2
0
mirror of https://github.com/xcat2/xNBA.git synced 2024-12-14 07:11:32 +00:00

Upgrade AXTLS import to version 1.1.5-a

This commit is contained in:
Michael Brown 2007-07-30 02:48:00 +01:00
parent 4ce8d61a5c
commit 9a9f46ff58
7 changed files with 906 additions and 62 deletions

View File

@ -238,9 +238,6 @@ void AES_set_key(AES_CTX *ctx, const uint8_t *key,
memcpy(ctx->iv, iv, 16);
}
#if 0
/** currently unused function **/
/**
* Change a key for decryption.
*/
@ -259,7 +256,6 @@ void AES_convert_key(AES_CTX *ctx)
*k++ =w;
}
}
#endif
/**
* Encrypt a byte sequence (with a block size 16) using the AES cipher.

View File

@ -0,0 +1,867 @@
/*
* Copyright(C) 2006 Cameron Rich
*
* This library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or
* (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/**
* @file asn1.c
*
* Some primitive asn methods for extraction rsa modulus information. It also
* is used for retrieving information from X.509 certificates.
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "crypto.h"
#define SIG_OID_PREFIX_SIZE 8
#define SIG_TYPE_MD2 0x02
#define SIG_TYPE_MD5 0x04
#define SIG_TYPE_SHA1 0x05
/* Must be an RSA algorithm with either SHA1 or MD5 for verifying to work */
static const uint8_t sig_oid_prefix[SIG_OID_PREFIX_SIZE] =
{
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01
};
/* CN, O, OU */
static const uint8_t g_dn_types[] = { 3, 10, 11 };
static int get_asn1_length(const uint8_t *buf, int *offset)
{
int len, i;
if (!(buf[*offset] & 0x80)) /* short form */
{
len = buf[(*offset)++];
}
else /* long form */
{
int length_bytes = buf[(*offset)++]&0x7f;
len = 0;
for (i = 0; i < length_bytes; i++)
{
len <<= 8;
len += buf[(*offset)++];
}
}
return len;
}
/**
* Skip the ASN1.1 object type and its length. Get ready to read the object's
* data.
*/
int asn1_next_obj(const uint8_t *buf, int *offset, int obj_type)
{
if (buf[*offset] != obj_type)
return X509_NOT_OK;
(*offset)++;
return get_asn1_length(buf, offset);
}
/**
* Skip over an ASN.1 object type completely. Get ready to read the next
* object.
*/
int asn1_skip_obj(const uint8_t *buf, int *offset, int obj_type)
{
int len;
if (buf[*offset] != obj_type)
return X509_NOT_OK;
(*offset)++;
len = get_asn1_length(buf, offset);
*offset += len;
return 0;
}
/**
* Read an integer value for ASN.1 data
* Note: This function allocates memory which must be freed by the user.
*/
int asn1_get_int(const uint8_t *buf, int *offset, uint8_t **object)
{
int len;
if ((len = asn1_next_obj(buf, offset, ASN1_INTEGER)) < 0)
goto end_int_array;
*object = (uint8_t *)malloc(len);
memcpy(*object, &buf[*offset], len);
*offset += len;
end_int_array:
return len;
}
#if 0
/**
* Get all the RSA private key specifics from an ASN.1 encoded file
*/
int asn1_get_private_key(const uint8_t *buf, int len, RSA_CTX **rsa_ctx)
{
int offset = 7;
uint8_t *modulus, *priv_exp, *pub_exp;
int mod_len, priv_len, pub_len;
#ifdef CONFIG_BIGINT_CRT
uint8_t *p, *q, *dP, *dQ, *qInv;
int p_len, q_len, dP_len, dQ_len, qInv_len;
#endif
/* not in der format */
if (buf[0] != ASN1_SEQUENCE) /* basic sanity check */
{
#ifdef CONFIG_SSL_FULL_MODE
printf("Error: This is not a valid ASN.1 file\n");
#endif
return X509_INVALID_PRIV_KEY;
}
/* initialise the RNG */
RNG_initialize(buf, len);
mod_len = asn1_get_int(buf, &offset, &modulus);
pub_len = asn1_get_int(buf, &offset, &pub_exp);
priv_len = asn1_get_int(buf, &offset, &priv_exp);
if (mod_len <= 0 || pub_len <= 0 || priv_len <= 0)
return X509_INVALID_PRIV_KEY;
#ifdef CONFIG_BIGINT_CRT
p_len = asn1_get_int(buf, &offset, &p);
q_len = asn1_get_int(buf, &offset, &q);
dP_len = asn1_get_int(buf, &offset, &dP);
