1023 lines
32 KiB
C
Executable File
1023 lines
32 KiB
C
Executable File
/*
|
|
* Copyright (C) 2010 Danijel Posilovic - dan1j3l
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "Sensors"
|
|
|
|
#define LOG_NDEBUG 1
|
|
|
|
#include <hardware/sensors.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <dirent.h>
|
|
#include <math.h>
|
|
#include <poll.h>
|
|
#include <pthread.h>
|
|
#include <sys/select.h>
|
|
|
|
#include <linux/input.h>
|
|
#include <linux/akm8973.h>
|
|
#include <linux/capella_cm3602.h>
|
|
#include <linux/lightsensor.h>
|
|
|
|
#include <cutils/atomic.h>
|
|
#include <cutils/log.h>
|
|
#include <cutils/native_handle.h>
|
|
|
|
#define __MAX(a,b) ((a)>=(b)?(a):(b))
|
|
|
|
/*****************************************************************************/
|
|
|
|
#define MAX_NUM_SENSORS 6
|
|
|
|
#define SUPPORTED_SENSORS ((1<<MAX_NUM_SENSORS)-1)
|
|
|
|
#define ARRAY_SIZE(a) (sizeof(a) / sizeof(a[0]))
|
|
|
|
#define ID_A (0)
|
|
#define ID_M (1)
|
|
#define ID_O (2)
|
|
#define ID_T (3)
|
|
#define ID_P (4)
|
|
#define ID_L (5)
|
|
|
|
static int id_to_sensor[MAX_NUM_SENSORS] = {
|
|
[ID_A] = SENSOR_TYPE_ACCELEROMETER,
|
|
[ID_M] = SENSOR_TYPE_MAGNETIC_FIELD,
|
|
[ID_O] = SENSOR_TYPE_ORIENTATION,
|
|
[ID_T] = SENSOR_TYPE_TEMPERATURE,
|
|
[ID_P] = SENSOR_TYPE_PROXIMITY,
|
|
[ID_L] = SENSOR_TYPE_LIGHT,
|
|
};
|
|
|
|
#define SENSORS_AKM_ACCELERATION (1<<ID_A)
|
|
#define SENSORS_AKM_MAGNETIC_FIELD (1<<ID_M)
|
|
#define SENSORS_AKM_ORIENTATION (1<<ID_O)
|
|
#define SENSORS_AKM_TEMPERATURE (1<<ID_T)
|
|
#define SENSORS_AKM_GROUP ((1<<ID_A)|(1<<ID_M)|(1<<ID_O)|(1<<ID_T))
|
|
|
|
#define SENSORS_CM_PROXIMITY (1<<ID_P)
|
|
#define SENSORS_CM_GROUP (1<<ID_P)
|
|
|
|
#define SENSORS_LIGHT (1<<ID_L)
|
|
#define SENSORS_LIGHT_GROUP (1<<ID_L)
|
|
|
|
/*****************************************************************************/
|
|
|
|
struct sensors_control_context_t {
|
|
struct sensors_control_device_t device; // must be first
|
|
int akmd_fd;
|
|
int cmd_fd;
|
|
int lsd_fd;
|
|
uint32_t active_sensors;
|
|
};
|
|
|
|
struct sensors_data_context_t {
|
|
struct sensors_data_device_t device; // must be first
|
|
int events_fd[3];
|
|
sensors_data_t sensors[MAX_NUM_SENSORS];
|
|
uint32_t pendingSensors;
|
|
};
|
|
|
|
/*
|
|
* The SENSORS Module
|
|
*/
|
|
|
|
/* the CM3602 is a binary proximity sensor that triggers around 9 cm on
|
|
* this hardware */
|
|
#define PROXIMITY_THRESHOLD_CM 9.0f
|
|
|
|
/*
|
|
* the AK8973 has a 8-bit ADC but the firmware seems to average 16 samples,
|
|
* or at least makes its calibration on 12-bits values. This increases the
|
|
* resolution by 4 bits.
