attribute__((unused)),
struct input_event *event)
{
uint32_t new_sensors = 0;
if (event->type == EV_ABS) {
LOGV("light-level type: %d code: %d value: %-5d time: %ds",
event->type, event->code, event->value,
(int)event->time.tv_sec);
if (event->code == EVENT_TYPE_LIGHT) {
struct input_absinfo absinfo;
int index;
if (!ioctl(fd, EVIOCGABS(ABS_DISTANCE), &absinfo)) {
index = event->value;
if (index >= 0) {
new_sensors |= SENSORS_LIGHT;
if (index >= ARRAY_SIZE(sLuxValues)) {
index = ARRAY_SIZE(sLuxValues) - 1;
}
dev->sensors[ID_L].light = sLuxValues[index];
}
}
}
}
return new_sensors;
}
static void data__poll_process_syn(struct sensors_data_context_t *dev,
struct input_event *event,
uint32_t new_sensors)
{
if (new_sensors) {
dev->pendingSensors |= new_sensors;
int64_t t = event->time.tv_sec*1000000000LL +
event->time.tv_usec*1000;
while (new_sensors) {
uint32_t i = 31 - __builtin_clz(new_sensors);
new_sensors &= ~(1<<i);
dev->sensors[i].time = t;
}
}
}
static int data__poll(struct sensors_data_context_t *dev, sensors_data_t* values)
{
int akm_fd = dev->events_fd[0];
int cm_fd = dev->events_fd[1];
int ls_fd = dev->events_fd[2];
if (akm_fd < 0) {
LOGE("invalid compass file descriptor, fd=%d", akm_fd);
return -1;
}
if (cm_fd < 0) {
LOGE("invalid proximity-sensor file descriptor, fd=%d", cm_fd);
return -1;
}
if (ls_fd < 0) {
LOGE("invalid light-sensor file descriptor, fd=%d", ls_fd);
return -1;
}
// there are pending sensors, returns them now...
if (dev->pendingSensors) {
LOGV("pending sensors 0x%08x", dev->pendingSensors);
return pick_sensor(dev, values);
}
// wait until we get a complete event for an enabled sensor
uint32_t new_sensors = 0;
while (1) {
/* read the next event; first, read the compass event, then the
proximity event */
struct input_event event;
int got_syn = 0;
int exit = 0;
int nread;
fd_set rfds;
int n;
FD_ZERO(&rfds);
FD_SET(akm_fd, &rfds);
FD_SET(cm_fd, &rfds);
FD_SET(ls_fd, &rfds);
n = select(__MAX(akm_fd, __MAX(cm_fd, ls_fd)) + 1, &rfds,
NULL, NULL, NULL);
LOGV("return from select: %d\n", n);
if (n < 0) {
LOGE("%s: error from select(%d, %d): %s",
__FUNCTION__,
akm_fd, cm_fd, strerror(errno));
return -1;
}
if (FD_ISSET(akm_fd, &rfds)) {
nread = read(akm_fd, &event, sizeof(event));
if (nread == sizeof(event)) {
new_sensors |= data__poll_process_akm_abs(dev, akm_fd, &event);
LOGV("akm abs %08x", new_sensors);
got_syn = event.type == EV_SYN;
exit = got_syn && event.code == SYN_CONFIG;
if (got_syn) {
LOGV("akm syn %08x", new_sensors);
data__poll_process_syn(dev, &event, new_sensors);
new_sensors = 0;
}
}
else LOGE("akm read too small %d", nread);
}
else LOGV("akm fd is not set");
if (FD_ISSET(cm_fd, &rfds)) {
nread = read(cm_fd, &event, sizeof(event));
if (nread == sizeof(event)) {
new_sensors |= data__poll_process_cm_abs(dev, cm_fd, &event);
LOGV("cm abs %08x", new_sensors);
got_syn |= event.type == EV_SYN;
exit |= got_syn && event.code == SYN_CONFIG;
if (got_syn) {
LOGV("cm syn %08x", new_sensors);
data__poll_process_syn(dev, &event, new_sensors);
new_sensors = 0;
}
}
else LOGE("cm read too small %d", nread);
}
else LOGV("cm fd is not set");
if (FD_ISSET(ls_fd, &rfds)) {
nread = read(ls_fd, &event, sizeof(event));
if (nread == sizeof(event)) {
new_sensors |= data__poll_process_ls_abs(dev, ls_fd, &event);
LOGV("ls abs %08x", new_sensors);
got_syn |= event.type == EV_SYN;
exit |= got_syn && event.code == SYN_CONFIG;
if (got_syn) {
LOGV("ls syn %08x", new_sensors);
data__poll_process_syn(dev, &event, new_sensors);
new_sensors = 0;
}
}
else LOGE("ls read too small %d", nread);
}
else LOGV("ls fd is not set");
if (exit) {
// we use SYN_CONFIG to signal that we need to exit the
// main loop.
//LOGV("got empty message: value=%d", event->value);
LOGV("exit");
return 0x7FFFFFFF;
}
if (got_syn && dev->pendingSensors) {
LOGV("got syn, picking sensor");
return pick_sensor(dev, values);
}
}
}
/*****************************************************************************/
static int control__close(struct hw_device_t *dev)
{
struct sensors_control_context_t* ctx =
(struct sensors_control_context_t*)dev;
if (ctx) {
close_akm(ctx);
close_cm(ctx);
close_ls(ctx);
free(ctx);
}
return 0;
}
static int data__close(struct hw_device_t *dev)
{
struct sensors_data_context_t* ctx = (struct sensors_data_context_t*)dev;
if (ctx) {
data__data_close(ctx);
free(ctx);
}
return 0;
}
/** Open a new instance of a sensor device using name */
static int open_sensors(const struct hw_module_t* module, const char* name,
struct hw_device_t** device)
{
return init_nusensors(module, device);
int status = -EINVAL;
if (!strcmp(name, SENSORS_HARDWARE_CONTROL)) {
struct sensors_control_context_t *dev;
dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->akmd_fd = -1;
dev->cmd_fd = -1;
dev->lsd_fd = -1;
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = module;
dev->device.common.close = control__close;
dev->device.open_data_source = control__open_data_source;
dev->device.activate = control__activate;
dev->device.set_delay= control__set_delay;
dev->device.wake = control__wake;
*device = &dev->device.common;
} else if (!strcmp(name, SENSORS_HARDWARE_DATA)) {
struct sensors_data_context_t *dev;
dev = malloc(sizeof(*dev));
memset(dev, 0, sizeof(*dev));
dev->events_fd[0] = -1;
dev->events_fd[1] = -1;
dev->events_fd[2] = -1;
dev->device.common.tag = HARDWARE_DEVICE_TAG;
dev->device.common.version = 0;
dev->device.common.module = module;
dev->device.common.close = data__close;
dev->device.data_open = data__data_open;
dev->device.data_close = data__data_close;
dev->device.poll = data__poll;
*device = &dev->device.common;
}
return status;
}