mirror of
https://github.com/xcat2/xNBA.git
synced 2024-12-16 08:11:31 +00:00
3714 lines
114 KiB
C
3714 lines
114 KiB
C
|
/**************************************************************************
|
||
|
Etherboot - BOOTP/TFTP Bootstrap Program
|
||
|
Inter Pro 1000 for Etherboot
|
||
|
Drivers are port from Intel's Linux driver e1000-4.3.15
|
||
|
|
||
|
***************************************************************************/
|
||
|
/*******************************************************************************
|
||
|
|
||
|
|
||
|
Copyright(c) 1999 - 2003 Intel Corporation. All rights reserved.
|
||
|
|
||
|
This program is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU General Public License as published by the Free
|
||
|
Software Foundation; either version 2 of the License, or (at your option)
|
||
|
any later version.
|
||
|
|
||
|
This program is distributed in the hope that it will be useful, but WITHOUT
|
||
|
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
|
||
|
more details.
|
||
|
|
||
|
You should have received a copy of the GNU General Public License along with
|
||
|
this program; if not, write to the Free Software Foundation, Inc., 59
|
||
|
Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
|
||
|
The full GNU General Public License is included in this distribution in the
|
||
|
file called LICENSE.
|
||
|
|
||
|
Contact Information:
|
||
|
Linux NICS <linux.nics@intel.com>
|
||
|
Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
|
||
|
|
||
|
*******************************************************************************/
|
||
|
/*
|
||
|
* Copyright (C) Archway Digital Solutions.
|
||
|
*
|
||
|
* written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org>
|
||
|
* 2/9/2002
|
||
|
*
|
||
|
* Copyright (C) Linux Networx.
|
||
|
* Massive upgrade to work with the new intel gigabit NICs.
|
||
|
* <ebiederman at lnxi dot com>
|
||
|
*
|
||
|
* Support for 82541ei & 82547ei chips from Intel's Linux driver 5.1.13 added by
|
||
|
* Georg Baum <gbaum@users.sf.net>, sponsored by PetaMem GmbH and linkLINE Communications, Inc.
|
||
|
*
|
||
|
* 01/2004: Updated to Linux driver 5.2.22 by Georg Baum <gbaum@users.sf.net>
|
||
|
*/
|
||
|
|
||
|
/* to get some global routines like printf */
|
||
|
#include "etherboot.h"
|
||
|
/* to get the interface to the body of the program */
|
||
|
#include "nic.h"
|
||
|
/* to get the PCI support functions, if this is a PCI NIC */
|
||
|
#include "pci.h"
|
||
|
#include "timer.h"
|
||
|
|
||
|
typedef unsigned char *dma_addr_t;
|
||
|
|
||
|
typedef enum {
|
||
|
FALSE = 0,
|
||
|
TRUE = 1
|
||
|
} boolean_t;
|
||
|
|
||
|
#define DEBUG 0
|
||
|
|
||
|
|
||
|
/* Some pieces of code are disabled with #if 0 ... #endif.
|
||
|
* They are not deleted to show where the etherboot driver differs
|
||
|
* from the linux driver below the function level.
|
||
|
* Some member variables of the hw struct have been eliminated
|
||
|
* and the corresponding inplace checks inserted instead.
|
||
|
* Pieces such as LED handling that we definitely don't need are deleted.
