2
0
mirror of https://github.com/xcat2/xNBA.git synced 2024-12-23 19:51:46 +00:00

Jan Kiszka provided a patch for the smc9000 for missing phy-setup

This commit is contained in:
Timothy Legge 2005-06-02 01:26:37 +00:00
parent f242f56a73
commit 95967adc8c
3 changed files with 564 additions and 1 deletions

2
LOG
View File

@ -2868,3 +2868,5 @@ driver
that it supports the Gigabit nVidia NICs
+ Timothy Legge fixed relocation issues with the eepro driver
+ Jan Kiszka provided a patch for the smc9000 for missing phy-setup

View File

@ -29,9 +29,16 @@
#define LINUX_OUT_MACROS 1
#define SMC9000_DEBUG 0
#if SMC9000_DEBUG > 1
#define PRINTK2 printf
#else
#define PRINTK2(args...)
#endif
#include "etherboot.h"
#include "nic.h"
#include "isa.h"
#include "timer.h"
#include "smc9000.h"
# define _outb outb
@ -47,11 +54,449 @@ static const char *chip_ids[ 15 ] = {
NULL,
/* 7 */ "SMC91C100",
/* 8 */ "SMC91C100FD",
NULL, NULL, NULL,
/* 9 */ "SMC91C11xFD",
NULL, NULL,
NULL, NULL, NULL
};
static const char smc91c96_id[] = "SMC91C96";
/*------------------------------------------------------------
. Reads a register from the MII Management serial interface
.-------------------------------------------------------------*/
static word smc_read_phy_register(int ioaddr, byte phyaddr, byte phyreg)
{
int oldBank;
unsigned int i;
byte mask;
word mii_reg;
byte bits[64];
int clk_idx = 0;
int input_idx;
word phydata;
// 32 consecutive ones on MDO to establish sync
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Start code <01>
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Read command <10>
bits[clk_idx++] = MII_MDOE | MII_MDO;
bits[clk_idx++] = MII_MDOE;
// Output the PHY address, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Output the phy register number, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Tristate and turnaround (2 bit times)
bits[clk_idx++] = 0;
//bits[clk_idx++] = 0;
// Input starts at this bit time
input_idx = clk_idx;
// Will input 16 bits
for (i = 0; i < 16; ++i)
bits[clk_idx++] = 0;
// Final clock bit
bits[clk_idx++] = 0;
// Save the current bank
oldBank = inw( ioaddr+BANK_SELECT );
// Select bank 3
SMC_SELECT_BANK(ioaddr, 3);
// Get the current MII register value
mii_reg = inw( ioaddr+MII_REG );
// Turn off all MII Interface bits
mii_reg &= ~(MII_MDOE|MII_MCLK|MII_MDI|MII_MDO);
// Clock all 64 cycles
for (i = 0; i < sizeof(bits); ++i)
{
// Clock Low - output data
outw( mii_reg | bits[i], ioaddr+MII_REG );
udelay(50);
// Clock Hi - input data
outw( mii_reg | bits[i] | MII_MCLK, ioaddr+MII_REG );
udelay(50);
bits[i] |= inw( ioaddr+MII_REG ) & MII_MDI;
}
// Return to idle state
// Set clock to low, data to low, and output tristated
outw( mii_reg, ioaddr+MII_REG );
udelay(50);
// Restore original bank select
SMC_SELECT_BANK(ioaddr, oldBank);
// Recover input data
phydata = 0;
for (i = 0; i < 16; ++i)
{
phydata <<= 1;
if (bits[input_idx++] & MII_MDI)
phydata |= 0x0001;
}
#if (SMC_DEBUG > 2 )
printf("smc_read_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
#endif
return(phydata);
}
/*------------------------------------------------------------
. Writes a register to the MII Management serial interface
.-------------------------------------------------------------*/
static void smc_write_phy_register(int ioaddr,
byte phyaddr, byte phyreg, word phydata)
{
int oldBank;
unsigned int i;
word mask;
word mii_reg;
