2
0
mirror of https://github.com/xcat2/xNBA.git synced 2024-12-16 08:11:31 +00:00
xNBA/src/drivers/net/e1000.c

3714 lines
115 KiB
C
Raw Normal View History

2005-03-08 18:53:11 +00:00
/**************************************************************************
Etherboot - BOOTP/TFTP Bootstrap Program
Inter Pro 1000 for Etherboot
Drivers are port from Intel's Linux driver e1000-4.3.15
***************************************************************************/
/*******************************************************************************
Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or (at your option)
any later version.
This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
You should have received a copy of the GNU General Public License along with
this program; if not, write to the Free Software Foundation, Inc., 59
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
The full GNU General Public License is included in this distribution in the
file called LICENSE.
Contact Information:
Linux NICS <linux.nics@intel.com>
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*******************************************************************************/
/*
* Copyright (C) Archway Digital Solutions.
*
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
* 2/9/2002
*
* Copyright (C) Linux Networx.
* Massive upgrade to work with the new intel gigabit NICs.
* <ebiederman at lnxi dot com>
*
* Support for 82541ei & 82547ei chips from Intel's Linux driver 5.1.13 added by
* Georg Baum <gbaum@users.sf.net>, sponsored by PetaMem GmbH and linkLINE Communications, Inc.
*
* 01/2004: Updated to Linux driver 5.2.22 by Georg Baum <gbaum@users.sf.net>
*/
/* to get some global routines like printf */
#include "etherboot.h"
/* to get the interface to the body of the program */
#include "nic.h"
/* to get the PCI support functions, if this is a PCI NIC */
#include "pci.h"
#include "timer.h"
typedef unsigned char *dma_addr_t;
typedef enum {
FALSE = 0,
TRUE = 1
} boolean_t;
#define DEBUG 0
/* Some pieces of code are disabled with #if 0 ... #endif.
* They are not deleted to show where the etherboot driver differs
* from the linux driver below the function level.
* Some member variables of the hw struct have been eliminated
* and the corresponding inplace checks inserted instead.
* Pieces such as LED handling that we definitely don't need are deleted.
*
* The following defines should not be needed normally,
* but may be helpful for debugging purposes. */
/* Define this if you want to program the transmission control register
* the way the Linux driver does it. */
#undef LINUX_DRIVER_TCTL
/* Define this to behave more like the Linux driver. */
#undef LINUX_DRIVER
#include "e1000_hw.h"
/* NIC specific static variables go here */
2005-04-13 01:31:44 +00:00
static struct nic_operations e1000_operations;
static struct pci_driver e1000_driver;
2005-03-08 18:53:11 +00:00
static struct e1000_hw hw;
static char tx_pool[128 + 16];
static char rx_pool[128 + 16];
static char packet[2096];
static struct e1000_tx_desc *tx_base;
static struct e1000_rx_desc *rx_base;
static int tx_tail;
static int rx_tail, rx_last;
/* Function forward declarations */
static int e1000_setup_link(struct e1000_hw *hw);
static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
static int e1000_setup_copper_link(struct e1000_hw *hw);
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
static void e1000_config_collision_dist(struct e1000_hw *hw);
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
static int e1000_check_for_link(struct e1000_hw *hw);
static int e1000_wait_autoneg(struct e1000_hw *hw);
static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex);
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
static void e1000_phy_hw_reset(struct e1000_hw *hw);
static int e1000_phy_reset(struct e1000_hw *hw);
static int e1000_detect_gig_phy(struct e1000_hw *hw);
static void e1000_irq(struct nic *nic, irq_action_t action);
/* Printing macros... */
#define E1000_ERR(args...) printf("e1000: " args)
#if DEBUG >= 3
#define E1000_DBG(args...) printf("e1000: " args)
#else
#define E1000_DBG(args...)
#endif
#define MSGOUT(S, A, B) printk(S "\n", A, B)
#if DEBUG >= 2
#define DEBUGFUNC(F) DEBUGOUT(F "\n");
#else
#define DEBUGFUNC(F)
#endif
#if DEBUG >= 1
#define DEBUGOUT(S) printf(S)
#define DEBUGOUT1(S,A) printf(S,A)
#define DEBUGOUT2(S,A,B) printf(S,A,B)
#define DEBUGOUT3(S,A,B,C) printf(S,A,B,C)
#define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S,A,B,C,D,E,F,G)
#else
#define DEBUGOUT(S)
#define DEBUGOUT1(S,A)
#define DEBUGOUT2(S,A,B)
#define DEBUGOUT3(S,A,B,C)
#define DEBUGOUT7(S,A,B,C,D,E,F,G)
#endif
#define E1000_WRITE_REG(a, reg, value) ( \
((a)->mac_type >= e1000_82543) ? \
(writel((value), ((a)->hw_addr + E1000_##reg))) : \
(writel((value), ((a)->hw_addr + E1000_82542_##reg))))
#define E1000_READ_REG(a, reg) ( \
((a)->mac_type >= e1000_82543) ? \
readl((a)->hw_addr + E1000_##reg) : \
readl((a)->hw_addr + E1000_82542_##reg))
#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
((a)->mac_type >= e1000_82543) ? \
writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \
writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))))
#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
((a)->mac_type >= e1000_82543) ? \
readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \
readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))
#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
uint32_t
e1000_io_read(struct e1000_hw *hw __unused, uint32_t port)
{
return inl(port);
}
void
e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value)
{
outl(value, port);
}
static inline void e1000_pci_set_mwi(struct e1000_hw *hw)
{
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
}
static inline void e1000_pci_clear_mwi(struct e1000_hw *hw)
{
pci_write_config_word(hw->pdev, PCI_COMMAND,
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
}
/******************************************************************************
* Raises the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static void
e1000_raise_ee_clk(struct e1000_hw *hw,
uint32_t *eecd)
{
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
* wait <delay> microseconds.
*/
*eecd = *eecd | E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/******************************************************************************
* Lowers the EEPROM's clock input.
*
* hw - Struct containing variables accessed by shared code
* eecd - EECD's current value
*****************************************************************************/
static void
e1000_lower_ee_clk(struct e1000_hw *hw,
uint32_t *eecd)
{
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
* wait 50 microseconds.
*/
*eecd = *eecd & ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, *eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/******************************************************************************
* Shift data bits out to the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* data - data to send to the EEPROM
* count - number of bits to shift out
*****************************************************************************/
static void
e1000_shift_out_ee_bits(struct e1000_hw *hw,
uint16_t data,
uint16_t count)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
uint32_t mask;
/* We need to shift "count" bits out to the EEPROM. So, value in the
* "data" parameter will be shifted out to the EEPROM one bit at a time.
* In order to do this, "data" must be broken down into bits.
*/
mask = 0x01 << (count - 1);
eecd = E1000_READ_REG(hw, EECD);
if (eeprom->type == e1000_eeprom_microwire) {
eecd &= ~E1000_EECD_DO;
} else if (eeprom->type == e1000_eeprom_spi) {
eecd |= E1000_EECD_DO;
}
do {
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
* and then raising and then lowering the clock (the SK bit controls
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
* by setting "DI" to "0" and then raising and then lowering the clock.
*/
eecd &= ~E1000_EECD_DI;
if(data & mask)
eecd |= E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
e1000_raise_ee_clk(hw, &eecd);
e1000_lower_ee_clk(hw, &eecd);
mask = mask >> 1;
} while(mask);
/* We leave the "DI" bit set to "0" when we leave this routine. */
eecd &= ~E1000_EECD_DI;
E1000_WRITE_REG(hw, EECD, eecd);
}
/******************************************************************************
* Shift data bits in from the EEPROM
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static uint16_t
e1000_shift_in_ee_bits(struct e1000_hw *hw,
uint16_t count)
{
uint32_t eecd;
uint32_t i;
uint16_t data;
/* In order to read a register from the EEPROM, we need to shift 'count'
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
* input to the EEPROM (setting the SK bit), and then reading the value of
* the "DO" bit. During this "shifting in" process the "DI" bit should
* always be clear.
*/
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
data = 0;
for(i = 0; i < count; i++) {
data = data << 1;
e1000_raise_ee_clk(hw, &eecd);
eecd = E1000_READ_REG(hw, EECD);
eecd &= ~(E1000_EECD_DI);
if(eecd & E1000_EECD_DO)
data |= 1;
e1000_lower_ee_clk(hw, &eecd);
}
return data;
}
/******************************************************************************
* Prepares EEPROM for access
*
* hw - Struct containing variables accessed by shared code
*
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
* function should be called before issuing a command to the EEPROM.
*****************************************************************************/
static int32_t
e1000_acquire_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd, i=0;
eecd = E1000_READ_REG(hw, EECD);
/* Request EEPROM Access */
if(hw->mac_type > e1000_82544) {
eecd |= E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
eecd = E1000_READ_REG(hw, EECD);
while((!(eecd & E1000_EECD_GNT)) &&
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
i++;
udelay(5);
eecd = E1000_READ_REG(hw, EECD);
}
if(!(eecd & E1000_EECD_GNT)) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
DEBUGOUT("Could not acquire EEPROM grant\n");
return -E1000_ERR_EEPROM;
}
}
/* Setup EEPROM for Read/Write */
if (eeprom->type == e1000_eeprom_microwire) {
/* Clear SK and DI */
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
/* Set CS */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
} else if (eeprom->type == e1000_eeprom_spi) {
/* Clear SK and CS */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
udelay(1);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns EEPROM to a "standby" state
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_standby_eeprom(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
if(eeprom->type == e1000_eeprom_microwire) {
/* Deselect EEPROM */
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock high */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Select EEPROM */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
/* Clock low */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
} else if(eeprom->type == e1000_eeprom_spi) {
/* Toggle CS to flush commands */
eecd |= E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
eecd &= ~E1000_EECD_CS;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(eeprom->delay_usec);
}
}
/******************************************************************************
* Terminates a command by inverting the EEPROM's chip select pin
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_release_eeprom(struct e1000_hw *hw)
{
uint32_t eecd;
eecd = E1000_READ_REG(hw, EECD);
if (hw->eeprom.type == e1000_eeprom_spi) {
eecd |= E1000_EECD_CS; /* Pull CS high */
eecd &= ~E1000_EECD_SK; /* Lower SCK */
E1000_WRITE_REG(hw, EECD, eecd);
udelay(hw->eeprom.delay_usec);
} else if(hw->eeprom.type == e1000_eeprom_microwire) {
/* cleanup eeprom */
/* CS on Microwire is active-high */
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
E1000_WRITE_REG(hw, EECD, eecd);
/* Rising edge of clock */
eecd |= E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
/* Falling edge of clock */
eecd &= ~E1000_EECD_SK;
E1000_WRITE_REG(hw, EECD, eecd);
E1000_WRITE_FLUSH(hw);
udelay(hw->eeprom.delay_usec);
}
/* Stop requesting EEPROM access */
if(hw->mac_type > e1000_82544) {
eecd &= ~E1000_EECD_REQ;
E1000_WRITE_REG(hw, EECD, eecd);
}
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_spi_eeprom_ready(struct e1000_hw *hw)
{
uint16_t retry_count = 0;
uint8_t spi_stat_reg;
/* Read "Status Register" repeatedly until the LSB is cleared. The
* EEPROM will signal that the command has been completed by clearing
* bit 0 of the internal status register. If it's not cleared within
* 5 milliseconds, then error out.