dQ_len = asn1_get_int(buf, &offset, &dQ);
qInv_len = asn1_get_int(buf, &offset, &qInv);
if (p_len <= 0 || q_len <= 0 || dP_len <= 0 || dQ_len <= 0 || qInv_len <= 0)
return X509_INVALID_PRIV_KEY;
RSA_priv_key_new(rsa_ctx,
modulus, mod_len, pub_exp, pub_len, priv_exp, priv_len,
p, p_len, q, p_len, dP, dP_len, dQ, dQ_len, qInv, qInv_len);
free(p);
free(q);
free(dP);
free(dQ);
free(qInv);
#else
RSA_priv_key_new(rsa_ctx,
modulus, mod_len, pub_exp, pub_len, priv_exp, priv_len);
#endif
free(modulus);
free(priv_exp);
free(pub_exp);
return X509_OK;
}
/**
* Get the time of a certificate. Ignore hours/minutes/seconds.
*/
static int asn1_get_utc_time(const uint8_t *buf, int *offset, time_t *t)
{
int ret = X509_NOT_OK, len, t_offset;
struct tm tm;
if (buf[(*offset)++] != ASN1_UTC_TIME)
goto end_utc_time;
len = get_asn1_length(buf, offset);
t_offset = *offset;
memset(&tm, 0, sizeof(struct tm));
tm.tm_year = (buf[t_offset] - '0')*10 + (buf[t_offset+1] - '0');
if (tm.tm_year <= 50) /* 1951-2050 thing */
{
tm.tm_year += 100;
}
tm.tm_mon = (buf[t_offset+2] - '0')*10 + (buf[t_offset+3] - '0') - 1;
tm.tm_mday = (buf[t_offset+4] - '0')*10 + (buf[t_offset+5] - '0');
*t = mktime(&tm);
*offset += len;
ret = X509_OK;
end_utc_time:
return ret;
}
/**
* Get the version type of a certificate (which we don't actually care about)
*/
static int asn1_version(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK;
(*offset) += 2; /* get past explicit tag */
if (asn1_skip_obj(cert, offset, ASN1_INTEGER))
goto end_version;
ret = X509_OK;
end_version:
return ret;
}
/**
* Retrieve the notbefore and notafter certificate times.
*/
static int asn1_validity(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
return (asn1_next_obj(cert, offset, ASN1_SEQUENCE) < 0 ||
asn1_get_utc_time(cert, offset, &x509_ctx->not_before) ||
asn1_get_utc_time(cert, offset, &x509_ctx->not_after));
}
/**
* Get the components of a distinguished name
*/
static int asn1_get_oid_x520(const uint8_t *buf, int *offset)
{
int dn_type = 0;
int len;
if ((len = asn1_next_obj(buf, offset, ASN1_OID)) < 0)
goto end_oid;
/* expect a sequence of 2.5.4.[x] where x is a one of distinguished name
components we are interested in. */
if (len == 3 && buf[(*offset)++] == 0x55 && buf[(*offset)++] == 0x04)
dn_type = buf[(*offset)++];
else
{
*offset += len; /* skip over it */
}
end_oid:
return dn_type;
}
/**
* Obtain an ASN.1 printable string type.
*/
static int asn1_get_printable_str(const uint8_t *buf, int *offset, char **str)
{
int len = X509_NOT_OK;
/* some certs have this awful crud in them for some reason */
if (buf[*offset] != ASN1_PRINTABLE_STR &&
buf[*offset] != ASN1_TELETEX_STR && buf[*offset] != ASN1_IA5_STR)
goto end_pnt_str;
(*offset)++;
len = get_asn1_length(buf, offset);
*str = (char *)malloc(len+1); /* allow for null */
memcpy(*str, &buf[*offset], len);
(*str)[len] = 0; /* null terminate */
*offset += len;
end_pnt_str:
return len;
}
/**
* Get the subject name (or the issuer) of a certificate.
*/
static int asn1_name(const uint8_t *cert, int *offset, char *dn[])
{
int ret = X509_NOT_OK;
int dn_type;
char *tmp = NULL;
if (asn1_next_obj(cert, offset, ASN1_SEQUENCE) < 0)
goto end_name;
while (asn1_next_obj(cert, offset, ASN1_SET) >= 0)
{
int i, found = 0;
if (asn1_next_obj(cert, offset, ASN1_SEQUENCE) < 0 ||
(dn_type = asn1_get_oid_x520(cert, offset)) < 0)
goto end_name;
if (asn1_get_printable_str(cert, offset, &tmp) < 0)
{
free(tmp);
goto end_name;
}
/* find the distinguished named type */
for (i = 0; i < X509_NUM_DN_TYPES; i++)
{
if (dn_type == g_dn_types[i])
{
if (dn[i] == NULL)
{
dn[i] = tmp;
found = 1;
break;
}
}
}
if (found == 0) /* not found so get rid of it */