byte bits[65];
int clk_idx = 0;
// 32 consecutive ones on MDO to establish sync
for (i = 0; i < 32; ++i)
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Start code <01>
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Write command <01>
bits[clk_idx++] = MII_MDOE;
bits[clk_idx++] = MII_MDOE | MII_MDO;
// Output the PHY address, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyaddr & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Output the phy register number, msb first
mask = (byte)0x10;
for (i = 0; i < 5; ++i)
{
if (phyreg & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Tristate and turnaround (2 bit times)
bits[clk_idx++] = 0;
bits[clk_idx++] = 0;
// Write out 16 bits of data, msb first
mask = 0x8000;
for (i = 0; i < 16; ++i)
{
if (phydata & mask)
bits[clk_idx++] = MII_MDOE | MII_MDO;
else
bits[clk_idx++] = MII_MDOE;
// Shift to next lowest bit
mask >>= 1;
}
// Final clock bit (tristate)
bits[clk_idx++] = 0;
// Save the current bank
oldBank = inw( ioaddr+BANK_SELECT );
// Select bank 3
SMC_SELECT_BANK(ioaddr, 3);
// Get the current MII register value
mii_reg = inw( ioaddr+MII_REG );
// Turn off all MII Interface bits
mii_reg &= ~(MII_MDOE|MII_MCLK|MII_MDI|MII_MDO);
// Clock all cycles
for (i = 0; i < sizeof(bits); ++i)
{
// Clock Low - output data
outw( mii_reg | bits[i], ioaddr+MII_REG );
udelay(50);
// Clock Hi - input data
outw( mii_reg | bits[i] | MII_MCLK, ioaddr+MII_REG );
udelay(50);
bits[i] |= inw( ioaddr+MII_REG ) & MII_MDI;
}
// Return to idle state
// Set clock to low, data to low, and output tristated
outw( mii_reg, ioaddr+MII_REG );
udelay(50);
// Restore original bank select
SMC_SELECT_BANK(ioaddr, oldBank);
#if (SMC_DEBUG > 2 )
printf("smc_write_phy_register(): phyaddr=%x,phyreg=%x,phydata=%x\n",
phyaddr, phyreg, phydata);
#endif
}
/*------------------------------------------------------------
. Finds and reports the PHY address
.-------------------------------------------------------------*/
static int smc_detect_phy(int ioaddr, byte *pphyaddr)
{
word phy_id1;
word phy_id2;
int phyaddr;
int found = 0;
// Scan all 32 PHY addresses if necessary
for (phyaddr = 0; phyaddr < 32; ++phyaddr)
{
// Read the PHY identifiers
phy_id1 = smc_read_phy_register(ioaddr, phyaddr, PHY_ID1_REG);
phy_id2 = smc_read_phy_register(ioaddr, phyaddr, PHY_ID2_REG);
// Make sure it is a valid identifier
if ((phy_id2 > 0x0000) && (phy_id2 < 0xffff) &&
(phy_id1 > 0x0000) && (phy_id1 < 0xffff))
{
if ((phy_id1 != 0x8000) && (phy_id2 != 0x8000))
{
// Save the PHY's address
*pphyaddr = phyaddr;
found = 1;
break;
}
}
}
if (!found)
{
printf("No PHY found\n");
return(0);
}
// Set the PHY type
if ( (phy_id1 == 0x0016) && ((phy_id2 & 0xFFF0) == 0xF840 ) )
{
printf("PHY=LAN83C183 (LAN91C111 Internal)\n");
}
if ( (phy_id1 == 0x0282) && ((phy_id2 & 0xFFF0) == 0x1C50) )
{
printf("PHY=LAN83C180\n");
}
return(1);
}
/*------------------------------------------------------------
. Configures the specified PHY using Autonegotiation. Calls
. smc_phy_fixed() if the user has requested a certain config.
.-------------------------------------------------------------*/
static void smc_phy_configure(int ioaddr)
{
int timeout;
byte phyaddr;
word my_phy_caps; // My PHY capabilities
word my_ad_caps; // My Advertised capabilities
word status;
int failed = 0;
int rpc_cur_mode = RPC_DEFAULT;
int lastPhy18;
// Find the address and type of our phy