*/
retry_count = 0;
do {
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
hw->eeprom.opcode_bits);
spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
break;
udelay(5);
retry_count += 5;
} while(retry_count < EEPROM_MAX_RETRY_SPI);
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
* only 0-5mSec on 5V devices)
*/
if(retry_count >= EEPROM_MAX_RETRY_SPI) {
DEBUGOUT("SPI EEPROM Status error\n");
return -E1000_ERR_EEPROM;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Reads a 16 bit word from the EEPROM.
*
* hw - Struct containing variables accessed by shared code
* offset - offset of word in the EEPROM to read
* data - word read from the EEPROM
* words - number of words to read
*****************************************************************************/
static int
e1000_read_eeprom(struct e1000_hw *hw,
uint16_t offset,
uint16_t words,
uint16_t *data)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t i = 0;
DEBUGFUNC("e1000_read_eeprom");
/* A check for invalid values: offset too large, too many words, and not
* enough words.
*/
if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
(words == 0)) {
DEBUGOUT("\"words\" parameter out of bounds\n");
return -E1000_ERR_EEPROM;
}
/* Prepare the EEPROM for reading */
if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
return -E1000_ERR_EEPROM;
if(eeprom->type == e1000_eeprom_spi) {
uint16_t word_in;
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
if(e1000_spi_eeprom_ready(hw)) {
e1000_release_eeprom(hw);
return -E1000_ERR_EEPROM;
}
e1000_standby_eeprom(hw);
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
if((eeprom->address_bits == 8) && (offset >= 128))
read_opcode |= EEPROM_A8_OPCODE_SPI;
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
/* Read the data. The address of the eeprom internally increments with
* each byte (spi) being read, saving on the overhead of eeprom setup
* and tear-down. The address counter will roll over if reading beyond
* the size of the eeprom, thus allowing the entire memory to be read
* starting from any offset. */
for (i = 0; i < words; i++) {
word_in = e1000_shift_in_ee_bits(hw, 16);
data[i] = (word_in >> 8) | (word_in << 8);
}
} else if(eeprom->type == e1000_eeprom_microwire) {
for (i = 0; i < words; i++) {
/* Send the READ command (opcode + addr) */
e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
eeprom->opcode_bits);
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
eeprom->address_bits);
/* Read the data. For microwire, each word requires the overhead
* of eeprom setup and tear-down. */
data[i] = e1000_shift_in_ee_bits(hw, 16);
e1000_standby_eeprom(hw);
}
}
/* End this read operation */
e1000_release_eeprom(hw);
return E1000_SUCCESS;
}
/******************************************************************************
* Verifies that the EEPROM has a valid checksum
*
* hw - Struct containing variables accessed by shared code
*
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
* valid.
*****************************************************************************/
static int
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
{
uint16_t checksum = 0;
uint16_t i, eeprom_data;
DEBUGFUNC("e1000_validate_eeprom_checksum");
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
checksum += eeprom_data;
}
if(checksum == (uint16_t) EEPROM_SUM)
return E1000_SUCCESS;
else {
DEBUGOUT("EEPROM Checksum Invalid\n");
return -E1000_ERR_EEPROM;
}
}
/******************************************************************************
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
* second function of dual function devices
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int
e1000_read_mac_addr(struct e1000_hw *hw)
{
uint16_t offset;
uint16_t eeprom_data;
int i;
DEBUGFUNC("e1000_read_mac_addr");
for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
offset = i >> 1;
if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
hw->mac_addr[i] = eeprom_data & 0xff;
hw->mac_addr[i+1] = (eeprom_data >> 8) & 0xff;
}
if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
/* Invert the last bit if this is the second device */
hw->mac_addr[5] ^= 1;
return E1000_SUCCESS;
}
/******************************************************************************
* Initializes receive address filters.
*
* hw - Struct containing variables accessed by shared code
*
* Places the MAC address in receive address register 0 and clears the rest
* of the receive addresss registers. Clears the multicast table. Assumes
* the receiver is in reset when the routine is called.
*****************************************************************************/
static void
e1000_init_rx_addrs(struct e1000_hw *hw)
{
uint32_t i;
uint32_t addr_low;
uint32_t addr_high;
DEBUGFUNC("e1000_init_rx_addrs");
/* Setup the receive address. */
DEBUGOUT("Programming MAC Address into RAR[0]\n");
addr_low = (hw->mac_addr[0] |
(hw->mac_addr[1] << 8) |
(hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
addr_high = (hw->mac_addr[4] |
(hw->mac_addr[5] << 8) | E1000_RAH_AV);
E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
/* Zero out the other 15 receive addresses. */
DEBUGOUT("Clearing RAR[1-15]\n");
for(i = 1; i < E1000_RAR_ENTRIES; i++) {
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
}
}
/******************************************************************************
* Clears the VLAN filer table
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_clear_vfta(struct e1000_hw *hw)
{
uint32_t offset;
for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
}
/******************************************************************************
* Writes a value to one of the devices registers using port I/O (as opposed to
* memory mapped I/O). Only 82544 and newer devices support port I/O. *
* hw - Struct containing variables accessed by shared code
* offset - offset to write to * value - value to write
*****************************************************************************/
void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value){
uint32_t io_addr = hw->io_base;
uint32_t io_data = hw->io_base + 4;
e1000_io_write(hw, io_addr, offset);
e1000_io_write(hw, io_data, value);
}
/******************************************************************************
* Set the phy type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int32_t
e1000_set_phy_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_phy_type");
switch(hw->phy_id) {
case M88E1000_E_PHY_ID:
case M88E1000_I_PHY_ID:
case M88E1011_I_PHY_ID:
hw->phy_type = e1000_phy_m88;
break;
case IGP01E1000_I_PHY_ID:
hw->phy_type = e1000_phy_igp;
break;
default:
/* Should never have loaded on this device */
hw->phy_type = e1000_phy_undefined;
return -E1000_ERR_PHY_TYPE;
}
return E1000_SUCCESS;
}
/******************************************************************************
* IGP phy init script - initializes the GbE PHY
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_phy_init_script(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_phy_init_script");
#if 0
/* See e1000_sw_init() of the Linux driver */
if(hw->phy_init_script) {
#else
if((hw->mac_type == e1000_82541) ||
(hw->mac_type == e1000_82547) ||
(hw->mac_type == e1000_82541_rev_2) ||
(hw->mac_type == e1000_82547_rev_2)) {
#endif
mdelay(20);
e1000_write_phy_reg(hw,0x0000,0x0140);
mdelay(5);
if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) {
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
e1000_write_phy_reg(hw, 0x2010, 0x0008);
} else {
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
}
e1000_write_phy_reg(hw, 0x0000, 0x3300);
if(hw->mac_type == e1000_82547) {
uint16_t fused, fine, coarse;
/* Move to analog registers page */
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
} else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
}
}
}
}
/******************************************************************************
* Set the mac type member in the hw struct.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static int
e1000_set_mac_type(struct e1000_hw *hw)
{
DEBUGFUNC("e1000_set_mac_type");
switch (hw->device_id) {
case E1000_DEV_ID_82542:
switch (hw->revision_id) {
case E1000_82542_2_0_REV_ID:
hw->mac_type = e1000_82542_rev2_0;
break;
case E1000_82542_2_1_REV_ID:
hw->mac_type = e1000_82542_rev2_1;
break;
default:
/* Invalid 82542 revision ID */
return -E1000_ERR_MAC_TYPE;
}
break;
case E1000_DEV_ID_82543GC_FIBER:
case E1000_DEV_ID_82543GC_COPPER:
hw->mac_type = e1000_82543;
break;
case E1000_DEV_ID_82544EI_COPPER:
case E1000_DEV_ID_82544EI_FIBER:
case E1000_DEV_ID_82544GC_COPPER:
case E1000_DEV_ID_82544GC_LOM:
hw->mac_type = e1000_82544;
break;
case E1000_DEV_ID_82540EM:
case E1000_DEV_ID_82540EM_LOM:
case E1000_DEV_ID_82540EP:
case E1000_DEV_ID_82540EP_LOM:
case E1000_DEV_ID_82540EP_LP:
hw->mac_type = e1000_82540;
break;
case E1000_DEV_ID_82545EM_COPPER:
case E1000_DEV_ID_82545EM_FIBER:
hw->mac_type = e1000_82545;
break;
case E1000_DEV_ID_82545GM_COPPER:
case E1000_DEV_ID_82545GM_FIBER:
case E1000_DEV_ID_82545GM_SERDES:
hw->mac_type = e1000_82545_rev_3;
break;
case E1000_DEV_ID_82546EB_COPPER:
case E1000_DEV_ID_82546EB_FIBER:
case E1000_DEV_ID_82546EB_QUAD_COPPER:
hw->mac_type = e1000_82546;
break;
case E1000_DEV_ID_82546GB_COPPER:
case E1000_DEV_ID_82546GB_FIBER:
case E1000_DEV_ID_82546GB_SERDES:
hw->mac_type = e1000_82546_rev_3;
break;
case E1000_DEV_ID_82541EI:
case E1000_DEV_ID_82541EI_MOBILE:
hw->mac_type = e1000_82541;
break;
case E1000_DEV_ID_82541ER:
case E1000_DEV_ID_82541GI:
case E1000_DEV_ID_82541GI_MOBILE:
hw->mac_type = e1000_82541_rev_2;
break;
case E1000_DEV_ID_82547EI:
hw->mac_type = e1000_82547;
break;
case E1000_DEV_ID_82547GI:
hw->mac_type = e1000_82547_rev_2;
break;
default:
/* Should never have loaded on this device */
return -E1000_ERR_MAC_TYPE;
}
return E1000_SUCCESS;
}
/*****************************************************************************
* Set media type and TBI compatibility.
*
* hw - Struct containing variables accessed by shared code
* **************************************************************************/
static void
e1000_set_media_type(struct e1000_hw *hw)
{
uint32_t status;
DEBUGFUNC("e1000_set_media_type");
if(hw->mac_type != e1000_82543) {
/* tbi_compatibility is only valid on 82543 */
hw->tbi_compatibility_en = FALSE;
}
switch (hw->device_id) {
case E1000_DEV_ID_82545GM_SERDES:
case E1000_DEV_ID_82546GB_SERDES:
hw->media_type = e1000_media_type_internal_serdes;
break;
default:
if(hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if(status & E1000_STATUS_TBIMODE) {
hw->media_type = e1000_media_type_fiber;
/* tbi_compatibility not valid on fiber */
hw->tbi_compatibility_en = FALSE;
} else {
hw->media_type = e1000_media_type_copper;
}
} else {
/* This is an 82542 (fiber only) */
hw->media_type = e1000_media_type_fiber;
}
}
}
/******************************************************************************
* Reset the transmit and receive units; mask and clear all interrupts.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_reset_hw(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t ctrl_ext;
uint32_t icr;
uint32_t manc;
DEBUGFUNC("e1000_reset_hw");
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
if(hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Disable the Transmit and Receive units. Then delay to allow
* any pending transactions to complete before we hit the MAC with
* the global reset.