{
free(tmp);
}
}
ret = X509_OK;
end_name:
return ret;
}
/**
* Read the modulus and public exponent of a certificate.
*/
static int asn1_public_key(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK, mod_len, pub_len;
uint8_t *modulus, *pub_exp;
if (asn1_next_obj(cert, offset, ASN1_SEQUENCE) < 0 ||
asn1_skip_obj(cert, offset, ASN1_SEQUENCE) ||
asn1_next_obj(cert, offset, ASN1_BIT_STRING) < 0)
goto end_pub_key;
(*offset)++;
if (asn1_next_obj(cert, offset, ASN1_SEQUENCE) < 0)
goto end_pub_key;
mod_len = asn1_get_int(cert, offset, &modulus);
pub_len = asn1_get_int(cert, offset, &pub_exp);
RSA_pub_key_new(&x509_ctx->rsa_ctx, modulus, mod_len, pub_exp, pub_len);
free(modulus);
free(pub_exp);
ret = X509_OK;
end_pub_key:
return ret;
}
#ifdef CONFIG_SSL_CERT_VERIFICATION
/**
* Read the signature of the certificate.
*/
static int asn1_signature(const uint8_t *cert, int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK;
if (cert[(*offset)++] != ASN1_BIT_STRING)
goto end_sig;
x509_ctx->sig_len = get_asn1_length(cert, offset);
x509_ctx->signature = (uint8_t *)malloc(x509_ctx->sig_len);
memcpy(x509_ctx->signature, &cert[*offset], x509_ctx->sig_len);
*offset += x509_ctx->sig_len;
ret = X509_OK;
end_sig:
return ret;
}
/*
* Compare 2 distinguished name components for equality
* @return 0 if a match
*/
static int asn1_compare_dn_comp(const char *dn1, const char *dn2)
{
int ret = 1;
if ((dn1 && dn2 == NULL) || (dn1 == NULL && dn2)) goto err_no_match;
ret = (dn1 && dn2) ? strcmp(dn1, dn2) : 0;
err_no_match:
return ret;
}
/**
* Clean up all of the CA certificates.
*/
void remove_ca_certs(CA_CERT_CTX *ca_cert_ctx)
{
int i = 0;
while (i < CONFIG_X509_MAX_CA_CERTS && ca_cert_ctx->cert[i])
{
x509_free(ca_cert_ctx->cert[i]);
ca_cert_ctx->cert[i++] = NULL;
}
free(ca_cert_ctx);
}
/*
* Compare 2 distinguished names for equality
* @return 0 if a match
*/
static int asn1_compare_dn(char * const dn1[], char * const dn2[])
{
int i;
for (i = 0; i < X509_NUM_DN_TYPES; i++)
{
if (asn1_compare_dn_comp(dn1[i], dn2[i]))
{
return 1;
}
}
return 0; /* all good */
}
/**
* Retrieve the signature from a certificate.
*/
const uint8_t *x509_get_signature(const uint8_t *asn1_sig, int *len)
{
int offset = 0;
const uint8_t *ptr = NULL;
if (asn1_next_obj(asn1_sig, &offset, ASN1_SEQUENCE) < 0 ||
asn1_skip_obj(asn1_sig, &offset, ASN1_SEQUENCE))
goto end_get_sig;
if (asn1_sig[offset++] != ASN1_OCTET_STRING)
goto end_get_sig;
*len = get_asn1_length(asn1_sig, &offset);
ptr = &asn1_sig[offset]; /* all ok */
end_get_sig:
return ptr;
}
#endif
/**
* Read the signature type of the certificate. We only support RSA-MD5 and
* RSA-SHA1 signature types.
*/
static int asn1_signature_type(const uint8_t *cert,
int *offset, X509_CTX *x509_ctx)
{
int ret = X509_NOT_OK, len;
if (cert[(*offset)++] != ASN1_OID)
goto end_check_sig;
len = get_asn1_length(cert, offset);
if (memcmp(sig_oid_prefix, &cert[*offset], SIG_OID_PREFIX_SIZE))
goto end_check_sig; /* unrecognised cert type */
x509_ctx->sig_type = cert[*offset + SIG_OID_PREFIX_SIZE];
*offset += len;
if (asn1_skip_obj(cert, offset, ASN1_NULL))
goto end_check_sig;
ret = X509_OK;
end_check_sig:
return ret;
}
/**
* Construct a new x509 object.
* @return 0 if ok. < 0 if there was a problem.
*/
int x509_new(const uint8_t *cert, int *len, X509_CTX **ctx)
{
int begin_tbs, end_tbs;
int ret = X509_NOT_OK, offset = 0, cert_size = 0;
X509_CTX *x509_ctx;
BI_CTX *bi_ctx;
*ctx = (X509_CTX *)calloc(1, sizeof(X509_CTX));
x509_ctx = *ctx;
/* get the certificate size */
asn1_skip_obj(cert, &cert_size, ASN1_SEQUENCE);
if (asn1_next_obj(cert, &offset, ASN1_SEQUENCE) < 0)
goto end_cert;
begin_tbs = offset; /* start of the tbs */