|
|
*/
|
|
|
|
static const struct sensor_t sSensorList[] = {
|
|
{ "BMA150 3-axis Accelerometer",
|
|
"Bosh",
|
|
1, SENSORS_HANDLE_BASE+ID_A,
|
|
SENSOR_TYPE_ACCELEROMETER, 4.0f*9.81f, (4.0f*9.81f)/256.0f, 0.2f, { } },
|
|
{ "AK8973 3-axis Magnetic field sensor",
|
|
"Asahi Kasei",
|
|
1, SENSORS_HANDLE_BASE+ID_M,
|
|
SENSOR_TYPE_MAGNETIC_FIELD, 2000.0f, 1.0f/16.0f, 6.8f, { } },
|
|
{ "AK8973 Orientation sensor",
|
|
"Asahi Kasei",
|
|
1, SENSORS_HANDLE_BASE+ID_O,
|
|
SENSOR_TYPE_ORIENTATION, 360.0f, 1.0f, 7.0f, { } },
|
|
{ "CM3602 Proximity sensor",
|
|
"Capella Microsystems",
|
|
1, SENSORS_HANDLE_BASE+ID_P,
|
|
SENSOR_TYPE_PROXIMITY,
|
|
PROXIMITY_THRESHOLD_CM, PROXIMITY_THRESHOLD_CM,
|
|
0.5f, { } },
|
|
{ "CM3602 Light sensor",
|
|
"Capella Microsystems",
|
|
1, SENSORS_HANDLE_BASE+ID_L,
|
|
SENSOR_TYPE_LIGHT, 10240.0f, 1.0f, 0.5f, { } },
|
|
};
|
|
|
|
static const float sLuxValues[8] = {
|
|
10.0,
|
|
160.0,
|
|
225.0,
|
|
320.0,
|
|
640.0,
|
|
1280.0,
|
|
2600.0,
|
|
10240.0
|
|
};
|
|
|
|
static int open_sensors(const struct hw_module_t* module, const char* name,
|
|
struct hw_device_t** device);
|
|
|
|
static int sensors__get_sensors_list(struct sensors_module_t* module,
|
|
struct sensor_t const** list)
|
|
{
|
|
*list = sSensorList;
|
|
return ARRAY_SIZE(sSensorList);
|
|
}
|
|
|
|
static struct hw_module_methods_t sensors_module_methods = {
|
|
.open = open_sensors
|
|
};
|
|
|
|
const struct sensors_module_t HAL_MODULE_INFO_SYM = {
|
|
.common = {
|
|
.tag = HARDWARE_MODULE_TAG,
|
|
.version_major = 1,
|
|
.version_minor = 0,
|
|
.id = SENSORS_HARDWARE_MODULE_ID,
|
|
.name = "AK8973A & CM3602 Sensors Module",
|
|
.author = "The Android Open Source Project",
|
|
.methods = &sensors_module_methods,
|
|
},
|
|
.get_sensors_list = sensors__get_sensors_list
|
|
};
|
|
|
|
/*****************************************************************************/
|
|
|
|
#define AKM_DEVICE_NAME "/dev/akm8973_aot"
|
|
#define CM_DEVICE_NAME "/dev/cm3602"
|
|
#define LS_DEVICE_NAME "/dev/lightsensor"
|
|
|
|
|
|
// sensor IDs must be a power of two and
|
|
// must match values in SensorManager.java
|
|
#define EVENT_TYPE_ACCEL_X ABS_X
|
|
#define EVENT_TYPE_ACCEL_Y ABS_Z
|
|
#define EVENT_TYPE_ACCEL_Z ABS_Y
|
|
#define EVENT_TYPE_ACCEL_STATUS ABS_WHEEL
|
|
|
|
#define EVENT_TYPE_YAW ABS_RX
|
|
#define EVENT_TYPE_PITCH ABS_RY
|
|
#define EVENT_TYPE_ROLL ABS_RZ
|
|
#define EVENT_TYPE_ORIENT_STATUS ABS_RUDDER
|
|
|
|
#define EVENT_TYPE_MAGV_X ABS_HAT0X
|
|
#define EVENT_TYPE_MAGV_Y ABS_HAT0Y
|
|
#define EVENT_TYPE_MAGV_Z ABS_BRAKE
|
|
|
|
#define EVENT_TYPE_TEMPERATURE ABS_THROTTLE
|
|
#define EVENT_TYPE_STEP_COUNT ABS_GAS
|
|
#define EVENT_TYPE_PROXIMITY ABS_DISTANCE
|
|
#define EVENT_TYPE_LIGHT ABS_MISC
|
|
|
|
// 720 LSG = 1G
|
|
#define LSG (720.0f)
|
|
|
|
|
|
// conversion of acceleration data to SI units (m/s^2)
|
|
#define CONVERT_A (GRAVITY_EARTH / LSG)
|
|
#define CONVERT_A_X (-CONVERT_A)
|
|
#define CONVERT_A_Y (CONVERT_A)
|
|
#define CONVERT_A_Z (-CONVERT_A)
|
|
|
|
// conversion of magnetic data to uT units
|
|
#define CONVERT_M (1.0f/16.0f)
|
|
#define CONVERT_M_X (-CONVERT_M)
|
|
#define CONVERT_M_Y (-CONVERT_M)
|
|
#define CONVERT_M_Z (CONVERT_M)
|
|
|
|
#define SENSOR_STATE_MASK (0x7FFF)
|
|
|
|
/*****************************************************************************/
|
|
|
|
static int open_inputs(int mode, int *akm_fd, int *p_fd, int *l_fd)
|
|
{
|
|
/* scan all input drivers and look for "compass" */
|
|
int fd = -1;
|
|
const char *dirname = "/dev/input";
|
|
char devname[PATH_MAX];
|
|
char *filename;
|
|
DIR *dir;
|
|
struct dirent *de;
|
|
dir = opendir(dirname);
|
|
if(dir == NULL)
|
|
return -1;
|
|