|
||
|
*
|
||
|
* The following defines should not be needed normally,
|
||
|
* but may be helpful for debugging purposes. */
|
||
|
|
||
|
/* Define this if you want to program the transmission control register
|
||
|
* the way the Linux driver does it. */
|
||
|
#undef LINUX_DRIVER_TCTL
|
||
|
|
||
|
/* Define this to behave more like the Linux driver. */
|
||
|
#undef LINUX_DRIVER
|
||
|
|
||
|
#include "e1000_hw.h"
|
||
|
|
||
|
/* NIC specific static variables go here */
|
||
|
static struct e1000_hw hw;
|
||
|
static char tx_pool[128 + 16];
|
||
|
static char rx_pool[128 + 16];
|
||
|
static char packet[2096];
|
||
|
|
||
|
static struct e1000_tx_desc *tx_base;
|
||
|
static struct e1000_rx_desc *rx_base;
|
||
|
|
||
|
static int tx_tail;
|
||
|
static int rx_tail, rx_last;
|
||
|
|
||
|
/* Function forward declarations */
|
||
|
static int e1000_setup_link(struct e1000_hw *hw);
|
||
|
static int e1000_setup_fiber_serdes_link(struct e1000_hw *hw);
|
||
|
static int e1000_setup_copper_link(struct e1000_hw *hw);
|
||
|
static int e1000_phy_setup_autoneg(struct e1000_hw *hw);
|
||
|
static void e1000_config_collision_dist(struct e1000_hw *hw);
|
||
|
static int e1000_config_mac_to_phy(struct e1000_hw *hw);
|
||
|
static int e1000_config_fc_after_link_up(struct e1000_hw *hw);
|
||
|
static int e1000_check_for_link(struct e1000_hw *hw);
|
||
|
static int e1000_wait_autoneg(struct e1000_hw *hw);
|
||
|
static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t *speed, uint16_t *duplex);
|
||
|
static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
|
||
|
static int e1000_read_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t *phy_data);
|
||
|
static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
|
||
|
static int e1000_write_phy_reg_ex(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data);
|
||
|
static void e1000_phy_hw_reset(struct e1000_hw *hw);
|
||
|
static int e1000_phy_reset(struct e1000_hw *hw);
|
||
|
static int e1000_detect_gig_phy(struct e1000_hw *hw);
|
||
|
static void e1000_irq(struct nic *nic, irq_action_t action);
|
||
|
|
||
|
/* Printing macros... */
|
||
|
|
||
|
#define E1000_ERR(args...) printf("e1000: " args)
|
||
|
|
||
|
#if DEBUG >= 3
|
||
|
#define E1000_DBG(args...) printf("e1000: " args)
|
||
|
#else
|
||
|
#define E1000_DBG(args...)
|
||
|
#endif
|
||
|
|
||
|
#define MSGOUT(S, A, B) printk(S "\n", A, B)
|
||
|
#if DEBUG >= 2
|
||
|
#define DEBUGFUNC(F) DEBUGOUT(F "\n");
|
||
|
#else
|
||
|
#define DEBUGFUNC(F)
|
||
|
#endif
|
||
|
#if DEBUG >= 1
|
||
|
#define DEBUGOUT(S) printf(S)
|
||
|
#define DEBUGOUT1(S,A) printf(S,A)
|
||
|
#define DEBUGOUT2(S,A,B) printf(S,A,B)
|
||
|
#define DEBUGOUT3(S,A,B,C) printf(S,A,B,C)
|
||
|
#define DEBUGOUT7(S,A,B,C,D,E,F,G) printf(S,A,B,C,D,E,F,G)
|
||
|
#else
|
||
|
#define DEBUGOUT(S)
|
||
|
#define DEBUGOUT1(S,A)
|
||
|
#define DEBUGOUT2(S,A,B)
|
||
|
#define DEBUGOUT3(S,A,B,C)
|
||
|
#define DEBUGOUT7(S,A,B,C,D,E,F,G)
|
||
|
#endif
|
||
|
|
||
|
#define E1000_WRITE_REG(a, reg, value) ( \
|
||
|
((a)->mac_type >= e1000_82543) ? \
|
||
|
(writel((value), ((a)->hw_addr + E1000_##reg))) : \
|
||
|
(writel((value), ((a)->hw_addr + E1000_82542_##reg))))
|
||
|
|
||
|
#define E1000_READ_REG(a, reg) ( \
|
||
|
((a)->mac_type >= e1000_82543) ? \
|
||
|
readl((a)->hw_addr + E1000_##reg) : \
|
||
|
readl((a)->hw_addr + E1000_82542_##reg))