end_tbs = begin_tbs; /* work out the end of the tbs */
asn1_skip_obj(cert, &end_tbs, ASN1_SEQUENCE);
if (asn1_next_obj(cert, &offset, ASN1_SEQUENCE) < 0)
goto end_cert;
if (cert[offset] == ASN1_EXPLICIT_TAG) /* optional version */
{
if (asn1_version(cert, &offset, x509_ctx))
goto end_cert;
}
if (asn1_skip_obj(cert, &offset, ASN1_INTEGER) || /* serial number */
asn1_next_obj(cert, &offset, ASN1_SEQUENCE) < 0)
goto end_cert;
/* make sure the signature is ok */
if (asn1_signature_type(cert, &offset, x509_ctx))
{
ret = X509_VFY_ERROR_UNSUPPORTED_DIGEST;
goto end_cert;
}
if (asn1_name(cert, &offset, x509_ctx->ca_cert_dn) ||
asn1_validity(cert, &offset, x509_ctx) ||
asn1_name(cert, &offset, x509_ctx->cert_dn) ||
asn1_public_key(cert, &offset, x509_ctx))
goto end_cert;
bi_ctx = x509_ctx->rsa_ctx->bi_ctx;
#ifdef CONFIG_SSL_CERT_VERIFICATION /* only care if doing verification */
/* use the appropriate signature algorithm (either SHA1 or MD5) */
if (x509_ctx->sig_type == SIG_TYPE_MD5)
{
MD5_CTX md5_ctx;
uint8_t md5_dgst[MD5_SIZE];
MD5Init(&md5_ctx);
MD5Update(&md5_ctx, &cert[begin_tbs], end_tbs-begin_tbs);
MD5Final(&md5_ctx, md5_dgst);
x509_ctx->digest = bi_import(bi_ctx, md5_dgst, MD5_SIZE);
}
else if (x509_ctx->sig_type == SIG_TYPE_SHA1)
{
SHA1_CTX sha_ctx;
uint8_t sha_dgst[SHA1_SIZE];
SHA1Init(&sha_ctx);
SHA1Update(&sha_ctx, &cert[begin_tbs], end_tbs-begin_tbs);
SHA1Final(&sha_ctx, sha_dgst);
x509_ctx->digest = bi_import(bi_ctx, sha_dgst, SHA1_SIZE);
}
offset = end_tbs; /* skip the v3 data */
if (asn1_skip_obj(cert, &offset, ASN1_SEQUENCE) ||
asn1_signature(cert, &offset, x509_ctx))
goto end_cert;
#endif
if (len)
{
*len = cert_size;
}
ret = X509_OK;
end_cert:
#ifdef CONFIG_SSL_FULL_MODE
if (ret)
{
printf("Error: Invalid X509 ASN.1 file\n");
}
#endif
return ret;
}
/**
* Free an X.509 object's resources.
*/
void x509_free(X509_CTX *x509_ctx)
{
X509_CTX *next;
int i;
if (x509_ctx == NULL) /* if already null, then don't bother */
return;
for (i = 0; i < X509_NUM_DN_TYPES; i++)
{
free(x509_ctx->ca_cert_dn[i]);
free(x509_ctx->cert_dn[i]);
}
free(x509_ctx->signature);
#ifdef CONFIG_SSL_CERT_VERIFICATION
if (x509_ctx->digest)
{
bi_free(x509_ctx->rsa_ctx->bi_ctx, x509_ctx->digest);
}
#endif
RSA_free(x509_ctx->rsa_ctx);
next = x509_ctx->next;
free(x509_ctx);
x509_free(next); /* clear the chain */
}
#ifdef CONFIG_SSL_CERT_VERIFICATION
/**
* Do some basic checks on the certificate chain.
*
* Certificate verification consists of a number of checks:
* - A root certificate exists in the certificate store.
* - The date of the certificate is after the start date.
* - The date of the certificate is before the finish date.
* - The certificate chain is valid.
* - That the certificate(s) are not self-signed.
* - The signature of the certificate is valid.
*/
int x509_verify(const CA_CERT_CTX *ca_cert_ctx, const X509_CTX *cert)
{
int ret = X509_OK, i = 0;
bigint *cert_sig;
X509_CTX *next_cert = NULL;
BI_CTX *ctx;
bigint *mod, *expn;
struct timeval tv;
int match_ca_cert = 0;
if (cert == NULL || ca_cert_ctx == NULL)
{
ret = X509_VFY_ERROR_NO_TRUSTED_CERT;
goto end_verify;
}
/* last cert in the chain - look for a trusted cert */
if (cert->next == NULL)
{
while (i < CONFIG_X509_MAX_CA_CERTS && ca_cert_ctx->cert[i])
{
if (asn1_compare_dn(cert->ca_cert_dn,
ca_cert_ctx->cert[i]->cert_dn) == 0)
{
match_ca_cert = 1;
break;
}
i++;
}
if (i < CONFIG_X509_MAX_CA_CERTS && ca_cert_ctx->cert[i])
{
next_cert = ca_cert_ctx->cert[i];
}
else /* trusted cert not found */
{
ret = X509_VFY_ERROR_NO_TRUSTED_CERT;
goto end_verify;
}
}
else
{
next_cert = cert->next;
}
gettimeofday(&tv, NULL);
/* check the not before date */