strcpy(devname, dirname);
|
|
filename = devname + strlen(devname);
|
|
*filename++ = '/';
|
|
*akm_fd = *p_fd = -1;
|
|
while((de = readdir(dir))) {
|
|
if(de->d_name[0] == '.' &&
|
|
(de->d_name[1] == '\0' ||
|
|
(de->d_name[1] == '.' && de->d_name[2] == '\0')))
|
|
continue;
|
|
strcpy(filename, de->d_name);
|
|
fd = open(devname, mode);
|
|
if (fd>=0) {
|
|
char name[80];
|
|
if (ioctl(fd, EVIOCGNAME(sizeof(name) - 1), &name) < 1) {
|
|
name[0] = '\0';
|
|
}
|
|
if (!strcmp(name, "compass")) {
|
|
LOGV("using %s (name=%s)", devname, name);
|
|
*akm_fd = fd;
|
|
}
|
|
else if (!strcmp(name, "proximity")) {
|
|
LOGV("using %s (name=%s)", devname, name);
|
|
*p_fd = fd;
|
|
}
|
|
else if (!strcmp(name, "lightsensor-level")) {
|
|
LOGV("using %s (name=%s)", devname, name);
|
|
*l_fd = fd;
|
|
}
|
|
else
|
|
close(fd);
|
|
}
|
|
}
|
|
closedir(dir);
|
|
|
|
fd = 0;
|
|
if (*akm_fd < 0) {
|
|
LOGE("Couldn't find or open 'compass' driver (%s)", strerror(errno));
|
|
fd = -1;
|
|
}
|
|
if (*p_fd < 0) {
|
|
LOGE("Couldn't find or open 'proximity' driver (%s)", strerror(errno));
|
|
fd = -1;
|
|
}
|
|
if (*l_fd < 0) {
|
|
LOGE("Couldn't find or open 'light' driver (%s)", strerror(errno));
|
|
fd = -1;
|
|
}
|
|
return fd;
|
|
}
|
|
|
|
static int open_akm(struct sensors_control_context_t* dev)
|
|
{
|
|
if (dev->akmd_fd < 0) {
|
|
dev->akmd_fd = open(AKM_DEVICE_NAME, O_RDONLY);
|
|
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->akmd_fd);
|
|
LOGE_IF(dev->akmd_fd<0, "Couldn't open %s (%s)",
|
|
AKM_DEVICE_NAME, strerror(errno));
|
|
if (dev->akmd_fd >= 0) {
|
|
dev->active_sensors &= ~SENSORS_AKM_GROUP;
|
|
}
|
|
}
|
|
return dev->akmd_fd;
|
|
}
|
|
|
|
static void close_akm(struct sensors_control_context_t* dev)
|
|
{
|
|
if (dev->akmd_fd >= 0) {
|
|
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->akmd_fd);
|
|
close(dev->akmd_fd);
|
|
dev->akmd_fd = -1;
|
|
}
|
|
}
|
|
|
|
static uint32_t read_akm_sensors_state(int fd)
|
|
{
|
|
short flags;
|
|
uint32_t sensors = 0;
|
|
// read the actual value of all sensors
|
|
if (!ioctl(fd, ECS_IOCTL_APP_GET_MFLAG, &flags)) {
|
|
if (flags) sensors |= SENSORS_AKM_ORIENTATION;
|
|
else sensors &= ~SENSORS_AKM_ORIENTATION;
|
|
}
|
|
if (!ioctl(fd, ECS_IOCTL_APP_GET_AFLAG, &flags)) {
|
|
if (flags) sensors |= SENSORS_AKM_ACCELERATION;
|
|
else sensors &= ~SENSORS_AKM_ACCELERATION;
|
|
}
|
|
if (!ioctl(fd, ECS_IOCTL_APP_GET_TFLAG, &flags)) {
|
|
if (flags) sensors |= SENSORS_AKM_TEMPERATURE;
|
|
else sensors &= ~SENSORS_AKM_TEMPERATURE;
|
|
}
|
|
if (!ioctl(fd, ECS_IOCTL_APP_GET_MVFLAG, &flags)) {
|
|
if (flags) sensors |= SENSORS_AKM_MAGNETIC_FIELD;
|
|
else sensors &= ~SENSORS_AKM_MAGNETIC_FIELD;
|
|
}
|
|
return sensors;
|
|
}
|
|
|
|
static uint32_t enable_disable_akm(struct sensors_control_context_t *dev,
|
|
uint32_t active, uint32_t sensors,
|
|
uint32_t mask)
|
|
{
|
|
uint32_t now_active_akm_sensors;
|
|
|
|
int fd = open_akm(dev);
|
|
if (fd < 0)
|
|
return 0;
|
|
|
|
LOGV("(before) akm sensors = %08x, real = %08x",
|
|
sensors, read_akm_sensors_state(fd));
|
|
|
|
short flags;
|
|
if (mask & SENSORS_AKM_ORIENTATION) {
|
|
flags = (sensors & SENSORS_AKM_ORIENTATION) ? 1 : 0;
|
|
if (ioctl(fd, ECS_IOCTL_APP_SET_MFLAG, &flags) < 0) {
|
|
LOGE("ECS_IOCTL_APP_SET_MFLAG error (%s)", strerror(errno));
|
|
}
|
|
}
|
|
if (mask & SENSORS_AKM_ACCELERATION) {
|
|
flags = (sensors & SENSORS_AKM_ACCELERATION) ? 1 : 0;
|
|
if (ioctl(fd, ECS_IOCTL_APP_SET_AFLAG, &flags) < 0) {
|
|
LOGE("ECS_IOCTL_APP_SET_AFLAG error (%s)", strerror(errno));
|
|
}
|
|
}
|
|
if (mask & SENSORS_AKM_TEMPERATURE) {
|
|
flags = (sensors & SENSORS_AKM_TEMPERATURE) ? 1 : 0;
|
|
if (ioctl(fd, ECS_IOCTL_APP_SET_TFLAG, &flags) < 0) {