*/
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
E1000_WRITE_FLUSH(hw);
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
hw->tbi_compatibility_on = FALSE;
/* Delay to allow any outstanding PCI transactions to complete before
* resetting the device
*/
mdelay(10);
ctrl = E1000_READ_REG(hw, CTRL);
/* Must reset the PHY before resetting the MAC */
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
mdelay(5);
}
/* Issue a global reset to the MAC. This will reset the chip's
* transmit, receive, DMA, and link units. It will not effect
* the current PCI configuration. The global reset bit is self-
* clearing, and should clear within a microsecond.
*/
DEBUGOUT("Issuing a global reset to MAC\n");
switch(hw->mac_type) {
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82546:
case e1000_82541:
case e1000_82541_rev_2:
/* These controllers can't ack the 64-bit write when issuing the
* reset, so use IO-mapping as a workaround to issue the reset */
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
case e1000_82545_rev_3:
case e1000_82546_rev_3:
/* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
break;
default:
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
break;
}
/* After MAC reset, force reload of EEPROM to restore power-on settings to
* device. Later controllers reload the EEPROM automatically, so just wait
* for reload to complete.
*/
switch(hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
/* Wait for reset to complete */
udelay(10);
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
/* Wait for EEPROM reload */
mdelay(2);
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
/* Wait for EEPROM reload */
mdelay(20);
break;
default:
/* Wait for EEPROM reload (it happens automatically) */
mdelay(5);
break;
}
/* Disable HW ARPs on ASF enabled adapters */
if(hw->mac_type >= e1000_82540) {
manc = E1000_READ_REG(hw, MANC);
manc &= ~(E1000_MANC_ARP_EN);
E1000_WRITE_REG(hw, MANC, manc);
}
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
e1000_phy_init_script(hw);
}
/* Clear interrupt mask to stop board from generating interrupts */
DEBUGOUT("Masking off all interrupts\n");
E1000_WRITE_REG(hw, IMC, 0xffffffff);
/* Clear any pending interrupt events. */
icr = E1000_READ_REG(hw, ICR);
/* If MWI was previously enabled, reenable it. */
if(hw->mac_type == e1000_82542_rev2_0) {
#ifdef LINUX_DRIVER
if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
#endif
e1000_pci_set_mwi(hw);
}
}
/******************************************************************************
* Performs basic configuration of the adapter.
*
* hw - Struct containing variables accessed by shared code
*
* Assumes that the controller has previously been reset and is in a
* post-reset uninitialized state. Initializes the receive address registers,
* multicast table, and VLAN filter table. Calls routines to setup link
* configuration and flow control settings. Clears all on-chip counters. Leaves
* the transmit and receive units disabled and uninitialized.
*****************************************************************************/
static int
e1000_init_hw(struct e1000_hw *hw)
{
uint32_t ctrl, status;
uint32_t i;
int32_t ret_val;
uint16_t pcix_cmd_word;
uint16_t pcix_stat_hi_word;
uint16_t cmd_mmrbc;
uint16_t stat_mmrbc;
e1000_bus_type bus_type = e1000_bus_type_unknown;
DEBUGFUNC("e1000_init_hw");
/* Set the media type and TBI compatibility */
e1000_set_media_type(hw);
/* Disabling VLAN filtering. */
DEBUGOUT("Initializing the IEEE VLAN\n");
E1000_WRITE_REG(hw, VET, 0);
e1000_clear_vfta(hw);
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
if(hw->mac_type == e1000_82542_rev2_0) {
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
e1000_pci_clear_mwi(hw);
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
E1000_WRITE_FLUSH(hw);
mdelay(5);
}
/* Setup the receive address. This involves initializing all of the Receive
* Address Registers (RARs 0 - 15).
*/
e1000_init_rx_addrs(hw);
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
if(hw->mac_type == e1000_82542_rev2_0) {
E1000_WRITE_REG(hw, RCTL, 0);
E1000_WRITE_FLUSH(hw);
mdelay(1);
#ifdef LINUX_DRIVER
if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
#endif
e1000_pci_set_mwi(hw);
}
/* Zero out the Multicast HASH table */
DEBUGOUT("Zeroing the MTA\n");
for(i = 0; i < E1000_MC_TBL_SIZE; i++)
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
#if 0
/* Set the PCI priority bit correctly in the CTRL register. This
* determines if the adapter gives priority to receives, or if it
* gives equal priority to transmits and receives.
*/
if(hw->dma_fairness) {
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
}
#endif
switch(hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
if (hw->mac_type >= e1000_82543) {
/* See e1000_get_bus_info() of the Linux driver */
status = E1000_READ_REG(hw, STATUS);
bus_type = (status & E1000_STATUS_PCIX_MODE) ?
e1000_bus_type_pcix : e1000_bus_type_pci;
}
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
if(bus_type == e1000_bus_type_pcix) {
pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
PCIX_COMMAND_MMRBC_SHIFT;
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
PCIX_STATUS_HI_MMRBC_SHIFT;
if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
if(cmd_mmrbc > stat_mmrbc) {
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, pcix_cmd_word);
}
}
break;
}
/* Call a subroutine to configure the link and setup flow control. */
ret_val = e1000_setup_link(hw);
/* Set the transmit descriptor write-back policy */
if(hw->mac_type > e1000_82544) {
ctrl = E1000_READ_REG(hw, TXDCTL);
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
E1000_WRITE_REG(hw, TXDCTL, ctrl);
}
#if 0
/* Clear all of the statistics registers (clear on read). It is
* important that we do this after we have tried to establish link
* because the symbol error count will increment wildly if there
* is no link.
*/
e1000_clear_hw_cntrs(hw);
#endif
return ret_val;
}
/******************************************************************************
* Adjust SERDES output amplitude based on EEPROM setting.
*
* hw - Struct containing variables accessed by shared code.
*****************************************************************************/
static int32_t
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
{
uint16_t eeprom_data;
int32_t ret_val;
DEBUGFUNC("e1000_adjust_serdes_amplitude");
if(hw->media_type != e1000_media_type_internal_serdes)
return E1000_SUCCESS;
switch(hw->mac_type) {
case e1000_82545_rev_3:
case e1000_82546_rev_3:
break;
default:
return E1000_SUCCESS;
}
if ((ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
&eeprom_data))) {
return ret_val;
}
if(eeprom_data != EEPROM_RESERVED_WORD) {
/* Adjust SERDES output amplitude only. */
eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL,
eeprom_data)))
return ret_val;
}
return E1000_SUCCESS;
}
/******************************************************************************
* Configures flow control and link settings.
*
* hw - Struct containing variables accessed by shared code
*
* Determines which flow control settings to use. Calls the apropriate media-
* specific link configuration function. Configures the flow control settings.
* Assuming the adapter has a valid link partner, a valid link should be
* established. Assumes the hardware has previously been reset and the
* transmitter and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_link(struct e1000_hw *hw)
{
uint32_t ctrl_ext;
int32_t ret_val;
uint16_t eeprom_data;
DEBUGFUNC("e1000_setup_link");
/* Read and store word 0x0F of the EEPROM. This word contains bits
* that determine the hardware's default PAUSE (flow control) mode,
* a bit that determines whether the HW defaults to enabling or
* disabling auto-negotiation, and the direction of the
* SW defined pins. If there is no SW over-ride of the flow
* control setting, then the variable hw->fc will
* be initialized based on a value in the EEPROM.
*/
if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
DEBUGOUT("EEPROM Read Error\n");
return -E1000_ERR_EEPROM;
}
if(hw->fc == e1000_fc_default) {
if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
hw->fc = e1000_fc_none;
else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
EEPROM_WORD0F_ASM_DIR)
hw->fc = e1000_fc_tx_pause;
else
hw->fc = e1000_fc_full;
}
/* We want to save off the original Flow Control configuration just
* in case we get disconnected and then reconnected into a different
* hub or switch with different Flow Control capabilities.
*/
if(hw->mac_type == e1000_82542_rev2_0)
hw->fc &= (~e1000_fc_tx_pause);
#if 0
/* See e1000_sw_init() of the Linux driver */
if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
#else
if((hw->mac_type < e1000_82543) && (hw->mac_type >= e1000_82543))
#endif
hw->fc &= (~e1000_fc_rx_pause);
#if 0
hw->original_fc = hw->fc;
#endif
DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
* polarity value for the SW controlled pins, and setup the
* Extended Device Control reg with that info.
* This is needed because one of the SW controlled pins is used for
* signal detection. So this should be done before e1000_setup_pcs_link()
* or e1000_phy_setup() is called.
*/
if(hw->mac_type == e1000_82543) {
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
SWDPIO__EXT_SHIFT);
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
}
/* Call the necessary subroutine to configure the link. */
ret_val = (hw->media_type == e1000_media_type_copper) ?
e1000_setup_copper_link(hw) :
e1000_setup_fiber_serdes_link(hw);
if (ret_val < 0) {
return ret_val;
}
/* Initialize the flow control address, type, and PAUSE timer
* registers to their default values. This is done even if flow
* control is disabled, because it does not hurt anything to
* initialize these registers.
*/
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
#if 0
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
#else
E1000_WRITE_REG(hw, FCTTV, FC_DEFAULT_TX_TIMER);
#endif
/* Set the flow control receive threshold registers. Normally,
* these registers will be set to a default threshold that may be
* adjusted later by the driver's runtime code. However, if the
* ability to transmit pause frames in not enabled, then these
* registers will be set to 0.
*/
if(!(hw->fc & e1000_fc_tx_pause)) {
E1000_WRITE_REG(hw, FCRTL, 0);
E1000_WRITE_REG(hw, FCRTH, 0);
} else {
/* We need to set up the Receive Threshold high and low water marks
* as well as (optionally) enabling the transmission of XON frames.
*/
#if 0
if(hw->fc_send_xon) {
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
} else {
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
}
#else
E1000_WRITE_REG(hw, FCRTL, (FC_DEFAULT_LO_THRESH | E1000_FCRTL_XONE));
E1000_WRITE_REG(hw, FCRTH, FC_DEFAULT_HI_THRESH);
#endif
}
return ret_val;
}
/******************************************************************************
* Sets up link for a fiber based or serdes based adapter
*
* hw - Struct containing variables accessed by shared code
*
* Manipulates Physical Coding Sublayer functions in order to configure
* link. Assumes the hardware has been previously reset and the transmitter
* and receiver are not enabled.
*****************************************************************************/
static int
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
{
uint32_t ctrl;
uint32_t status;
uint32_t txcw = 0;
uint32_t i;
uint32_t signal = 0;
int32_t ret_val;
DEBUGFUNC("e1000_setup_fiber_serdes_link");
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
* If we're on serdes media, adjust the output amplitude to value set in
* the EEPROM.