if (tv.tv_sec < cert->not_before)
{
ret = X509_VFY_ERROR_NOT_YET_VALID;
goto end_verify;
}
/* check the not after date */
if (tv.tv_sec > cert->not_after)
{
ret = X509_VFY_ERROR_EXPIRED;
goto end_verify;
}
/* check the chain integrity */
if (asn1_compare_dn(cert->ca_cert_dn, next_cert->cert_dn))
{
ret = X509_VFY_ERROR_INVALID_CHAIN;
goto end_verify;
}
/* check for self-signing */
if (!match_ca_cert && asn1_compare_dn(cert->ca_cert_dn, cert->cert_dn) == 0)
{
ret = X509_VFY_ERROR_SELF_SIGNED;
goto end_verify;
}
/* check the signature */
ctx = cert->rsa_ctx->bi_ctx;
mod = next_cert->rsa_ctx->m;
expn = next_cert->rsa_ctx->e;
cert_sig = RSA_sign_verify(ctx, cert->signature, cert->sig_len,
bi_clone(ctx, mod), bi_clone(ctx, expn));
if (cert_sig)
{
ret = cert->digest ? /* check the signature */
bi_compare(cert_sig, cert->digest) :
X509_VFY_ERROR_UNSUPPORTED_DIGEST;
bi_free(ctx, cert_sig);
if (ret)
goto end_verify;
}
else
{
ret = X509_VFY_ERROR_BAD_SIGNATURE;
goto end_verify;
}
/* go down the certificate chain using recursion. */
if (ret == 0 && cert->next)
{
ret = x509_verify(ca_cert_ctx, next_cert);
}
end_verify:
return ret;
}
#endif
#if defined (CONFIG_SSL_FULL_MODE)
/**
* Used for diagnostics.
*/
void x509_print(CA_CERT_CTX *ca_cert_ctx, const X509_CTX *cert)
{
if (cert == NULL)
return;
printf("---------------- CERT DEBUG ----------------\n");
printf("* CA Cert Distinguished Name\n");
if (cert->ca_cert_dn[X509_COMMON_NAME])
{
printf("Common Name (CN):\t%s\n", cert->ca_cert_dn[X509_COMMON_NAME]);
}
if (cert->ca_cert_dn[X509_ORGANIZATION])
{
printf("Organization (O):\t%s\n", cert->ca_cert_dn[X509_ORGANIZATION]);
}
if (cert->ca_cert_dn[X509_ORGANIZATIONAL_TYPE])
{
printf("Organizational Unit (OU): %s\n",
cert->ca_cert_dn[X509_ORGANIZATIONAL_TYPE]);
}
printf("* Cert Distinguished Name\n");
if (cert->cert_dn[X509_COMMON_NAME])
{
printf("Common Name (CN):\t%s\n", cert->cert_dn[X509_COMMON_NAME]);
}
if (cert->cert_dn[X509_ORGANIZATION])
{
printf("Organization (O):\t%s\n", cert->cert_dn[X509_ORGANIZATION]);
}
if (cert->cert_dn[X509_ORGANIZATIONAL_TYPE])
{
printf("Organizational Unit (OU): %s\n",
cert->cert_dn[X509_ORGANIZATIONAL_TYPE]);
}
printf("Not Before:\t\t%s", ctime(&cert->not_before));
printf("Not After:\t\t%s", ctime(&cert->not_after));
printf("RSA bitsize:\t\t%d\n", cert->rsa_ctx->num_octets*8);
printf("Sig Type:\t\t");
switch (cert->sig_type)
{
case SIG_TYPE_MD5:
printf("MD5\n");
break;
case SIG_TYPE_SHA1:
printf("SHA1\n");
break;
case SIG_TYPE_MD2:
printf("MD2\n");
break;
default:
printf("Unrecognized: %d\n", cert->sig_type);
break;
}
printf("Verify:\t\t\t");
if (ca_cert_ctx)
{
x509_display_error(x509_verify(ca_cert_ctx, cert));
}
printf("\n");
#if 0
print_blob("Signature", cert->signature, cert->sig_len);
bi_print("Modulus", cert->rsa_ctx->m);
bi_print("Pub Exp", cert->rsa_ctx->e);
#endif
if (ca_cert_ctx)
{
x509_print(ca_cert_ctx, cert->next);
}
}
void x509_display_error(int error)
{
switch (error)
{
case X509_NOT_OK:
printf("X509 not ok");
break;
case X509_VFY_ERROR_NO_TRUSTED_CERT:
printf("No trusted cert is available");
break;
case X509_VFY_ERROR_BAD_SIGNATURE:
printf("Bad signature");
break;
case X509_VFY_ERROR_NOT_YET_VALID:
printf("Cert is not yet valid");
break;
case X509_VFY_ERROR_EXPIRED:
printf("Cert has expired");
break;
case X509_VFY_ERROR_SELF_SIGNED:
printf("Cert is self-signed");
break;
case X509_VFY_ERROR_INVALID_CHAIN:
printf("Chain is invalid (check order of certs)");
break;
case X509_VFY_ERROR_UNSUPPORTED_DIGEST:
printf("Unsupported digest");
break;
case X509_INVALID_PRIV_KEY:
printf("Invalid private key");
break;
}
}
#endif /* CONFIG_SSL_FULL_MODE */
#endif