|
|
LOGE("ECS_IOCTL_APP_SET_TFLAG error (%s)", strerror(errno));
|
|
}
|
|
}
|
|
if (mask & SENSORS_AKM_MAGNETIC_FIELD) {
|
|
flags = (sensors & SENSORS_AKM_MAGNETIC_FIELD) ? 1 : 0;
|
|
if (ioctl(fd, ECS_IOCTL_APP_SET_MVFLAG, &flags) < 0) {
|
|
LOGE("ECS_IOCTL_APP_SET_MVFLAG error (%s)", strerror(errno));
|
|
}
|
|
}
|
|
|
|
now_active_akm_sensors = read_akm_sensors_state(fd);
|
|
|
|
LOGV("(after) akm sensors = %08x, real = %08x",
|
|
sensors, now_active_akm_sensors);
|
|
|
|
if (!sensors)
|
|
close_akm(dev);
|
|
|
|
return now_active_akm_sensors;
|
|
}
|
|
|
|
static uint32_t read_cm_sensors_state(int fd)
|
|
{
|
|
int flags;
|
|
uint32_t sensors = 0;
|
|
// read the actual value of all sensors
|
|
if (!ioctl(fd, CAPELLA_CM3602_IOCTL_GET_ENABLED, &flags)) {
|
|
if (flags) sensors |= SENSORS_CM_PROXIMITY;
|
|
else sensors &= ~SENSORS_CM_PROXIMITY;
|
|
}
|
|
|
|
return sensors;
|
|
}
|
|
|
|
static int open_cm(struct sensors_control_context_t* dev)
|
|
{
|
|
if (dev->cmd_fd < 0) {
|
|
dev->cmd_fd = open(CM_DEVICE_NAME, O_RDONLY);
|
|
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->cmd_fd);
|
|
LOGE_IF(dev->cmd_fd<0, "Couldn't open %s (%s)",
|
|
CM_DEVICE_NAME, strerror(errno));
|
|
if (dev->cmd_fd >= 0) {
|
|
dev->active_sensors &= ~SENSORS_CM_GROUP;
|
|
}
|
|
}
|
|
return dev->cmd_fd;
|
|
}
|
|
|
|
static void close_cm(struct sensors_control_context_t* dev)
|
|
{
|
|
if (dev->cmd_fd >= 0) {
|
|
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->cmd_fd);
|
|
close(dev->cmd_fd);
|
|
dev->cmd_fd = -1;
|
|
}
|
|
}
|
|
|
|
static int enable_disable_cm(struct sensors_control_context_t *dev,
|
|
uint32_t active, uint32_t sensors, uint32_t mask)
|
|
{
|
|
int rc = 0;
|
|
uint32_t now_active_cm_sensors;
|
|
int fd = open_cm(dev);
|
|
|
|
if (fd < 0) {
|
|
LOGE("Couldn't open %s (%s)", CM_DEVICE_NAME, strerror(errno));
|
|
return 0;
|
|
}
|
|
|
|
LOGV("(before) cm sensors = %08x, real = %08x",
|
|
sensors, read_cm_sensors_state(fd));
|
|
|
|
if (mask & SENSORS_CM_PROXIMITY) {
|
|
int flags = (sensors & SENSORS_CM_PROXIMITY) ? 1 : 0;
|
|
rc = ioctl(fd, CAPELLA_CM3602_IOCTL_ENABLE, &flags);
|
|
if (rc < 0)
|
|
LOGE("CAPELLA_CM3602_IOCTL_ENABLE error (%s)", strerror(errno));
|
|
}
|
|
|
|
now_active_cm_sensors = read_cm_sensors_state(fd);
|
|
|
|
LOGV("(after) cm sensors = %08x, real = %08x",
|
|
sensors, now_active_cm_sensors);
|
|
|
|
return now_active_cm_sensors;
|
|
}
|
|
|
|
static uint32_t read_ls_sensors_state(int fd)
|
|
{
|
|
int flags;
|
|
uint32_t sensors = 0;
|
|
// read the actual value of all sensors
|
|
if (!ioctl(fd, LIGHTSENSOR_IOCTL_GET_ENABLED, &flags)) {
|
|
if (flags) sensors |= SENSORS_LIGHT;
|
|
else sensors &= ~SENSORS_LIGHT;
|
|
}
|
|
|
|
return sensors;
|
|
}
|
|
|
|
static int open_ls(struct sensors_control_context_t* dev)
|
|
{
|
|
if (dev->lsd_fd < 0) {
|
|
dev->lsd_fd = open(LS_DEVICE_NAME, O_RDONLY);
|
|
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->lsd_fd);
|
|
LOGE_IF(dev->lsd_fd<0, "Couldn't open %s (%s)",
|
|
LS_DEVICE_NAME, strerror(errno));
|
|
if (dev->lsd_fd >= 0) {
|
|
dev->active_sensors &= ~SENSORS_LIGHT_GROUP;
|
|
}
|
|
}
|
|
return dev->lsd_fd;
|
|
}
|
|
|
|
static void close_ls(struct sensors_control_context_t* dev)
|
|
{
|
|
if (dev->lsd_fd >= 0) {
|
|
LOGV("%s, fd=%d", __PRETTY_FUNCTION__, dev->lsd_fd);
|
|
close(dev->lsd_fd);
|
|
dev->lsd_fd = -1;
|
|
}
|
|
}
|
|
|
|
static int enable_disable_ls(struct sensors_control_context_t *dev,
|
|
uint32_t active, uint32_t sensors, uint32_t mask)
|
|
{
|
|
int rc = 0;
|
|
uint32_t now_active_ls_sensors;
|
|
int fd = open_ls(dev);
|
|
|
|
if (fd < 0) {
|
|
LOGE("Couldn't open %s (%s)", LS_DEVICE_NAME, strerror(errno));
|
|
return 0;