*/
ctrl = E1000_READ_REG(hw, CTRL);
if(hw->media_type == e1000_media_type_fiber)
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
if((ret_val = e1000_adjust_serdes_amplitude(hw)))
return ret_val;
/* Take the link out of reset */
ctrl &= ~(E1000_CTRL_LRST);
#if 0
/* Adjust VCO speed to improve BER performance */
if((ret_val = e1000_set_vco_speed(hw)))
return ret_val;
#endif
e1000_config_collision_dist(hw);
/* Check for a software override of the flow control settings, and setup
* the device accordingly. If auto-negotiation is enabled, then software
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
* auto-negotiation is disabled, then software will have to manually
* configure the two flow control enable bits in the CTRL register.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames, but
* not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames but we do
* not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
*/
switch (hw->fc) {
case e1000_fc_none:
/* Flow control is completely disabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled and TX Flow control is disabled by a
* software over-ride. Since there really isn't a way to advertise
* that we are capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later, we will
* disable the adapter's ability to send PAUSE frames.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is disabled, by a
* software over-ride.
*/
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software over-ride. */
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
break;
}
/* Since auto-negotiation is enabled, take the link out of reset (the link
* will be in reset, because we previously reset the chip). This will
* restart auto-negotiation. If auto-neogtiation is successful then the
* link-up status bit will be set and the flow control enable bits (RFCE
* and TFCE) will be set according to their negotiated value.
*/
DEBUGOUT("Auto-negotiation enabled\n");
E1000_WRITE_REG(hw, TXCW, txcw);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
hw->txcw = txcw;
mdelay(1);
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
* indication in the Device Status Register. Time-out if a link isn't
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
* less than 500 milliseconds even if the other end is doing it in SW).
* For internal serdes, we just assume a signal is present, then poll.
*/
if(hw->media_type == e1000_media_type_internal_serdes ||
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
DEBUGOUT("Looking for Link\n");
for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
mdelay(10);
status = E1000_READ_REG(hw, STATUS);
if(status & E1000_STATUS_LU) break;
}
if(i == (LINK_UP_TIMEOUT / 10)) {
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
hw->autoneg_failed = 1;
/* AutoNeg failed to achieve a link, so we'll call
* e1000_check_for_link. This routine will force the link up if
* we detect a signal. This will allow us to communicate with
* non-autonegotiating link partners.
*/
if((ret_val = e1000_check_for_link(hw))) {
DEBUGOUT("Error while checking for link\n");
return ret_val;
}
hw->autoneg_failed = 0;
} else {
hw->autoneg_failed = 0;
DEBUGOUT("Valid Link Found\n");
}
} else {
DEBUGOUT("No Signal Detected\n");
}
return E1000_SUCCESS;
}
/******************************************************************************
* Detects which PHY is present and the speed and duplex
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_setup_copper_link(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
DEBUGFUNC("e1000_setup_copper_link");
ctrl = E1000_READ_REG(hw, CTRL);
/* With 82543, we need to force speed and duplex on the MAC equal to what
* the PHY speed and duplex configuration is. In addition, we need to
* perform a hardware reset on the PHY to take it out of reset.
*/
if(hw->mac_type > e1000_82543) {
ctrl |= E1000_CTRL_SLU;
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
E1000_WRITE_REG(hw, CTRL, ctrl);
} else {
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
E1000_WRITE_REG(hw, CTRL, ctrl);
e1000_phy_hw_reset(hw);
}
/* Make sure we have a valid PHY */
if((ret_val = e1000_detect_gig_phy(hw))) {
DEBUGOUT("Error, did not detect valid phy.\n");
return ret_val;
}
DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
if(hw->mac_type <= e1000_82543 ||
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
#if 0
hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
hw->phy_reset_disable = FALSE;
if(!hw->phy_reset_disable) {
#else
hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
#endif
if (hw->phy_type == e1000_phy_igp) {
if((ret_val = e1000_phy_reset(hw))) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
}
/* Wait 10ms for MAC to configure PHY from eeprom settings */
mdelay(15);
#if 0
/* disable lplu d3 during driver init */
if((ret_val = e1000_set_d3_lplu_state(hw, FALSE))) {
DEBUGOUT("Error Disabling LPLU D3\n");
return ret_val;
}
/* Configure mdi-mdix settings */
if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
&phy_data)))
return ret_val;
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
hw->dsp_config_state = e1000_dsp_config_disabled;
/* Force MDI for IGP B-0 PHY */
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
IGP01E1000_PSCR_FORCE_MDI_MDIX);
hw->mdix = 1;
} else {
hw->dsp_config_state = e1000_dsp_config_enabled;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (hw->mdix) {
case 1:
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
}
if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
phy_data)))
return ret_val;
/* set auto-master slave resolution settings */
e1000_ms_type phy_ms_setting = hw->master_slave;
if(hw->ffe_config_state == e1000_ffe_config_active)
hw->ffe_config_state = e1000_ffe_config_enabled;
if(hw->dsp_config_state == e1000_dsp_config_activated)
hw->dsp_config_state = e1000_dsp_config_enabled;
#endif
/* when autonegotiation advertisment is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default. */
if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
if((ret_val = e1000_read_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&phy_data)))
return ret_val;
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
if((ret_val = e1000_write_phy_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
phy_data)))
return ret_val;
/* Set auto Master/Slave resolution process */
if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&phy_data)))
return ret_val;
phy_data &= ~CR_1000T_MS_ENABLE;
if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_data)))
return ret_val;
}
if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
&phy_data)))
return ret_val;
#if 0
/* load defaults for future use */
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy_ms_setting) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
#endif
if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
phy_data)))
return ret_val;
} else {
/* Enable CRS on TX. This must be set for half-duplex operation. */
if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
&phy_data)))
return ret_val;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
#if 0
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (hw->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
#endif
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
#if 0
break;
}
#endif
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
phy_data)))
return ret_val;
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
if((ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
&phy_data)))
return ret_val;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
#ifdef LINUX_DRIVER
if (hw->phy_revision < M88E1011_I_REV_4) {
#endif
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
if((ret_val = e1000_write_phy_reg(hw,
M88E1000_EXT_PHY_SPEC_CTRL,
phy_data)))
return ret_val;
}
/* SW Reset the PHY so all changes take effect */
if((ret_val = e1000_phy_reset(hw))) {
DEBUGOUT("Error Resetting the PHY\n");
return ret_val;
#ifdef LINUX_DRIVER
}
#endif
}
/* Options:
* autoneg = 1 (default)
* PHY will advertise value(s) parsed from
* autoneg_advertised and fc
* autoneg = 0
* PHY will be set to 10H, 10F, 100H, or 100F
* depending on value parsed from forced_speed_duplex.
*/
/* Is autoneg enabled? This is enabled by default or by software
* override. If so, call e1000_phy_setup_autoneg routine to parse the
* autoneg_advertised and fc options. If autoneg is NOT enabled, then
* the user should have provided a speed/duplex override. If so, then
* call e1000_phy_force_speed_duplex to parse and set this up.
*/
/* Perform some bounds checking on the hw->autoneg_advertised
* parameter. If this variable is zero, then set it to the default.
*/
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if(hw->autoneg_advertised == 0)
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
if((ret_val = e1000_phy_setup_autoneg(hw))) {
DEBUGOUT("Error Setting up Auto-Negotiation\n");
return ret_val;
}
DEBUGOUT("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
return ret_val;
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
return ret_val;
#if 0
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if(hw->wait_autoneg_complete) {
if((ret_val = e1000_wait_autoneg(hw))) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
}
#else
/* If we do not wait for autonegotiation to complete I
* do not see a valid link status.
*/
if((ret_val = e1000_wait_autoneg(hw))) {
DEBUGOUT("Error while waiting for autoneg to complete\n");
return ret_val;
}
#endif
} /* !hw->phy_reset_disable */
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
for(i = 0; i < 10; i++) {
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
return ret_val;
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
return ret_val;
if(phy_data & MII_SR_LINK_STATUS) {
/* We have link, so we need to finish the config process:
* 1) Set up the MAC to the current PHY speed/duplex
* if we are on 82543. If we
* are on newer silicon, we only need to configure
* collision distance in the Transmit Control Register.
* 2) Set up flow control on the MAC to that established with
* the link partner.
*/
if(hw->mac_type >= e1000_82544) {
e1000_config_collision_dist(hw);
} else {
if((ret_val = e1000_config_mac_to_phy(hw))) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
if((ret_val = e1000_config_fc_after_link_up(hw))) {
DEBUGOUT("Error Configuring Flow Control\n");
return ret_val;
}
#if 0
if(hw->phy_type == e1000_phy_igp) {
if((ret_val = e1000_config_dsp_after_link_change(hw, TRUE))) {
DEBUGOUT("Error Configuring DSP after link up\n");
return ret_val;
}
}
#endif
DEBUGOUT("Valid link established!!!\n");
return E1000_SUCCESS;
}
udelay(10);
}
DEBUGOUT("Unable to establish link!!!\n");
return -E1000_ERR_NOLINK;
}
/******************************************************************************
* Configures PHY autoneg and flow control advertisement settings
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_phy_setup_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_autoneg_adv_reg;
uint16_t mii_1000t_ctrl_reg;
DEBUGFUNC("e1000_phy_setup_autoneg");
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_autoneg_adv_reg)))
return ret_val;
/* Read the MII 1000Base-T Control Register (Address 9). */
if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg)))
return ret_val;
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
DEBUGOUT("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
DEBUGOUT("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
DEBUGOUT("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
DEBUGOUT("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
}
/* Do we want to advertise 1000 Mb Full Duplex? */
if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
DEBUGOUT("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc) {
case e1000_fc_none: /* 0 */
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause: /* 1 */
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*/
/* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
*hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause: /* 2 */
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full: /* 3 */
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
if((ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV,
mii_autoneg_adv_reg)))
return ret_val;
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg)))
return ret_val;
return E1000_SUCCESS;
}
/******************************************************************************
* Sets the collision distance in the Transmit Control register
*
* hw - Struct containing variables accessed by shared code
*
* Link should have been established previously. Reads the speed and duplex
* information from the Device Status register.
******************************************************************************/
static void
e1000_config_collision_dist(struct e1000_hw *hw)
{
uint32_t tctl;
tctl = E1000_READ_REG(hw, TCTL);
tctl &= ~E1000_TCTL_COLD;
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
E1000_WRITE_REG(hw, TCTL, tctl);
E1000_WRITE_FLUSH(hw);
}
/******************************************************************************
* Sets MAC speed and duplex settings to reflect the those in the PHY
*
* hw - Struct containing variables accessed by shared code
* mii_reg - data to write to the MII control register
*
* The contents of the PHY register containing the needed information need to
* be passed in.
******************************************************************************/
static int
e1000_config_mac_to_phy(struct e1000_hw *hw)
{
uint32_t ctrl;
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_config_mac_to_phy");
/* Read the Device Control Register and set the bits to Force Speed
* and Duplex.
*/
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
/* Set up duplex in the Device Control and Transmit Control
* registers depending on negotiated values.
*/
if (hw->phy_type == e1000_phy_igp) {
if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
&phy_data)))
return ret_val;
if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
else ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS)
ctrl |= E1000_CTRL_SPD_1000;
else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_100MBPS)
ctrl |= E1000_CTRL_SPD_100;
} else {
if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
&phy_data)))
return ret_val;
if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
else ctrl &= ~E1000_CTRL_FD;
e1000_config_collision_dist(hw);
/* Set up speed in the Device Control register depending on
* negotiated values.