View File

@ -77,23 +77,14 @@ static void check(const bigint *bi);
*/
BI_CTX *bi_initialize(void)
{
/* calloc() sets everything to zero */
BI_CTX *ctx = (BI_CTX *)calloc(1, sizeof(BI_CTX));
ctx->active_list = NULL;
ctx->active_count = 0;
ctx->free_list = NULL;
ctx->free_count = 0;
ctx->mod_offset = 0;
#ifdef CONFIG_BIGINT_MONTGOMERY
ctx->use_classical = 0;
#endif
/* the radix */
ctx->bi_radix = alloc(ctx, 2);
ctx->bi_radix->comps[0] = 0;
ctx->bi_radix->comps[1] = 1;
bi_permanent(ctx->bi_radix);
return ctx;
}
@ -285,7 +276,7 @@ bigint *bi_add(BI_CTX *ctx, bigint *bia, bigint *bib)
* @param bia [in] A bigint.
* @param bib [in] Another bigint.
* @param is_negative [out] If defined, indicates that the result was negative.
* is_negative may be NULL.
* is_negative may be null.
* @return The result of the subtraction. The result is always positive.
*/
bigint *bi_subtract(BI_CTX *ctx,
@ -482,7 +473,7 @@ bigint *bi_divide(BI_CTX *ctx, bigint *u, bigint *v, int is_mod)
/*
* Perform an integer divide on a bigint.
*/
static bigint *bi_int_divide(__unused BI_CTX *ctx, bigint *biR, comp denom)
static bigint *bi_int_divide(BI_CTX *ctx, bigint *biR, comp denom)
{
int i = biR->size - 1;
long_comp r = 0;
@ -781,7 +772,9 @@ void bi_free_mod(BI_CTX *ctx, int mod_offset)
*/
static bigint *regular_multiply(BI_CTX *ctx, bigint *bia, bigint *bib)
{
int i, j, i_plus_j, n = bia->size, t = bib->size;
int i, j, i_plus_j;
int n = bia->size;
int t = bib->size;
bigint *biR = alloc(ctx, n + t);
comp *sr = biR->comps;
comp *sa = bia->comps;
@ -1059,7 +1052,7 @@ static bigint *alloc(BI_CTX *ctx, int size)
#ifdef CONFIG_SSL_FULL_MODE
printf("alloc: refs was not 0\n");
#endif
abort();
abort(); /* create a stack trace from a core dump */
}
more_comps(biR, size);
@ -1220,7 +1213,7 @@ static bigint *comp_mod(bigint *bi, int mod)
/*
* Barrett reduction has no need for some parts of the product, so ignore bits
* of the multiply. This routine gives Barrett its big performance
* improvements over classical/Montgomery reduction methods.
* improvements over Classical/Montgomery reduction methods.
*/
static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib,
int inner_partial, int outer_partial)
@ -1293,10 +1286,10 @@ static bigint *partial_multiply(BI_CTX *ctx, bigint *bia, bigint *bib,
}
/**
* @brief Perform a single barrett reduction.
* @brief Perform a single Barrett reduction.
* @param ctx [in] The bigint session context.
* @param bi [in] A bigint.
* @return The result of the barrett reduction.
* @return The result of the Barrett reduction.
*/
bigint *bi_barrett(BI_CTX *ctx, bigint *bi)
{
@ -1308,7 +1301,7 @@ bigint *bi_barrett(BI_CTX *ctx, bigint *bi)
check(bi);
check(bim);
/* use classical method instead - Barrett cannot help here */
/* use Classical method instead - Barrett cannot help here */
if (bi->size > k*2)
{
return bi_mod(ctx, bi);
@ -1397,9 +1390,7 @@ bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
#ifdef CONFIG_BIGINT_SLIDING_WINDOW
for (j = i; j > 32; j /= 5) /* work out an optimum size */
{
window_size++;
}
/* work out the slide constants */
precompute_slide_window(ctx, window_size, bi);
@ -1420,15 +1411,11 @@ bigint *bi_mod_power(BI_CTX *ctx, bigint *bi, bigint *biexp)
int part_exp = 0;
if (l < 0) /* LSB of exponent will always be 1 */
{
l = 0;
}
else
{
while (exp_bit_is_one(biexp, l) == 0)
{
l++; /* go back up */
}
}
/* build up the section of the exponent */