if (!smc_detect_phy(ioaddr, &phyaddr))
{
return;
}
// Reset the PHY, setting all other bits to zero
smc_write_phy_register(ioaddr, phyaddr, PHY_CNTL_REG, PHY_CNTL_RST);
// Wait for the reset to complete, or time out
timeout = 6; // Wait up to 3 seconds
while (timeout--)
{
if (!(smc_read_phy_register(ioaddr, phyaddr, PHY_CNTL_REG)
& PHY_CNTL_RST))
{
// reset complete
break;
}
mdelay(500); // wait 500 millisecs
}
if (timeout < 1)
{
PRINTK2("PHY reset timed out\n");
return;
}
// Read PHY Register 18, Status Output
lastPhy18 = smc_read_phy_register(ioaddr, phyaddr, PHY_INT_REG);
// Enable PHY Interrupts (for register 18)
// Interrupts listed here are disabled
smc_write_phy_register(ioaddr, phyaddr, PHY_MASK_REG,
PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
PHY_INT_SPDDET | PHY_INT_DPLXDET);
/* Configure the Receive/Phy Control register */
SMC_SELECT_BANK(ioaddr, 0);
outw( rpc_cur_mode, ioaddr + RPC_REG );
// Copy our capabilities from PHY_STAT_REG to PHY_AD_REG
my_phy_caps = smc_read_phy_register(ioaddr, phyaddr, PHY_STAT_REG);
my_ad_caps = PHY_AD_CSMA; // I am CSMA capable
if (my_phy_caps & PHY_STAT_CAP_T4)
my_ad_caps |= PHY_AD_T4;
if (my_phy_caps & PHY_STAT_CAP_TXF)
my_ad_caps |= PHY_AD_TX_FDX;
if (my_phy_caps & PHY_STAT_CAP_TXH)
my_ad_caps |= PHY_AD_TX_HDX;
if (my_phy_caps & PHY_STAT_CAP_TF)
my_ad_caps |= PHY_AD_10_FDX;
if (my_phy_caps & PHY_STAT_CAP_TH)
my_ad_caps |= PHY_AD_10_HDX;
// Update our Auto-Neg Advertisement Register
smc_write_phy_register(ioaddr, phyaddr, PHY_AD_REG, my_ad_caps);
PRINTK2("phy caps=%x\n", my_phy_caps);
PRINTK2("phy advertised caps=%x\n", my_ad_caps);
// Restart auto-negotiation process in order to advertise my caps
smc_write_phy_register( ioaddr, phyaddr, PHY_CNTL_REG,
PHY_CNTL_ANEG_EN | PHY_CNTL_ANEG_RST );
// Wait for the auto-negotiation to complete. This may take from
// 2 to 3 seconds.
// Wait for the reset to complete, or time out
timeout = 20; // Wait up to 10 seconds
while (timeout--)
{
status = smc_read_phy_register(ioaddr, phyaddr, PHY_STAT_REG);
if (status & PHY_STAT_ANEG_ACK)
{
// auto-negotiate complete
break;
}
mdelay(500); // wait 500 millisecs
// Restart auto-negotiation if remote fault
if (status & PHY_STAT_REM_FLT)
{
PRINTK2("PHY remote fault detected\n");
// Restart auto-negotiation
PRINTK2("PHY restarting auto-negotiation\n");
smc_write_phy_register( ioaddr, phyaddr, PHY_CNTL_REG,
PHY_CNTL_ANEG_EN | PHY_CNTL_ANEG_RST |
PHY_CNTL_SPEED | PHY_CNTL_DPLX);
}
}
if (timeout < 1)
{
PRINTK2("PHY auto-negotiate timed out\n");
failed = 1;
}
// Fail if we detected an auto-negotiate remote fault
if (status & PHY_STAT_REM_FLT)
{
PRINTK2("PHY remote fault detected\n");
failed = 1;
}
// Set our sysctl parameters to match auto-negotiation results
if ( lastPhy18 & PHY_INT_SPDDET )
{
PRINTK2("PHY 100BaseT\n");
rpc_cur_mode |= RPC_SPEED;
}
else
{
PRINTK2("PHY 10BaseT\n");
rpc_cur_mode &= ~RPC_SPEED;
}
if ( lastPhy18 & PHY_INT_DPLXDET )
{
PRINTK2("PHY Full Duplex\n");
rpc_cur_mode |= RPC_DPLX;
}
else
{
PRINTK2("PHY Half Duplex\n");
rpc_cur_mode &= ~RPC_DPLX;
}
// Re-Configure the Receive/Phy Control register
outw( rpc_cur_mode, ioaddr + RPC_REG );
}
/*
* Function: smc_reset( int ioaddr )
* Purpose:
@ -476,6 +921,8 @@ static int smc9000_probe ( struct nic *nic, struct isa_device *isa ) {
nic->ioaddr + CONFIG );
}
smc_phy_configure(nic->ioaddr);
nic->nic_op = &smc9000_operations;
return 1;
}