*/
if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
ctrl |= E1000_CTRL_SPD_1000;
else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
ctrl |= E1000_CTRL_SPD_100;
}
/* Write the configured values back to the Device Control Reg. */
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
}
/******************************************************************************
* Forces the MAC's flow control settings.
*
* hw - Struct containing variables accessed by shared code
*
* Sets the TFCE and RFCE bits in the device control register to reflect
* the adapter settings. TFCE and RFCE need to be explicitly set by
* software when a Copper PHY is used because autonegotiation is managed
* by the PHY rather than the MAC. Software must also configure these
* bits when link is forced on a fiber connection.
*****************************************************************************/
static int
e1000_force_mac_fc(struct e1000_hw *hw)
{
uint32_t ctrl;
DEBUGFUNC("e1000_force_mac_fc");
/* Get the current configuration of the Device Control Register */
ctrl = E1000_READ_REG(hw, CTRL);
/* Because we didn't get link via the internal auto-negotiation
* mechanism (we either forced link or we got link via PHY
* auto-neg), we have to manually enable/disable transmit an
* receive flow control.
*
* The "Case" statement below enables/disable flow control
* according to the "hw->fc" parameter.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause
* frames but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* frames but we do not receive pause frames).
* 3: Both Rx and TX flow control (symmetric) is enabled.
* other: No other values should be possible at this point.
*/
switch (hw->fc) {
case e1000_fc_none:
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
break;
case e1000_fc_rx_pause:
ctrl &= (~E1000_CTRL_TFCE);
ctrl |= E1000_CTRL_RFCE;
break;
case e1000_fc_tx_pause:
ctrl &= (~E1000_CTRL_RFCE);
ctrl |= E1000_CTRL_TFCE;
break;
case e1000_fc_full:
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
break;
default:
DEBUGOUT("Flow control param set incorrectly\n");
return -E1000_ERR_CONFIG;
}
/* Disable TX Flow Control for 82542 (rev 2.0) */
if(hw->mac_type == e1000_82542_rev2_0)
ctrl &= (~E1000_CTRL_TFCE);
E1000_WRITE_REG(hw, CTRL, ctrl);
return E1000_SUCCESS;
}
/******************************************************************************
* Configures flow control settings after link is established
*
* hw - Struct containing variables accessed by shared code
*
* Should be called immediately after a valid link has been established.
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
* and autonegotiation is enabled, the MAC flow control settings will be set
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
*****************************************************************************/
static int
e1000_config_fc_after_link_up(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t mii_status_reg;
uint16_t mii_nway_adv_reg;
uint16_t mii_nway_lp_ability_reg;
uint16_t speed;
uint16_t duplex;
DEBUGFUNC("e1000_config_fc_after_link_up");
/* Check for the case where we have fiber media and auto-neg failed
* so we had to force link. In this case, we need to force the
* configuration of the MAC to match the "fc" parameter.
*/
if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed))) {
if((ret_val = e1000_force_mac_fc(hw))) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
}
/* Check for the case where we have copper media and auto-neg is
* enabled. In this case, we need to check and see if Auto-Neg
* has completed, and if so, how the PHY and link partner has
* flow control configured.
*/
if(hw->media_type == e1000_media_type_copper) {
/* Read the MII Status Register and check to see if AutoNeg
* has completed. We read this twice because this reg has
* some "sticky" (latched) bits.
*/
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
return ret_val;
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
return ret_val;
if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
/* The AutoNeg process has completed, so we now need to
* read both the Auto Negotiation Advertisement Register
* (Address 4) and the Auto_Negotiation Base Page Ability
* Register (Address 5) to determine how flow control was
* negotiated.
*/
if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
&mii_nway_adv_reg)))
return ret_val;
if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
&mii_nway_lp_ability_reg)))
return ret_val;
/* Two bits in the Auto Negotiation Advertisement Register
* (Address 4) and two bits in the Auto Negotiation Base
* Page Ability Register (Address 5) determine flow control
* for both the PHY and the link partner. The following
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
* 1999, describes these PAUSE resolution bits and how flow
* control is determined based upon these settings.
* NOTE: DC = Don't Care
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
*-------|---------|-------|---------|--------------------
* 0 | 0 | DC | DC | e1000_fc_none
* 0 | 1 | 0 | DC | e1000_fc_none
* 0 | 1 | 1 | 0 | e1000_fc_none
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
* 1 | 0 | 0 | DC | e1000_fc_none
* 1 | DC | 1 | DC | e1000_fc_full
* 1 | 1 | 0 | 0 | e1000_fc_none
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
/* Are both PAUSE bits set to 1? If so, this implies
* Symmetric Flow Control is enabled at both ends. The
* ASM_DIR bits are irrelevant per the spec.
*
* For Symmetric Flow Control:
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | DC | 1 | DC | e1000_fc_full
*
*/
if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
/* Now we need to check if the user selected RX ONLY
* of pause frames. In this case, we had to advertise
* FULL flow control because we could not advertise RX
* ONLY. Hence, we must now check to see if we need to
* turn OFF the TRANSMISSION of PAUSE frames.
*/
#if 0
if(hw->original_fc == e1000_fc_full) {
hw->fc = e1000_fc_full;
#else
if(hw->fc == e1000_fc_full) {
#endif
DEBUGOUT("Flow Control = FULL.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
}
}
/* For receiving PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
*
*/
else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = e1000_fc_tx_pause;
DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
}
/* For transmitting PAUSE frames ONLY.
*
* LOCAL DEVICE | LINK PARTNER
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
*-------|---------|-------|---------|--------------------
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
*
*/
else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
}
/* Per the IEEE spec, at this point flow control should be
* disabled. However, we want to consider that we could
* be connected to a legacy switch that doesn't advertise
* desired flow control, but can be forced on the link
* partner. So if we advertised no flow control, that is
* what we will resolve to. If we advertised some kind of
* receive capability (Rx Pause Only or Full Flow Control)
* and the link partner advertised none, we will configure
* ourselves to enable Rx Flow Control only. We can do
* this safely for two reasons: If the link partner really
* didn't want flow control enabled, and we enable Rx, no
* harm done since we won't be receiving any PAUSE frames
* anyway. If the intent on the link partner was to have
* flow control enabled, then by us enabling RX only, we
* can at least receive pause frames and process them.
* This is a good idea because in most cases, since we are
* predominantly a server NIC, more times than not we will
* be asked to delay transmission of packets than asking
* our link partner to pause transmission of frames.
*/
#if 0
else if(hw->original_fc == e1000_fc_none ||
hw->original_fc == e1000_fc_tx_pause) {
#else
else if(hw->fc == e1000_fc_none)
DEBUGOUT("Flow Control = NONE.\r\n");
else if(hw->fc == e1000_fc_tx_pause) {
#endif
hw->fc = e1000_fc_none;
DEBUGOUT("Flow Control = NONE.\r\n");
} else {
hw->fc = e1000_fc_rx_pause;
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
}
/* Now we need to do one last check... If we auto-
* negotiated to HALF DUPLEX, flow control should not be
* enabled per IEEE 802.3 spec.
*/
e1000_get_speed_and_duplex(hw, &speed, &duplex);
if(duplex == HALF_DUPLEX)
hw->fc = e1000_fc_none;
/* Now we call a subroutine to actually force the MAC
* controller to use the correct flow control settings.
*/
if((ret_val = e1000_force_mac_fc(hw))) {
DEBUGOUT("Error forcing flow control settings\n");
return ret_val;
}
} else {
DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
}
}
return E1000_SUCCESS;
}
/******************************************************************************
* Checks to see if the link status of the hardware has changed.
*
* hw - Struct containing variables accessed by shared code
*
* Called by any function that needs to check the link status of the adapter.
*****************************************************************************/
static int
e1000_check_for_link(struct e1000_hw *hw)
{
uint32_t rxcw;
uint32_t ctrl;
uint32_t status;
uint32_t rctl;
uint32_t signal = 0;
int32_t ret_val;
uint16_t phy_data;
uint16_t lp_capability;
DEBUGFUNC("e1000_check_for_link");
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
* set when the optics detect a signal. On older adapters, it will be
* cleared when there is a signal. This applies to fiber media only.
*/
if(hw->media_type == e1000_media_type_fiber)
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
ctrl = E1000_READ_REG(hw, CTRL);
status = E1000_READ_REG(hw, STATUS);
rxcw = E1000_READ_REG(hw, RXCW);
/* If we have a copper PHY then we only want to go out to the PHY
* registers to see if Auto-Neg has completed and/or if our link
* status has changed. The get_link_status flag will be set if we
* receive a Link Status Change interrupt or we have Rx Sequence
* Errors.
*/
#if 0
if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
#else
if(hw->media_type == e1000_media_type_copper) {
#endif
/* First we want to see if the MII Status Register reports
* link. If so, then we want to get the current speed/duplex
* of the PHY.
* Read the register twice since the link bit is sticky.
*/
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
return ret_val;
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
return ret_val;
if(phy_data & MII_SR_LINK_STATUS) {
#if 0
hw->get_link_status = FALSE;
#endif
} else {
/* No link detected */
return -E1000_ERR_NOLINK;
}
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
* have Si on board that is 82544 or newer, Auto
* Speed Detection takes care of MAC speed/duplex
* configuration. So we only need to configure Collision
* Distance in the MAC. Otherwise, we need to force
* speed/duplex on the MAC to the current PHY speed/duplex
* settings.
*/
if(hw->mac_type >= e1000_82544)
e1000_config_collision_dist(hw);
else {
if((ret_val = e1000_config_mac_to_phy(hw))) {
DEBUGOUT("Error configuring MAC to PHY settings\n");
return ret_val;
}
}
/* Configure Flow Control now that Auto-Neg has completed. First, we
* need to restore the desired flow control settings because we may
* have had to re-autoneg with a different link partner.
*/
if((ret_val = e1000_config_fc_after_link_up(hw))) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
/* At this point we know that we are on copper and we have
* auto-negotiated link. These are conditions for checking the link
* parter capability register. We use the link partner capability to
* determine if TBI Compatibility needs to be turned on or off. If
* the link partner advertises any speed in addition to Gigabit, then
* we assume that they are GMII-based, and TBI compatibility is not
* needed. If no other speeds are advertised, we assume the link
* partner is TBI-based, and we turn on TBI Compatibility.
*/
if(hw->tbi_compatibility_en) {
if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
&lp_capability)))
return ret_val;
if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
NWAY_LPAR_10T_FD_CAPS |
NWAY_LPAR_100TX_HD_CAPS |
NWAY_LPAR_100TX_FD_CAPS |
NWAY_LPAR_100T4_CAPS)) {
/* If our link partner advertises anything in addition to
* gigabit, we do not need to enable TBI compatibility.
*/
if(hw->tbi_compatibility_on) {
/* If we previously were in the mode, turn it off. */
rctl = E1000_READ_REG(hw, RCTL);
rctl &= ~E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
hw->tbi_compatibility_on = FALSE;
}
} else {
/* If TBI compatibility is was previously off, turn it on. For
* compatibility with a TBI link partner, we will store bad
* packets. Some frames have an additional byte on the end and
* will look like CRC errors to to the hardware.