|
|
}
|
|
|
|
LOGV("(before) ls sensors = %08x, real = %08x",
|
|
sensors, read_ls_sensors_state(fd));
|
|
|
|
if (mask & SENSORS_LIGHT) {
|
|
int flags = (sensors & SENSORS_LIGHT) ? 1 : 0;
|
|
rc = ioctl(fd, LIGHTSENSOR_IOCTL_ENABLE, &flags);
|
|
if (rc < 0)
|
|
LOGE("LIGHTSENSOR_IOCTL_ENABLE error (%s)", strerror(errno));
|
|
}
|
|
|
|
now_active_ls_sensors = read_ls_sensors_state(fd);
|
|
|
|
LOGV("(after) ls sensors = %08x, real = %08x",
|
|
sensors, now_active_ls_sensors);
|
|
|
|
return now_active_ls_sensors;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
static native_handle_t* control__open_data_source(struct sensors_control_context_t *dev)
|
|
{
|
|
native_handle_t* handle;
|
|
int akm_fd, p_fd, l_fd;
|
|
|
|
if (open_inputs(O_RDONLY, &akm_fd, &p_fd, &l_fd) < 0 ||
|
|
akm_fd < 0 || p_fd < 0 || l_fd < 0) {
|
|
return NULL;
|
|
}
|
|
|
|
handle = native_handle_create(3, 0);
|
|
handle->data[0] = akm_fd;
|
|
handle->data[1] = p_fd;
|
|
handle->data[2] = l_fd;
|
|
|
|
return handle;
|
|
}
|
|
|
|
static int control__activate(struct sensors_control_context_t *dev,
|
|
int handle, int enabled)
|
|
{
|
|
if ((handle < SENSORS_HANDLE_BASE) ||
|
|
(handle >= SENSORS_HANDLE_BASE+MAX_NUM_SENSORS))
|
|
return -1;
|
|
|
|
uint32_t mask = (1 << handle);
|
|
uint32_t sensors = enabled ? mask : 0;
|
|
|
|
uint32_t active = dev->active_sensors;
|
|
uint32_t new_sensors = (active & ~mask) | (sensors & mask);
|
|
uint32_t changed = active ^ new_sensors;
|
|
|
|
if (changed) {
|
|
if (!active && new_sensors)
|
|
// force all sensors to be updated
|
|
changed = SUPPORTED_SENSORS;
|
|
|
|
dev->active_sensors =
|
|
enable_disable_akm(dev,
|
|
active & SENSORS_AKM_GROUP,
|
|
new_sensors & SENSORS_AKM_GROUP,
|
|
changed & SENSORS_AKM_GROUP) |
|
|
enable_disable_cm(dev,
|
|
active & SENSORS_CM_GROUP,
|
|
new_sensors & SENSORS_CM_GROUP,
|
|
changed & SENSORS_CM_GROUP) |
|
|
enable_disable_ls(dev,
|
|
active & SENSORS_LIGHT_GROUP,
|
|
new_sensors & SENSORS_LIGHT_GROUP,
|
|
changed & SENSORS_LIGHT_GROUP);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int control__set_delay(struct sensors_control_context_t *dev, int32_t ms)
|
|
{
|
|
#ifdef ECS_IOCTL_APP_SET_DELAY
|
|
if (dev->akmd_fd <= 0) {
|
|
return -1;
|
|
}
|
|
short delay = ms;
|
|
if (!ioctl(dev->akmd_fd, ECS_IOCTL_APP_SET_DELAY, &delay)) {
|
|
return -errno;
|
|
}
|
|
return 0;
|
|
#else
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
static int control__wake(struct sensors_control_context_t *dev)
|
|
{
|
|
int err = 0;
|
|
int akm_fd, p_fd, l_fd;
|
|
if (open_inputs(O_RDWR, &akm_fd, &p_fd, &l_fd) < 0 ||
|
|
akm_fd < 0 || p_fd < 0 || l_fd < 0) {
|
|
return -1;
|
|
}
|
|
|
|
struct input_event event[1];
|
|
event[0].type = EV_SYN;
|
|
event[0].code = SYN_CONFIG;
|
|
event[0].value = 0;
|
|
|
|
err = write(akm_fd, event, sizeof(event));
|
|
LOGV_IF(err<0, "control__wake(compass), fd=%d (%s)",
|
|
akm_fd, strerror(errno));
|
|
close(akm_fd);
|
|
|
|
err = write(p_fd, event, sizeof(event));
|
|
LOGV_IF(err<0, "control__wake(proximity), fd=%d (%s)",
|
|
p_fd, strerror(errno));
|
|
close(p_fd);
|
|
|
|
err = write(l_fd, event, sizeof(event));
|
|
LOGV_IF(err<0, "control__wake(light), fd=%d (%s)",
|
|
l_fd, strerror(errno));
|
|
close(l_fd);
|
|
|
|
return err;
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
static int data__data_open(struct sensors_data_context_t *dev, native_handle_t* handle)
|
|
{
|
|
int i;
|
|
struct input_absinfo absinfo;
|
|
memset(&dev->sensors, 0, sizeof(dev->sensors));
|
|
|
|
for (i = 0; i < MAX_NUM_SENSORS; i++) {
|
|
// by default all sensors have high accuracy
|
|
// (we do this because we don't get an update if the value doesn't
|
|
// change).