View File

@ -74,14 +74,14 @@ bigint *bi_str_import(BI_CTX *ctx, const char *data);
* appropriate reduction technique (which is bi_mod() when doing classical
* reduction).
*/
#if defined(CONFIG_BIGINT_CLASSICAL)
#define bi_residue(A, B) bi_mod(A, B)
#if defined(CONFIG_BIGINT_MONTGOMERY)
#define bi_residue(A, B) bi_mont(A, B)
bigint *bi_mont(BI_CTX *ctx, bigint *bixy);
#elif defined(CONFIG_BIGINT_BARRETT)
#define bi_residue(A, B) bi_barrett(A, B)
bigint *bi_barrett(BI_CTX *ctx, bigint *bi);
#else /* CONFIG_BIGINT_MONTGOMERY */
#define bi_residue(A, B) bi_mont(A, B)
bigint *bi_mont(BI_CTX *ctx, bigint *bixy);
#else /* if defined(CONFIG_BIGINT_CLASSICAL) */
#define bi_residue(A, B) bi_mod(A, B)
#endif
#ifdef CONFIG_BIGINT_SQUARE

View File

@ -54,9 +54,7 @@ void AES_set_key(AES_CTX *ctx, const uint8_t *key,
void AES_cbc_encrypt(AES_CTX *ctx, const uint8_t *msg,
uint8_t *out, int length);
void AES_cbc_decrypt(AES_CTX *ks, const uint8_t *in, uint8_t *out, int length);
#if 0 /** currently unused function **/
void AES_convert_key(AES_CTX *ctx);
#endif
/**************************************************************************
* RC4 declarations
@ -126,7 +124,12 @@ void hmac_sha1(const uint8_t *msg, int length, const uint8_t *key,
void RNG_initialize(const uint8_t *seed_buf, int size);
void RNG_terminate(void);
void get_random(int num_rand_bytes, uint8_t *rand_data);
void get_random_NZ(int num_rand_bytes, uint8_t *rand_data);
//void get_random_NZ(int num_rand_bytes, uint8_t *rand_data);
#include <string.h>
static inline void get_random_NZ(int num_rand_bytes, uint8_t *rand_data) {
memset ( rand_data, 0x01, num_rand_bytes );
}
/**************************************************************************
* RSA declarations
@ -165,15 +168,15 @@ void RSA_pub_key_new(RSA_CTX **rsa_ctx,
const uint8_t *modulus, int mod_len,
const uint8_t *pub_exp, int pub_len);
void RSA_free(RSA_CTX *ctx);
int RSA_decrypt(RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
int is_decryption);
bigint *RSA_private(RSA_CTX *c, bigint *bi_msg);
bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg);
#ifdef CONFIG_SSL_CERT_VERIFICATION
bigint *RSA_raw_sign_verify(RSA_CTX *c, bigint *bi_msg);
bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
bigint *modulus, bigint *pub_exp);
bigint *RSA_public(RSA_CTX *c, bigint *bi_msg);
int RSA_encrypt(RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
bigint *RSA_public(const RSA_CTX *c, bigint *bi_msg);
int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
uint8_t *out_data, int is_signing);
void RSA_print(const RSA_CTX *ctx);
#endif

View File

@ -27,9 +27,6 @@ static inline void close ( int fd __unused ) {
}
typedef void FILE;
#define SEEK_SET 0
#define SEEK_CUR 0
#define SEEK_END 0
static inline FILE * fopen ( const char *filename __unused,
const char *mode __unused ) {