*/
if(!hw->tbi_compatibility_on) {
hw->tbi_compatibility_on = TRUE;
rctl = E1000_READ_REG(hw, RCTL);
rctl |= E1000_RCTL_SBP;
E1000_WRITE_REG(hw, RCTL, rctl);
}
}
}
}
/* If we don't have link (auto-negotiation failed or link partner cannot
* auto-negotiate), the cable is plugged in (we have signal), and our
* link partner is not trying to auto-negotiate with us (we are receiving
* idles or data), we need to force link up. We also need to give
* auto-negotiation time to complete, in case the cable was just plugged
* in. The autoneg_failed flag does this.
*/
else if((((hw->media_type == e1000_media_type_fiber) &&
((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
(hw->media_type == e1000_media_type_internal_serdes)) &&
(!(status & E1000_STATUS_LU)) &&
(!(rxcw & E1000_RXCW_C))) {
if(hw->autoneg_failed == 0) {
hw->autoneg_failed = 1;
return 0;
}
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
/* Disable auto-negotiation in the TXCW register */
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
/* Force link-up and also force full-duplex. */
ctrl = E1000_READ_REG(hw, CTRL);
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
E1000_WRITE_REG(hw, CTRL, ctrl);
/* Configure Flow Control after forcing link up. */
if((ret_val = e1000_config_fc_after_link_up(hw))) {
DEBUGOUT("Error configuring flow control\n");
return ret_val;
}
}
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
* auto-negotiation in the TXCW register and disable forced link in the
* Device Control register in an attempt to auto-negotiate with our link
* partner.
*/
else if(((hw->media_type == e1000_media_type_fiber) ||
(hw->media_type == e1000_media_type_internal_serdes)) &&
(ctrl & E1000_CTRL_SLU) &&
(rxcw & E1000_RXCW_C)) {
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
E1000_WRITE_REG(hw, TXCW, hw->txcw);
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
}
#if 0
/* If we force link for non-auto-negotiation switch, check link status
* based on MAC synchronization for internal serdes media type.
*/
else if((hw->media_type == e1000_media_type_internal_serdes) &&
!(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
/* SYNCH bit and IV bit are sticky. */
udelay(10);
if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
if(!(rxcw & E1000_RXCW_IV)) {
hw->serdes_link_down = FALSE;
DEBUGOUT("SERDES: Link is up.\n");
}
} else {
hw->serdes_link_down = TRUE;
DEBUGOUT("SERDES: Link is down.\n");
}
}
#endif
return E1000_SUCCESS;
}
/******************************************************************************
* Detects the current speed and duplex settings of the hardware.
*
* hw - Struct containing variables accessed by shared code
* speed - Speed of the connection
* duplex - Duplex setting of the connection
*****************************************************************************/
static void
e1000_get_speed_and_duplex(struct e1000_hw *hw,
uint16_t *speed,
uint16_t *duplex)
{
uint32_t status;
DEBUGFUNC("e1000_get_speed_and_duplex");
if(hw->mac_type >= e1000_82543) {
status = E1000_READ_REG(hw, STATUS);
if(status & E1000_STATUS_SPEED_1000) {
*speed = SPEED_1000;
DEBUGOUT("1000 Mbs, ");
} else if(status & E1000_STATUS_SPEED_100) {
*speed = SPEED_100;
DEBUGOUT("100 Mbs, ");
} else {
*speed = SPEED_10;
DEBUGOUT("10 Mbs, ");
}
if(status & E1000_STATUS_FD) {
*duplex = FULL_DUPLEX;
DEBUGOUT("Full Duplex\r\n");
} else {
*duplex = HALF_DUPLEX;
DEBUGOUT(" Half Duplex\r\n");
}
} else {
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
*speed = SPEED_1000;
*duplex = FULL_DUPLEX;
}
}
/******************************************************************************
* Blocks until autoneg completes or times out (~4.5 seconds)
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_wait_autoneg(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t i;
uint16_t phy_data;
DEBUGFUNC("e1000_wait_autoneg");
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
/* Read the MII Status Register and wait for Auto-Neg
* Complete bit to be set.
*/
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
return ret_val;
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
return ret_val;
if(phy_data & MII_SR_AUTONEG_COMPLETE) {
DEBUGOUT("Auto-Neg complete.\n");
return E1000_SUCCESS;
}
mdelay(100);
}
DEBUGOUT("Auto-Neg timedout.\n");
return -E1000_ERR_TIMEOUT;
}
/******************************************************************************
* Raises the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_raise_mdi_clk(struct e1000_hw *hw,
uint32_t *ctrl)
{
/* Raise the clock input to the Management Data Clock (by setting the MDC
* bit), and then delay 10 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(10);
}
/******************************************************************************
* Lowers the Management Data Clock
*
* hw - Struct containing variables accessed by shared code
* ctrl - Device control register's current value
******************************************************************************/
static void
e1000_lower_mdi_clk(struct e1000_hw *hw,
uint32_t *ctrl)
{
/* Lower the clock input to the Management Data Clock (by clearing the MDC
* bit), and then delay 10 microseconds.
*/
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
E1000_WRITE_FLUSH(hw);
udelay(10);
}
/******************************************************************************
* Shifts data bits out to the PHY
*
* hw - Struct containing variables accessed by shared code
* data - Data to send out to the PHY
* count - Number of bits to shift out
*
* Bits are shifted out in MSB to LSB order.
******************************************************************************/
static void
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
uint32_t data,
uint16_t count)
{
uint32_t ctrl;
uint32_t mask;
/* We need to shift "count" number of bits out to the PHY. So, the value
* in the "data" parameter will be shifted out to the PHY one bit at a
* time. In order to do this, "data" must be broken down into bits.
*/
mask = 0x01;
mask <<= (count - 1);
ctrl = E1000_READ_REG(hw, CTRL);
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
while(mask) {
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
* then raising and lowering the Management Data Clock. A "0" is
* shifted out to the PHY by setting the MDIO bit to "0" and then
* raising and lowering the clock.
*/
if(data & mask) ctrl |= E1000_CTRL_MDIO;
else ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
udelay(10);
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
mask = mask >> 1;
}
}
/******************************************************************************
* Shifts data bits in from the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Bits are shifted in in MSB to LSB order.
******************************************************************************/
static uint16_t
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
{
uint32_t ctrl;
uint16_t data = 0;
uint8_t i;
/* In order to read a register from the PHY, we need to shift in a total
* of 18 bits from the PHY. The first two bit (turnaround) times are used
* to avoid contention on the MDIO pin when a read operation is performed.
* These two bits are ignored by us and thrown away. Bits are "shifted in"
* by raising the input to the Management Data Clock (setting the MDC bit),
* and then reading the value of the MDIO bit.
*/
ctrl = E1000_READ_REG(hw, CTRL);
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
ctrl &= ~E1000_CTRL_MDIO_DIR;
ctrl &= ~E1000_CTRL_MDIO;
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
/* Raise and Lower the clock before reading in the data. This accounts for
* the turnaround bits. The first clock occurred when we clocked out the
* last bit of the Register Address.
*/
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
for(data = 0, i = 0; i < 16; i++) {
data = data << 1;
e1000_raise_mdi_clk(hw, &ctrl);
ctrl = E1000_READ_REG(hw, CTRL);
/* Check to see if we shifted in a "1". */
if(ctrl & E1000_CTRL_MDIO) data |= 1;
e1000_lower_mdi_clk(hw, &ctrl);
}
e1000_raise_mdi_clk(hw, &ctrl);
e1000_lower_mdi_clk(hw, &ctrl);
return data;
}
/*****************************************************************************
* Reads the value from a PHY register, if the value is on a specific non zero
* page, sets the page first.
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to read
******************************************************************************/
static int
e1000_read_phy_reg(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t *phy_data)
{
uint32_t ret_val;
DEBUGFUNC("e1000_read_phy_reg");
if(hw->phy_type == e1000_phy_igp &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr)))
return ret_val;
}
ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
phy_data);
return ret_val;
}
static int
e1000_read_phy_reg_ex(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t *phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
DEBUGFUNC("e1000_read_phy_reg_ex");
if(reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if(hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, and register address in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for(i = 0; i < 64; i++) {
udelay(50);
mdic = E1000_READ_REG(hw, MDIC);
if(mdic & E1000_MDIC_READY) break;
}
if(!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Read did not complete\n");
return -E1000_ERR_PHY;
}
if(mdic & E1000_MDIC_ERROR) {
DEBUGOUT("MDI Error\n");
return -E1000_ERR_PHY;
}
*phy_data = (uint16_t) mdic;
} else {
/* We must first send a preamble through the MDIO pin to signal the
* beginning of an MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the next few fields that are required for a read
* operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine five different times. The format of
* a MII read instruction consists of a shift out of 14 bits and is
* defined as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
* followed by a shift in of 18 bits. This first two bits shifted in
* are TurnAround bits used to avoid contention on the MDIO pin when a
* READ operation is performed. These two bits are thrown away
* followed by a shift in of 16 bits which contains the desired data.
*/
mdic = ((reg_addr) | (phy_addr << 5) |
(PHY_OP_READ << 10) | (PHY_SOF << 12));
e1000_shift_out_mdi_bits(hw, mdic, 14);
/* Now that we've shifted out the read command to the MII, we need to
* "shift in" the 16-bit value (18 total bits) of the requested PHY
* register address.
*/
*phy_data = e1000_shift_in_mdi_bits(hw);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Writes a value to a PHY register
*
* hw - Struct containing variables accessed by shared code
* reg_addr - address of the PHY register to write
* data - data to write to the PHY
******************************************************************************/
static int
e1000_write_phy_reg(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t phy_data)
{
uint32_t ret_val;
DEBUGFUNC("e1000_write_phy_reg");
if(hw->phy_type == e1000_phy_igp &&
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
(uint16_t)reg_addr)))
return ret_val;
}
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
phy_data);
return ret_val;
}
static int
e1000_write_phy_reg_ex(struct e1000_hw *hw,
uint32_t reg_addr,
uint16_t phy_data)
{
uint32_t i;
uint32_t mdic = 0;
const uint32_t phy_addr = 1;
DEBUGFUNC("e1000_write_phy_reg_ex");
if(reg_addr > MAX_PHY_REG_ADDRESS) {
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
return -E1000_ERR_PARAM;
}
if(hw->mac_type > e1000_82543) {
/* Set up Op-code, Phy Address, register address, and data intended
* for the PHY register in the MDI Control register. The MAC will take
* care of interfacing with the PHY to send the desired data.
*/
mdic = (((uint32_t) phy_data) |
(reg_addr << E1000_MDIC_REG_SHIFT) |
(phy_addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
E1000_WRITE_REG(hw, MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed */
for(i = 0; i < 640; i++) {
udelay(5);
mdic = E1000_READ_REG(hw, MDIC);
if(mdic & E1000_MDIC_READY) break;
}
if(!(mdic & E1000_MDIC_READY)) {
DEBUGOUT("MDI Write did not complete\n");
return -E1000_ERR_PHY;
}
} else {
/* We'll need to use the SW defined pins to shift the write command
* out to the PHY. We first send a preamble to the PHY to signal the
* beginning of the MII instruction. This is done by sending 32
* consecutive "1" bits.