|
|
dev->sensors[i].vector.status = SENSOR_STATUS_ACCURACY_HIGH;
|
|
}
|
|
|
|
dev->sensors[ID_A].sensor = SENSOR_TYPE_ACCELEROMETER;
|
|
dev->sensors[ID_M].sensor = SENSOR_TYPE_MAGNETIC_FIELD;
|
|
dev->sensors[ID_O].sensor = SENSOR_TYPE_ORIENTATION;
|
|
dev->sensors[ID_T].sensor = SENSOR_TYPE_TEMPERATURE;
|
|
dev->sensors[ID_P].sensor = SENSOR_TYPE_PROXIMITY;
|
|
dev->sensors[ID_L].sensor = SENSOR_TYPE_LIGHT;
|
|
|
|
dev->events_fd[0] = dup(handle->data[0]);
|
|
dev->events_fd[1] = dup(handle->data[1]);
|
|
dev->events_fd[2] = dup(handle->data[2]);
|
|
LOGV("data__data_open: compass fd = %d", handle->data[0]);
|
|
LOGV("data__data_open: proximity fd = %d", handle->data[1]);
|
|
LOGV("data__data_open: light fd = %d", handle->data[2]);
|
|
// Framework will close the handle
|
|
native_handle_delete(handle);
|
|
|
|
dev->pendingSensors = 0;
|
|
if (!ioctl(dev->events_fd[1], EVIOCGABS(ABS_DISTANCE), &absinfo)) {
|
|
LOGV("proximity sensor initial value %d\n", absinfo.value);
|
|
dev->pendingSensors |= SENSORS_CM_PROXIMITY;
|
|
// FIXME: we should save here absinfo.{minimum, maximum, etc}
|
|
// and use them to scale the return value according to
|
|
// the sensor description.
|
|
dev->sensors[ID_P].distance = (float)absinfo.value;
|
|
}
|
|
else LOGE("Cannot get proximity sensor initial value: %s\n",
|
|
strerror(errno));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int data__data_close(struct sensors_data_context_t *dev)
|
|
{
|
|
if (dev->events_fd[0] >= 0) {
|
|
//LOGV("(data close) about to close compass fd=%d", dev->events_fd[0]);
|
|
close(dev->events_fd[0]);
|
|
dev->events_fd[0] = -1;
|
|
}
|
|
if (dev->events_fd[1] >= 0) {
|
|
//LOGV("(data close) about to close proximity fd=%d", dev->events_fd[1]);
|
|
close(dev->events_fd[1]);
|
|
dev->events_fd[1] = -1;
|
|
}
|
|
if (dev->events_fd[2] >= 0) {
|
|
//LOGV("(data close) about to close light fd=%d", dev->events_fd[1]);
|
|
close(dev->events_fd[2]);
|
|
dev->events_fd[2] = -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pick_sensor(struct sensors_data_context_t *dev,
|
|
sensors_data_t* values)
|
|
{
|
|
uint32_t mask = SUPPORTED_SENSORS;
|
|
while (mask) {
|
|
uint32_t i = 31 - __builtin_clz(mask);
|
|
mask &= ~(1<<i);
|
|
if (dev->pendingSensors & (1<<i)) {
|
|
dev->pendingSensors &= ~(1<<i);
|
|
*values = dev->sensors[i];
|
|
values->sensor = id_to_sensor[i];
|
|
LOGV_IF(0, "%d [%f, %f, %f]",
|
|
values->sensor,
|
|
values->vector.x,
|
|
values->vector.y,
|
|
values->vector.z);
|
|
return i;
|
|
}
|
|
}
|
|
|
|
LOGE("no sensor to return: pendingSensors = %08x", dev->pendingSensors);
|
|
return -1;
|
|
}
|
|
|
|
static uint32_t data__poll_process_akm_abs(struct sensors_data_context_t *dev,
|
|
int fd __attribute__((unused)),
|
|
struct input_event *event)
|
|
{
|
|
uint32_t new_sensors = 0;
|
|
if (event->type == EV_ABS) {
|
|
LOGV("compass type: %d code: %d value: %-5d time: %ds",
|
|
event->type, event->code, event->value,
|
|
(int)event->time.tv_sec);
|
|
switch (event->code) {
|
|
case EVENT_TYPE_ACCEL_X:
|
|
new_sensors |= SENSORS_AKM_ACCELERATION;
|
|
dev->sensors[ID_A].acceleration.x = event->value * CONVERT_A_X;
|
|
break;
|
|
case EVENT_TYPE_ACCEL_Y:
|
|
new_sensors |= SENSORS_AKM_ACCELERATION;
|
|
dev->sensors[ID_A].acceleration.y = event->value * CONVERT_A_Y;
|
|
break;
|
|
case EVENT_TYPE_ACCEL_Z:
|
|
new_sensors |= SENSORS_AKM_ACCELERATION;
|
|
dev->sensors[ID_A].acceleration.z = event->value * CONVERT_A_Z;
|
|
break;
|
|
case EVENT_TYPE_MAGV_X:
|
|
new_sensors |= SENSORS_AKM_MAGNETIC_FIELD;
|
|
dev->sensors[ID_M].magnetic.x = event->value * CONVERT_M_X;
|
|
break;
|
|
case EVENT_TYPE_MAGV_Y:
|
|
new_sensors |= SENSORS_AKM_MAGNETIC_FIELD;
|
|
dev->sensors[ID_M].magnetic.y = event->value * CONVERT_M_Y;
|
|
break;
|
|
case EVENT_TYPE_MAGV_Z:
|
|
new_sensors |= SENSORS_AKM_MAGNETIC_FIELD;
|
|
dev->sensors[ID_M].magnetic.z = event->value * CONVERT_M_Z;
|
|
break;
|
|
case EVENT_TYPE_YAW:
|
|
new_sensors |= SENSORS_AKM_ORIENTATION;
|
|
dev->sensors[ID_O].orientation.azimuth = event->value;
|
|
break;
|
|
case EVENT_TYPE_PITCH:
|
|
new_sensors |= SENSORS_AKM_ORIENTATION;
|
|
dev->sensors[ID_O].orientation.pitch = event->value;
|
|
break;
|
|
case EVENT_TYPE_ROLL:
|
|
new_sensors |= SENSORS_AKM_ORIENTATION;
|
|
dev->sensors[ID_O].orientation.roll = -event->value;
|
|
break;
|
|
case EVENT_TYPE_TEMPERATURE:
|
|
new_sensors |= SENSORS_AKM_TEMPERATURE;
|
|
dev->sensors[ID_T].temperature = event->value;
|
|
break;
|
|
case EVENT_TYPE_STEP_COUNT:
|
|
// step count (only reported in MODE_FFD)
|
|
// we do nothing with it for now.