View File

@ -28,7 +28,7 @@
#include "crypto.h"
#ifdef CONFIG_BIGINT_CRT
static bigint *bi_crt(RSA_CTX *rsa, bigint *bi);
static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi);
#endif
void RSA_priv_key_new(RSA_CTX **ctx,
@ -72,7 +72,7 @@ void RSA_pub_key_new(RSA_CTX **ctx,
{
RSA_CTX *rsa_ctx;
BI_CTX *bi_ctx = bi_initialize();
*ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX)); /* reset to all 0 */
*ctx = (RSA_CTX *)calloc(1, sizeof(RSA_CTX));
rsa_ctx = *ctx;
rsa_ctx->bi_ctx = bi_ctx;
rsa_ctx->num_octets = (mod_len & 0xFFF0);
@ -126,8 +126,8 @@ void RSA_free(RSA_CTX *rsa_ctx)
* @return The number of bytes that were originally encrypted. -1 on error.
* @see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
*/
int RSA_decrypt(RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
int is_decryption)
int RSA_decrypt(const RSA_CTX *ctx, const uint8_t *in_data,
uint8_t *out_data, int is_decryption)
{
int byte_size = ctx->num_octets;
uint8_t *block;
@ -155,10 +155,9 @@ int RSA_decrypt(RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
if (is_decryption == 0) /* PKCS1.5 signing pads with "0xff"s */
{
while (block[i++] == 0xff && i < byte_size);
if (block[i-2] != 0xff)
{
i = byte_size; /*ensure size is 0 */
}
}
else /* PKCS1.5 encryption padding is random */
#endif
@ -169,9 +168,7 @@ int RSA_decrypt(RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
/* get only the bit we want */
if (size > 0)
{
memcpy(out_data, &block[i], size);
}
free(block);
return size ? size : -1;
@ -180,7 +177,7 @@ int RSA_decrypt(RSA_CTX *ctx, const uint8_t *in_data, uint8_t *out_data,
/**
* Performs m = c^d mod n
*/
bigint *RSA_private(RSA_CTX *c, bigint *bi_msg)
bigint *RSA_private(const RSA_CTX *c, bigint *bi_msg)
{
#ifdef CONFIG_BIGINT_CRT
return bi_crt(c, bi_msg);
@ -197,7 +194,7 @@ bigint *RSA_private(RSA_CTX *c, bigint *bi_msg)
* This should really be in bigint.c (and was at one stage), but needs
* access to the RSA_CTX context...
*/
static bigint *bi_crt(RSA_CTX *rsa, bigint *bi)
static bigint *bi_crt(const RSA_CTX *rsa, bigint *bi)
{
BI_CTX *ctx = rsa->bi_ctx;
bigint *m1, *m2, *h;
@ -245,7 +242,7 @@ void RSA_print(const RSA_CTX *rsa_ctx)
/**
* Performs c = m^e mod n
*/
bigint *RSA_public(RSA_CTX *c, bigint *bi_msg)
bigint *RSA_public(const RSA_CTX * c, bigint *bi_msg)
{
c->bi_ctx->mod_offset = BIGINT_M_OFFSET;
return bi_mod_power(c->bi_ctx, bi_msg, c->e);
@ -255,7 +252,7 @@ bigint *RSA_public(RSA_CTX *c, bigint *bi_msg)
* Use PKCS1.5 for encryption/signing.
* see http://www.rsasecurity.com/rsalabs/node.asp?id=2125
*/
int RSA_encrypt(RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
int RSA_encrypt(const RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
uint8_t *out_data, int is_signing)
{
int byte_size = ctx->num_octets;
@ -273,10 +270,7 @@ int RSA_encrypt(RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
else /* randomize the encryption padding with non-zero bytes */
{
out_data[1] = 2;
memset(&out_data[2], 0x01, num_pads_needed);
#if 0
get_random_NZ(num_pads_needed, &out_data[2]);
#endif
}
out_data[2+num_pads_needed] = 0;
@ -291,18 +285,19 @@ int RSA_encrypt(RSA_CTX *ctx, const uint8_t *in_data, uint16_t in_len,
}
#if 0
/**
* Take a signature and decrypt it.
*/
bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
bigint *modulus, bigint *pub_exp)
{
uint8_t *block = (uint8_t *)malloc(sig_len);
uint8_t *block;
int i, size;
bigint *decrypted_bi, *dat_bi;
bigint *bir = NULL;
block = (uint8_t *)malloc(sig_len);
/* decrypt */
dat_bi = bi_import(ctx, sig, sig_len);
ctx->mod_offset = BIGINT_M_OFFSET;
@ -332,7 +327,6 @@ bigint *RSA_sign_verify(BI_CTX *ctx, const uint8_t *sig, int sig_len,
free(block);
return bir;
}
#endif
#endif /* CONFIG_SSL_CERT_VERIFICATION */