*/
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
/* Now combine the remaining required fields that will indicate a
* write operation. We use this method instead of calling the
* e1000_shift_out_mdi_bits routine for each field in the command. The
* format of a MII write instruction is as follows:
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
*/
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
mdic <<= 16;
mdic |= (uint32_t) phy_data;
e1000_shift_out_mdi_bits(hw, mdic, 32);
}
return E1000_SUCCESS;
}
/******************************************************************************
* Returns the PHY to the power-on reset state
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static void
e1000_phy_hw_reset(struct e1000_hw *hw)
{
uint32_t ctrl, ctrl_ext;
DEBUGFUNC("e1000_phy_hw_reset");
DEBUGOUT("Resetting Phy...\n");
if(hw->mac_type > e1000_82543) {
/* Read the device control register and assert the E1000_CTRL_PHY_RST
* bit. Then, take it out of reset.
*/
ctrl = E1000_READ_REG(hw, CTRL);
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
E1000_WRITE_FLUSH(hw);
mdelay(10);
E1000_WRITE_REG(hw, CTRL, ctrl);
E1000_WRITE_FLUSH(hw);
} else {
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
* bit to put the PHY into reset. Then, take it out of reset.
*/
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
mdelay(10);
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
E1000_WRITE_FLUSH(hw);
}
udelay(150);
}
/******************************************************************************
* Resets the PHY
*
* hw - Struct containing variables accessed by shared code
*
* Sets bit 15 of the MII Control regiser
******************************************************************************/
static int
e1000_phy_reset(struct e1000_hw *hw)
{
int32_t ret_val;
uint16_t phy_data;
DEBUGFUNC("e1000_phy_reset");
if(hw->mac_type != e1000_82541_rev_2) {
if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
return ret_val;
phy_data |= MII_CR_RESET;
if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
return ret_val;
udelay(1);
} else e1000_phy_hw_reset(hw);
if(hw->phy_type == e1000_phy_igp)
e1000_phy_init_script(hw);
return E1000_SUCCESS;
}
/******************************************************************************
* Probes the expected PHY address for known PHY IDs
*
* hw - Struct containing variables accessed by shared code
******************************************************************************/
static int
e1000_detect_gig_phy(struct e1000_hw *hw)
{
int32_t phy_init_status, ret_val;
uint16_t phy_id_high, phy_id_low;
boolean_t match = FALSE;
DEBUGFUNC("e1000_detect_gig_phy");
/* Read the PHY ID Registers to identify which PHY is onboard. */
if((ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high)))
return ret_val;
hw->phy_id = (uint32_t) (phy_id_high << 16);
udelay(20);
if((ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low)))
return ret_val;
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
#ifdef LINUX_DRIVER
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
#endif
switch(hw->mac_type) {
case e1000_82543:
if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
break;
case e1000_82544:
if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
break;
default:
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
return -E1000_ERR_CONFIG;
}
phy_init_status = e1000_set_phy_type(hw);
if ((match) && (phy_init_status == E1000_SUCCESS)) {
DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
return E1000_SUCCESS;
}
DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
return -E1000_ERR_PHY;
}
/******************************************************************************
* Sets up eeprom variables in the hw struct. Must be called after mac_type
* is configured.
*
* hw - Struct containing variables accessed by shared code
*****************************************************************************/
static void
e1000_init_eeprom_params(struct e1000_hw *hw)
{
struct e1000_eeprom_info *eeprom = &hw->eeprom;
uint32_t eecd = E1000_READ_REG(hw, EECD);
uint16_t eeprom_size;
DEBUGFUNC("e1000_init_eeprom_params");
switch (hw->mac_type) {
case e1000_82542_rev2_0:
case e1000_82542_rev2_1:
case e1000_82543:
case e1000_82544:
eeprom->type = e1000_eeprom_microwire;
eeprom->word_size = 64;
eeprom->opcode_bits = 3;
eeprom->address_bits = 6;
eeprom->delay_usec = 50;
break;
case e1000_82540:
case e1000_82545:
case e1000_82545_rev_3:
case e1000_82546:
case e1000_82546_rev_3:
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if(eecd & E1000_EECD_SIZE) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
break;
case e1000_82541:
case e1000_82541_rev_2:
case e1000_82547:
case e1000_82547_rev_2:
if (eecd & E1000_EECD_TYPE) {
eeprom->type = e1000_eeprom_spi;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
} else {
eeprom->type = e1000_eeprom_microwire;
eeprom->opcode_bits = 3;
eeprom->delay_usec = 50;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->word_size = 256;
eeprom->address_bits = 8;
} else {
eeprom->word_size = 64;
eeprom->address_bits = 6;
}
}
break;
default:
eeprom->type = e1000_eeprom_spi;
if (eecd & E1000_EECD_ADDR_BITS) {
eeprom->page_size = 32;
eeprom->address_bits = 16;
} else {
eeprom->page_size = 8;
eeprom->address_bits = 8;
}
break;
}
if (eeprom->type == e1000_eeprom_spi) {
eeprom->opcode_bits = 8;
eeprom->delay_usec = 1;
eeprom->word_size = 64;
if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
eeprom_size &= EEPROM_SIZE_MASK;
switch (eeprom_size) {
case EEPROM_SIZE_16KB:
eeprom->word_size = 8192;
break;
case EEPROM_SIZE_8KB:
eeprom->word_size = 4096;
break;
case EEPROM_SIZE_4KB:
eeprom->word_size = 2048;
break;
case EEPROM_SIZE_2KB:
eeprom->word_size = 1024;
break;
case EEPROM_SIZE_1KB:
eeprom->word_size = 512;
break;
case EEPROM_SIZE_512B:
eeprom->word_size = 256;
break;
case EEPROM_SIZE_128B:
default:
break;
}
}
}
}
/**
* e1000_reset - Reset the adapter
*/
static int
e1000_reset(struct e1000_hw *hw)
{
uint32_t pba;
/* Repartition Pba for greater than 9k mtu
* To take effect CTRL.RST is required.
*/
if(hw->mac_type < e1000_82547) {
pba = E1000_PBA_48K;
} else {
pba = E1000_PBA_30K;
}
E1000_WRITE_REG(hw, PBA, pba);
/* flow control settings */
#if 0
hw->fc_high_water = FC_DEFAULT_HI_THRESH;
hw->fc_low_water = FC_DEFAULT_LO_THRESH;
hw->fc_pause_time = FC_DEFAULT_TX_TIMER;
hw->fc_send_xon = 1;
hw->fc = hw->original_fc;
#endif
e1000_reset_hw(hw);
if(hw->mac_type >= e1000_82544)
E1000_WRITE_REG(hw, WUC, 0);
return e1000_init_hw(hw);
}
/**
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
* @adapter: board private structure to initialize
*
* e1000_sw_init initializes the Adapter private data structure.
* Fields are initialized based on PCI device information and
* OS network device settings (MTU size).
**/
static int
e1000_sw_init(struct pci_device *pdev, struct e1000_hw *hw)
{
int result;
/* PCI config space info */
pci_read_config_word(pdev, PCI_VENDOR_ID, &hw->vendor_id);
pci_read_config_word(pdev, PCI_DEVICE_ID, &hw->device_id);
pci_read_config_byte(pdev, PCI_REVISION, &hw->revision_id);
#if 0
pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID,
&hw->subsystem_vendor_id);
pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
#endif
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
/* identify the MAC */
result = e1000_set_mac_type(hw);
if (result) {
E1000_ERR("Unknown MAC Type\n");
return result;
}
/* initialize eeprom parameters */
e1000_init_eeprom_params(hw);
#if 0
if((hw->mac_type == e1000_82541) ||
(hw->mac_type == e1000_82547) ||
(hw->mac_type == e1000_82541_rev_2) ||
(hw->mac_type == e1000_82547_rev_2))
hw->phy_init_script = 1;
#endif
e1000_set_media_type(hw);
#if 0
if(hw->mac_type < e1000_82543)
hw->report_tx_early = 0;
else
hw->report_tx_early = 1;
hw->wait_autoneg_complete = FALSE;
#endif
hw->tbi_compatibility_en = TRUE;
#if 0
hw->adaptive_ifs = TRUE;
/* Copper options */
if(hw->media_type == e1000_media_type_copper) {
hw->mdix = AUTO_ALL_MODES;
hw->disable_polarity_correction = FALSE;
hw->master_slave = E1000_MASTER_SLAVE;
}
#endif
return E1000_SUCCESS;
}
static void fill_rx (void)
{
struct e1000_rx_desc *rd;
rx_last = rx_tail;
rd = rx_base + rx_tail;
rx_tail = (rx_tail + 1) % 8;
memset (rd, 0, 16);
rd->buffer_addr = virt_to_bus(&packet);
E1000_WRITE_REG (&hw, RDT, rx_tail);
}
static void init_descriptor (void)
{
unsigned long ptr;
unsigned long tctl;
ptr = virt_to_phys(tx_pool);
if (ptr & 0xf)
ptr = (ptr + 0x10) & (~0xf);
tx_base = phys_to_virt(ptr);
E1000_WRITE_REG (&hw, TDBAL, virt_to_bus(tx_base));
E1000_WRITE_REG (&hw, TDBAH, 0);
E1000_WRITE_REG (&hw, TDLEN, 128);
/* Setup the HW Tx Head and Tail descriptor pointers */
E1000_WRITE_REG (&hw, TDH, 0);
E1000_WRITE_REG (&hw, TDT, 0);
tx_tail = 0;
/* Program the Transmit Control Register */
#ifdef LINUX_DRIVER_TCTL
tctl = E1000_READ_REG(&hw, TCTL);
tctl &= ~E1000_TCTL_CT;
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
#else
tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
(E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
#endif
E1000_WRITE_REG (&hw, TCTL, tctl);