|
|
break;
|
|
case EVENT_TYPE_ACCEL_STATUS:
|
|
// accuracy of the calibration (never returned!)
|
|
//LOGV("G-Sensor status %d", event->value);
|
|
break;
|
|
case EVENT_TYPE_ORIENT_STATUS: {
|
|
// accuracy of the calibration
|
|
uint32_t v = (uint32_t)(event->value & SENSOR_STATE_MASK);
|
|
LOGV_IF(dev->sensors[ID_O].orientation.status != (uint8_t)v,
|
|
"M-Sensor status %d", v);
|
|
dev->sensors[ID_O].orientation.status = (uint8_t)v;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
return new_sensors;
|
|
}
|
|
|
|
static uint32_t data__poll_process_cm_abs(struct sensors_data_context_t *dev,
|
|
int fd __attribute__((unused)),
|
|
struct input_event *event)
|
|
{
|
|
uint32_t new_sensors = 0;
|
|
if (event->type == EV_ABS) {
|
|
LOGV("proximity type: %d code: %d value: %-5d time: %ds",
|
|
event->type, event->code, event->value,
|
|
(int)event->time.tv_sec);
|
|
if (event->code == EVENT_TYPE_PROXIMITY) {
|
|
new_sensors |= SENSORS_CM_PROXIMITY;
|
|
/* event->value seems to be 0 or 1, scale it to the threshold */
|
|
dev->sensors[ID_P].distance = event->value * PROXIMITY_THRESHOLD_CM;
|
|
}
|
|
}
|
|
return new_sensors;
|
|
}
|
|
|
|
static uint32_t data__poll_process_ls_abs(struct sensors_data_context_t *dev,
|
|
int fd __attribute__((unused)),
|
|
struct input_event *event)
|
|
{
|
|
uint32_t new_sensors = 0;
|
|
if (event->type == EV_ABS) {
|
|
LOGV("light-level type: %d code: %d value: %-5d time: %ds",
|
|
event->type, event->code, event->value,
|
|
(int)event->time.tv_sec);
|
|
if (event->code == EVENT_TYPE_LIGHT) {
|
|
struct input_absinfo absinfo;
|
|
int index;
|
|
if (!ioctl(fd, EVIOCGABS(ABS_DISTANCE), &absinfo)) {
|
|
index = event->value;
|
|
if (index >= 0) {
|
|
new_sensors |= SENSORS_LIGHT;
|
|
if (index >= ARRAY_SIZE(sLuxValues)) {
|
|
index = ARRAY_SIZE(sLuxValues) - 1;
|
|
}
|
|
dev->sensors[ID_L].light = sLuxValues[index];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return new_sensors;
|
|
}
|
|
|
|
static void data__poll_process_syn(struct sensors_data_context_t *dev,
|
|
struct input_event *event,
|
|
uint32_t new_sensors)
|
|
{
|
|
if (new_sensors) {
|
|
dev->pendingSensors |= new_sensors;
|
|
int64_t t = event->time.tv_sec*1000000000LL +
|
|
event->time.tv_usec*1000;
|
|
while (new_sensors) {
|
|
uint32_t i = 31 - __builtin_clz(new_sensors);
|
|
new_sensors &= ~(1<<i);
|
|
dev->sensors[i].time = t;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int data__poll(struct sensors_data_context_t *dev, sensors_data_t* values)
|
|
{
|
|
int akm_fd = dev->events_fd[0];
|
|
int cm_fd = dev->events_fd[1];
|
|
int ls_fd = dev->events_fd[2];
|
|
|
|
if (akm_fd < 0) {
|
|
LOGE("invalid compass file descriptor, fd=%d", akm_fd);
|
|
return -1;
|
|
}
|
|
|
|
if (cm_fd < 0) {
|
|
LOGE("invalid proximity-sensor file descriptor, fd=%d", cm_fd);
|
|
return -1;
|
|
}
|
|
|
|
if (ls_fd < 0) {
|
|
LOGE("invalid light-sensor file descriptor, fd=%d", ls_fd);
|
|
return -1;
|
|
}
|
|
|
|
// there are pending sensors, returns them now...