View File

@ -91,6 +91,24 @@ typedef unsigned long int dword;
#define MCR 10
/* 12 is reserved */
// Receive/Phy Control Register
/* BANK 0 */
#define RPC_REG 0x000A
#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
#define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
#define RPC_LED_RES (0x01) // LED = Reserved
#define RPC_LED_10 (0x02) // LED = 10Mbps link detect
#define RPC_LED_FD (0x03) // LED = Full Duplex Mode
#define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
#define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
#define RPC_LED_TX (0x06) // LED = TX packet occurred
#define RPC_LED_RX (0x07) // LED = RX packet occurred
#define RPC_DEFAULT (RPC_ANEG | (RPC_LED_100 << RPC_LSXA_SHFT) | (RPC_LED_FD << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
/* BANK 1 */
#define CONFIG 0
#define CFG_AUI_SELECT 0x100
@ -151,6 +169,13 @@ typedef unsigned long int dword;
#define MGMT 8
#define REVISION 10 /* ( hi: chip id low: rev # ) */
// Management Interface Register (MII)
#define MII_REG 0x0008
#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
#define MII_MDOE 0x0008 // MII Output Enable
#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
#define MII_MDI 0x0002 // MII Input, pin MDI
#define MII_MDO 0x0001 // MII Output, pin MDO
/* this is NOT on SMC9192 */
#define ERCV 12
@ -186,6 +211,95 @@ typedef unsigned long int dword;
#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
// PHY Register Addresses (LAN91C111 Internal PHY)
// PHY Control Register
#define PHY_CNTL_REG 0x00
#define PHY_CNTL_RST 0x8000 // 1=PHY Reset
#define PHY_CNTL_LPBK 0x4000 // 1=PHY Loopback
#define PHY_CNTL_SPEED 0x2000 // 1=100Mbps, 0=10Mpbs
#define PHY_CNTL_ANEG_EN 0x1000 // 1=Enable Auto negotiation
#define PHY_CNTL_PDN 0x0800 // 1=PHY Power Down mode
#define PHY_CNTL_MII_DIS 0x0400 // 1=MII 4 bit interface disabled
#define PHY_CNTL_ANEG_RST 0x0200 // 1=Reset Auto negotiate
#define PHY_CNTL_DPLX 0x0100 // 1=Full Duplex, 0=Half Duplex
#define PHY_CNTL_COLTST 0x0080 // 1= MII Colision Test
// PHY Status Register
#define PHY_STAT_REG 0x01
#define PHY_STAT_CAP_T4 0x8000 // 1=100Base-T4 capable
#define PHY_STAT_CAP_TXF 0x4000 // 1=100Base-X full duplex capable
#define PHY_STAT_CAP_TXH 0x2000 // 1=100Base-X half duplex capable
#define PHY_STAT_CAP_TF 0x1000 // 1=10Mbps full duplex capable
#define PHY_STAT_CAP_TH 0x0800 // 1=10Mbps half duplex capable
#define PHY_STAT_CAP_SUPR 0x0040 // 1=recv mgmt frames with not preamble
#define PHY_STAT_ANEG_ACK 0x0020 // 1=ANEG has completed
#define PHY_STAT_REM_FLT 0x0010 // 1=Remote Fault detected
#define PHY_STAT_CAP_ANEG 0x0008 // 1=Auto negotiate capable
#define PHY_STAT_LINK 0x0004 // 1=valid link
#define PHY_STAT_JAB 0x0002 // 1=10Mbps jabber condition
#define PHY_STAT_EXREG 0x0001 // 1=extended registers implemented
// PHY Identifier Registers
#define PHY_ID1_REG 0x02 // PHY Identifier 1
#define PHY_ID2_REG 0x03 // PHY Identifier 2
// PHY Auto-Negotiation Advertisement Register
#define PHY_AD_REG 0x04
#define PHY_AD_NP 0x8000 // 1=PHY requests exchange of Next Page
#define PHY_AD_ACK 0x4000 // 1=got link code word from remote
#define PHY_AD_RF 0x2000 // 1=advertise remote fault
#define PHY_AD_T4 0x0200 // 1=PHY is capable of 100Base-T4
#define PHY_AD_TX_FDX 0x0100 // 1=PHY is capable of 100Base-TX FDPLX
#define PHY_AD_TX_HDX 0x0080 // 1=PHY is capable of 100Base-TX HDPLX
#define PHY_AD_10_FDX 0x0040 // 1=PHY is capable of 10Base-T FDPLX
#define PHY_AD_10_HDX 0x0020 // 1=PHY is capable of 10Base-T HDPLX
#define PHY_AD_CSMA 0x0001 // 1=PHY is capable of 802.3 CMSA
// PHY Auto-negotiation Remote End Capability Register
#define PHY_RMT_REG 0x05
// Uses same bit definitions as PHY_AD_REG
// PHY Configuration Register 1
#define PHY_CFG1_REG 0x10
#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
#define PHY_CFG1_TLVL_MASK 0x003C
#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
// PHY Configuration Register 2
#define PHY_CFG2_REG 0x11
#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
// PHY Status Output (and Interrupt status) Register
#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
#define PHY_INT_JAB 0x0100 // 1=Jabber detected
#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
// PHY Interrupt/Status Mask Register
#define PHY_MASK_REG 0x13 // Interrupt Mask
// Uses the same bit definitions as PHY_INT_REG
/*-------------------------------------------------------------------------
* I define some macros to make it easier to do somewhat common
* or slightly complicated, repeated tasks.