e1000_config_collision_dist(&hw);
rx_tail = 0;
/* disable receive */
E1000_WRITE_REG (&hw, RCTL, 0);
ptr = virt_to_phys(rx_pool);
if (ptr & 0xf)
ptr = (ptr + 0x10) & (~0xf);
rx_base = phys_to_virt(ptr);
/* Setup the Base and Length of the Rx Descriptor Ring */
E1000_WRITE_REG (&hw, RDBAL, virt_to_bus(rx_base));
E1000_WRITE_REG (&hw, RDBAH, 0);
E1000_WRITE_REG (&hw, RDLEN, 128);
/* Setup the HW Rx Head and Tail Descriptor Pointers */
E1000_WRITE_REG (&hw, RDH, 0);
E1000_WRITE_REG (&hw, RDT, 0);
E1000_WRITE_REG (&hw, RCTL,
E1000_RCTL_EN |
E1000_RCTL_BAM |
E1000_RCTL_SZ_2048 |
E1000_RCTL_MPE);
fill_rx();
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int
e1000_poll (struct nic *nic, int retrieve)
{
/* return true if there's an ethernet packet ready to read */
/* nic->packet should contain data on return */
/* nic->packetlen should contain length of data */
struct e1000_rx_desc *rd;
uint32_t icr;
rd = rx_base + rx_last;
if (!rd->status & E1000_RXD_STAT_DD)
return 0;
if ( ! retrieve ) return 1;
// printf("recv: packet %! -> %! len=%d \n", packet+6, packet,rd->Length);
memcpy (nic->packet, packet, rd->length);
nic->packetlen = rd->length;
fill_rx ();
/* Acknowledge interrupt. */
icr = E1000_READ_REG(&hw, ICR);
return 1;
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void
e1000_transmit (struct nic *nic, const char *d, /* Destination */
unsigned int type, /* Type */
unsigned int size, /* size */
const char *p) /* Packet */
{
/* send the packet to destination */
struct eth_hdr {
unsigned char dst_addr[ETH_ALEN];
unsigned char src_addr[ETH_ALEN];
unsigned short type;
} hdr;
struct e1000_tx_desc *txhd; /* header */
struct e1000_tx_desc *txp; /* payload */
DEBUGFUNC("send");
memcpy (&hdr.dst_addr, d, ETH_ALEN);
memcpy (&hdr.src_addr, nic->node_addr, ETH_ALEN);
hdr.type = htons (type);
txhd = tx_base + tx_tail;
tx_tail = (tx_tail + 1) % 8;
txp = tx_base + tx_tail;
tx_tail = (tx_tail + 1) % 8;
txhd->buffer_addr = virt_to_bus (&hdr);
txhd->lower.data = sizeof (hdr);
txhd->upper.data = 0;
txp->buffer_addr = virt_to_bus(p);
txp->lower.data = E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | size;
txp->upper.data = 0;
E1000_WRITE_REG (&hw, TDT, tx_tail);
while (!(txp->upper.data & E1000_TXD_STAT_DD)) {
udelay(10); /* give the nic a chance to write to the register */
poll_interruptions();
}
DEBUGFUNC("send end");
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void e1000_disable ( struct nic *nic __unused ) {
2005-03-08 18:53:11 +00:00
/* Clear the transmit ring */
E1000_WRITE_REG (&hw, TDH, 0);
E1000_WRITE_REG (&hw, TDT, 0);
/* Clear the receive ring */
E1000_WRITE_REG (&hw, RDH, 0);
E1000_WRITE_REG (&hw, RDT, 0);
/* put the card in its initial state */
switch(hw.mac_type) {
case e1000_82544:
case e1000_82540:
case e1000_82545:
case e1000_82546:
case e1000_82541:
case e1000_82541_rev_2:
/* These controllers can't ack the 64-bit write when issuing the
* reset, so use IO-mapping as a workaround to issue the reset */
E1000_WRITE_REG_IO(&hw, CTRL, E1000_CTRL_RST);
break;
case e1000_82545_rev_3:
case e1000_82546_rev_3:
/* Reset is performed on a shadow of the control register */
E1000_WRITE_REG(&hw, CTRL_DUP, E1000_CTRL_RST);
break;
default:
E1000_WRITE_REG(&hw, CTRL, E1000_CTRL_RST);
break;
}
/* Turn off the ethernet interface */
E1000_WRITE_REG (&hw, RCTL, 0);
E1000_WRITE_REG (&hw, TCTL, 0);
mdelay (10);
/* Unmap my window to the device */
iounmap(hw.hw_addr);
}
/**************************************************************************
IRQ - Enable, Disable, or Force interrupts
***************************************************************************/
static void e1000_irq(struct nic *nic __unused, irq_action_t action)
{
switch ( action ) {
case DISABLE :
E1000_WRITE_REG(&hw, IMC, ~0);
E1000_WRITE_FLUSH(&hw);
break;
case ENABLE :
E1000_WRITE_REG(&hw, IMS,
E1000_IMS_RXT0 | E1000_IMS_RXSEQ);
E1000_WRITE_FLUSH(&hw);
break;
case FORCE :
E1000_WRITE_REG(&hw, ICS, E1000_ICS_RXT0);
break;
}
}
#define IORESOURCE_IO 0x00000100 /* Resource type */
#define BAR_0 0
#define BAR_1 1
#define BAR_5 5
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
You should omit the last argument struct pci_device * for a non-PCI NIC
***************************************************************************/
static int e1000_probe ( struct dev *dev, struct pci_device *p ) {
struct nic *nic = nic_device ( dev );
2005-03-08 18:53:11 +00:00
unsigned long mmio_start, mmio_len;
int ret_val, i;
/* Initialize hw with default values */
memset(&hw, 0, sizeof(hw));
hw.pdev = p;
#if 1
/* Are these variables needed? */
hw.fc = e1000_fc_none;
#if 0
hw.original_fc = e1000_fc_none;
#endif
hw.autoneg_failed = 0;
#if 0
hw.get_link_status = TRUE;
#endif
#endif
mmio_start = pci_bar_start(p, PCI_BASE_ADDRESS_0);
mmio_len = pci_bar_size(p, PCI_BASE_ADDRESS_0);
hw.hw_addr = ioremap(mmio_start, mmio_len);
for(i = BAR_1; i <= BAR_5; i++) {
if(pci_bar_size(p, i) == 0)
continue;
if(pci_find_capability(p, i) & IORESOURCE_IO) {
hw.io_base = pci_bar_start(p, i);
break;
}
}
adjust_pci_device(p);
nic->ioaddr = p->ioaddr & ~3;
nic->irqno = p->irq;
/* From Matt Hortman <mbhortman@acpthinclient.com> */
/* MAC and Phy settings */
/* setup the private structure */
if (e1000_sw_init(p, &hw) < 0) {
iounmap(hw.hw_addr);
return 0;
}
/* make sure the EEPROM is good */
if (e1000_validate_eeprom_checksum(&hw) < 0) {
printf ("The EEPROM Checksum Is Not Valid\n");
iounmap(hw.hw_addr);
return 0;
}
/* copy the MAC address out of the EEPROM */
e1000_read_mac_addr(&hw);
memcpy (nic->node_addr, hw.mac_addr, ETH_ALEN);
printf("Ethernet addr: %!\n", nic->node_addr);
/* reset the hardware with the new settings */
ret_val = e1000_reset(&hw);
if (ret_val < 0) {
if ((ret_val == -E1000_ERR_NOLINK) ||
(ret_val == -E1000_ERR_TIMEOUT)) {
E1000_ERR("Valid Link not detected\n");
} else {
E1000_ERR("Hardware Initialization Failed\n");
}
iounmap(hw.hw_addr);
return 0;
}
init_descriptor();
/* point to NIC specific routines */
2005-04-13 01:31:44 +00:00
nic->nic_op = &e1000_operations;
return 1;
}
static struct nic_operations e1000_operations = {
.connect = dummy_connect,
.poll = e1000_poll,
.transmit = e1000_transmit,
.irq = e1000_irq,
.disable = e1000_disable,
2005-04-13 01:31:44 +00:00
};
2005-03-08 18:53:11 +00:00
static struct pci_id e1000_nics[] = {
PCI_ROM(0x8086, 0x1000, "e1000-82542", "Intel EtherExpressPro1000"),
PCI_ROM(0x8086, 0x1001, "e1000-82543gc-fiber", "Intel EtherExpressPro1000 82543GC Fiber"),
PCI_ROM(0x8086, 0x1004, "e1000-82543gc-copper", "Intel EtherExpressPro1000 82543GC Copper"),
PCI_ROM(0x8086, 0x1008, "e1000-82544ei-copper", "Intel EtherExpressPro1000 82544EI Copper"),
PCI_ROM(0x8086, 0x1009, "e1000-82544ei-fiber", "Intel EtherExpressPro1000 82544EI Fiber"),
PCI_ROM(0x8086, 0x100C, "e1000-82544gc-copper", "Intel EtherExpressPro1000 82544GC Copper"),
PCI_ROM(0x8086, 0x100D, "e1000-82544gc-lom", "Intel EtherExpressPro1000 82544GC LOM"),
PCI_ROM(0x8086, 0x100E, "e1000-82540em", "Intel EtherExpressPro1000 82540EM"),
PCI_ROM(0x8086, 0x100F, "e1000-82545em-copper", "Intel EtherExpressPro1000 82545EM Copper"),
PCI_ROM(0x8086, 0x1010, "e1000-82546eb-copper", "Intel EtherExpressPro1000 82546EB Copper"),
PCI_ROM(0x8086, 0x1011, "e1000-82545em-fiber", "Intel EtherExpressPro1000 82545EM Fiber"),
PCI_ROM(0x8086, 0x1012, "e1000-82546eb-fiber", "Intel EtherExpressPro1000 82546EB Copper"),
PCI_ROM(0x8086, 0x1013, "e1000-82541ei", "Intel EtherExpressPro1000 82541EI"),
PCI_ROM(0x8086, 0x1015, "e1000-82540em-lom", "Intel EtherExpressPro1000 82540EM LOM"),
PCI_ROM(0x8086, 0x1016, "e1000-82540ep-lom", "Intel EtherExpressPro1000 82540EP LOM"),
PCI_ROM(0x8086, 0x1017, "e1000-82540ep", "Intel EtherExpressPro1000 82540EP"),
PCI_ROM(0x8086, 0x1018, "e1000-82541ep", "Intel EtherExpressPro1000 82541EP"),
PCI_ROM(0x8086, 0x1019, "e1000-82547ei", "Intel EtherExpressPro1000 82547EI"),
PCI_ROM(0x8086, 0x101d, "e1000-82546eb-quad-copper", "Intel EtherExpressPro1000 82546EB Quad Copper"),
PCI_ROM(0x8086, 0x101e, "e1000-82540ep-lp", "Intel EtherExpressPro1000 82540EP LP"),
PCI_ROM(0x8086, 0x1026, "e1000-82545gm-copper", "Intel EtherExpressPro1000 82545GM Copper"),
PCI_ROM(0x8086, 0x1027, "e1000-82545gm-fiber", "Intel EtherExpressPro1000 82545GM Fiber"),
PCI_ROM(0x8086, 0x1028, "e1000-82545gm-serdes", "Intel EtherExpressPro1000 82545GM SERDES"),
PCI_ROM(0x8086, 0x1075, "e1000-82547gi", "Intel EtherExpressPro1000 82547GI"),
PCI_ROM(0x8086, 0x1076, "e1000-82541gi", "Intel EtherExpressPro1000 82541GI"),
PCI_ROM(0x8086, 0x1077, "e1000-82541gi-mobile", "Intel EtherExpressPro1000 82541GI Mobile"),
PCI_ROM(0x8086, 0x1078, "e1000-82541er", "Intel EtherExpressPro1000 82541ER"),
PCI_ROM(0x8086, 0x1079, "e1000-82546gb-copper", "Intel EtherExpressPro1000 82546GB Copper"),
PCI_ROM(0x8086, 0x107a, "e1000-82546gb-fiber", "Intel EtherExpressPro1000 82546GB Fiber"),
PCI_ROM(0x8086, 0x107b, "e1000-82546gb-serdes", "Intel EtherExpressPro1000 82546GB SERDES"),
};
static struct pci_driver e1000_driver =
PCI_DRIVER ( "E1000", e1000_nics, PCI_NO_CLASS );
BOOT_DRIVER ( "E1000", find_pci_boot_device, e1000_driver, e1000_probe );