|
|
if (dev->pendingSensors) {
|
|
LOGV("pending sensors 0x%08x", dev->pendingSensors);
|
|
return pick_sensor(dev, values);
|
|
}
|
|
|
|
// wait until we get a complete event for an enabled sensor
|
|
uint32_t new_sensors = 0;
|
|
while (1) {
|
|
/* read the next event; first, read the compass event, then the
|
|
proximity event */
|
|
struct input_event event;
|
|
int got_syn = 0;
|
|
int exit = 0;
|
|
int nread;
|
|
fd_set rfds;
|
|
int n;
|
|
|
|
FD_ZERO(&rfds);
|
|
FD_SET(akm_fd, &rfds);
|
|
FD_SET(cm_fd, &rfds);
|
|
FD_SET(ls_fd, &rfds);
|
|
n = select(__MAX(akm_fd, __MAX(cm_fd, ls_fd)) + 1, &rfds,
|
|
NULL, NULL, NULL);
|
|
LOGV("return from select: %d\n", n);
|
|
if (n < 0) {
|
|
LOGE("%s: error from select(%d, %d): %s",
|
|
__FUNCTION__,
|
|
akm_fd, cm_fd, strerror(errno));
|
|
return -1;
|
|
}
|
|
|
|
if (FD_ISSET(akm_fd, &rfds)) {
|
|
nread = read(akm_fd, &event, sizeof(event));
|
|
if (nread == sizeof(event)) {
|
|
new_sensors |= data__poll_process_akm_abs(dev, akm_fd, &event);
|
|
LOGV("akm abs %08x", new_sensors);
|
|
got_syn = event.type == EV_SYN;
|
|
exit = got_syn && event.code == SYN_CONFIG;
|
|
if (got_syn) {
|
|
LOGV("akm syn %08x", new_sensors);
|
|
data__poll_process_syn(dev, &event, new_sensors);
|
|
new_sensors = 0;
|
|
}
|
|
}
|
|
else LOGE("akm read too small %d", nread);
|
|
}
|
|
else LOGV("akm fd is not set");
|
|
|
|
if (FD_ISSET(cm_fd, &rfds)) {
|
|
nread = read(cm_fd, &event, sizeof(event));
|
|
if (nread == sizeof(event)) {
|
|
new_sensors |= data__poll_process_cm_abs(dev, cm_fd, &event);
|
|
LOGV("cm abs %08x", new_sensors);
|
|
got_syn |= event.type == EV_SYN;
|
|
exit |= got_syn && event.code == SYN_CONFIG;
|
|
if (got_syn) {
|
|
LOGV("cm syn %08x", new_sensors);
|
|
data__poll_process_syn(dev, &event, new_sensors);
|
|
new_sensors = 0;
|
|
}
|
|
}
|
|
else LOGE("cm read too small %d", nread);
|
|
}
|
|
else LOGV("cm fd is not set");
|
|
|
|
if (FD_ISSET(ls_fd, &rfds)) {
|
|
nread = read(ls_fd, &event, sizeof(event));
|
|
if (nread == sizeof(event)) {
|
|
new_sensors |= data__poll_process_ls_abs(dev, ls_fd, &event);
|
|
LOGV("ls abs %08x", new_sensors);
|
|
got_syn |= event.type == EV_SYN;
|
|
exit |= got_syn && event.code == SYN_CONFIG;
|
|
if (got_syn) {
|
|
LOGV("ls syn %08x", new_sensors);
|
|
data__poll_process_syn(dev, &event, new_sensors);
|
|
new_sensors = 0;
|
|
}
|
|
}
|
|
else LOGE("ls read too small %d", nread);
|
|
}
|
|
else LOGV("ls fd is not set");
|
|
|
|
if (exit) {
|
|
// we use SYN_CONFIG to signal that we need to exit the
|
|
// main loop.
|
|
//LOGV("got empty message: value=%d", event->value);
|
|
LOGV("exit");
|
|
return 0x7FFFFFFF;
|
|
}
|
|
|
|
if (got_syn && dev->pendingSensors) {
|
|
LOGV("got syn, picking sensor");
|
|
return pick_sensor(dev, values);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*****************************************************************************/
|
|
|
|
static int control__close(struct hw_device_t *dev)
|
|
{
|
|
struct sensors_control_context_t* ctx =
|
|
(struct sensors_control_context_t*)dev;
|
|
if (ctx) {
|
|
close_akm(ctx);
|
|
close_cm(ctx);
|
|
close_ls(ctx);
|
|
free(ctx);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int data__close(struct hw_device_t *dev)
|
|
{
|
|
struct sensors_data_context_t* ctx = (struct sensors_data_context_t*)dev;
|
|
if (ctx) {
|
|
data__data_close(ctx);
|
|
free(ctx);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/** Open a new instance of a sensor device using name */
|
|
static int open_sensors(const struct hw_module_t* module, const char* name,
|
|
struct hw_device_t** device)
|
|
{
|
|
int status = -EINVAL;
|
|
if (!strcmp(name, SENSORS_HARDWARE_CONTROL)) {
|
|
struct sensors_control_context_t *dev;
|
|
dev = malloc(sizeof(*dev));
|
|
memset(dev, 0, sizeof(*dev));
|
|
dev->akmd_fd = -1;
|
|
dev->cmd_fd = -1;
|
|
dev->lsd_fd = -1;
|
|
dev->device.common.tag = HARDWARE_DEVICE_TAG;
|
|
dev->device.common.version = 0;
|
|
dev->device.common.module = module;
|
|
dev->device.common.close = control__close;
|
|
dev->device.open_data_source = control__open_data_source;
|
|
dev->device.activate = control__activate;
|
|
dev->device.set_delay= control__set_delay;
|
|
dev->device.wake = control__wake;
|
|
*device = &dev->device.common;
|
|
} else if (!strcmp(name, SENSORS_HARDWARE_DATA)) {
|
|
struct sensors_data_context_t *dev;
|
|
dev = malloc(sizeof(*dev));
|
|
memset(dev, 0, sizeof(*dev));
|
|
dev->events_fd[0] = -1;
|
|
dev->events_fd[1] = -1;
|
|
dev->events_fd[2] = -1;
|
|
dev->device.common.tag = HARDWARE_DEVICE_TAG;
|
|
dev->device.common.version = 0;
|
|
dev->device.common.module = module;
|
|
dev->device.common.close = data__close;
|
|
dev->device.data_open = data__data_open;
|
|
dev->device.data_close = data__data_close;
|
|
dev->device.poll = data__poll;
|
|
*device = &dev->device.common;
|
|
}
|
|
return status;
|
|
}
|