|
||
|
|
||
|
#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) ( \
|
||
|
((a)->mac_type >= e1000_82543) ? \
|
||
|
writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2))) : \
|
||
|
writel((value), ((a)->hw_addr + E1000_82542_##reg + ((offset) << 2))))
|
||
|
|
||
|
#define E1000_READ_REG_ARRAY(a, reg, offset) ( \
|
||
|
((a)->mac_type >= e1000_82543) ? \
|
||
|
readl((a)->hw_addr + E1000_##reg + ((offset) << 2)) : \
|
||
|
readl((a)->hw_addr + E1000_82542_##reg + ((offset) << 2)))
|
||
|
|
||
|
#define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);}
|
||
|
|
||
|
uint32_t
|
||
|
e1000_io_read(struct e1000_hw *hw __unused, uint32_t port)
|
||
|
{
|
||
|
return inl(port);
|
||
|
}
|
||
|
|
||
|
void
|
||
|
e1000_io_write(struct e1000_hw *hw __unused, uint32_t port, uint32_t value)
|
||
|
{
|
||
|
outl(value, port);
|
||
|
}
|
||
|
|
||
|
static inline void e1000_pci_set_mwi(struct e1000_hw *hw)
|
||
|
{
|
||
|
pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word);
|
||
|
}
|
||
|
|
||
|
static inline void e1000_pci_clear_mwi(struct e1000_hw *hw)
|
||
|
{
|
||
|
pci_write_config_word(hw->pdev, PCI_COMMAND,
|
||
|
hw->pci_cmd_word & ~PCI_COMMAND_INVALIDATE);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Raises the EEPROM's clock input.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* eecd - EECD's current value
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_raise_ee_clk(struct e1000_hw *hw,
|
||
|
uint32_t *eecd)
|
||
|
{
|
||
|
/* Raise the clock input to the EEPROM (by setting the SK bit), and then
|
||
|
* wait <delay> microseconds.
|
||
|
*/
|
||
|
*eecd = *eecd | E1000_EECD_SK;
|
||
|
E1000_WRITE_REG(hw, EECD, *eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(hw->eeprom.delay_usec);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Lowers the EEPROM's clock input.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* eecd - EECD's current value
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_lower_ee_clk(struct e1000_hw *hw,
|
||
|
uint32_t *eecd)
|
||
|
{
|
||
|
/* Lower the clock input to the EEPROM (by clearing the SK bit), and then
|
||
|
* wait 50 microseconds.
|
||
|
*/
|
||
|
*eecd = *eecd & ~E1000_EECD_SK;
|
||
|
E1000_WRITE_REG(hw, EECD, *eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(hw->eeprom.delay_usec);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Shift data bits out to the EEPROM.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* data - data to send to the EEPROM
|
||
|
* count - number of bits to shift out
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_shift_out_ee_bits(struct e1000_hw *hw,
|
||
|
uint16_t data,
|
||
|
uint16_t count)
|
||
|
{
|
||
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
||
|
uint32_t eecd;
|
||
|
uint32_t mask;
|
||
|
|
||
|
/* We need to shift "count" bits out to the EEPROM. So, value in the
|
||
|
* "data" parameter will be shifted out to the EEPROM one bit at a time.
|
||
|
* In order to do this, "data" must be broken down into bits.
|
||
|
*/
|
||
|
mask = 0x01 << (count - 1);
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
if (eeprom->type == e1000_eeprom_microwire) {
|
||
|
eecd &= ~E1000_EECD_DO;
|
||
|
} else if (eeprom->type == e1000_eeprom_spi) {
|
||
|
eecd |= E1000_EECD_DO;
|
||
|
}
|
||
|
do {
|
||
|
/* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1",
|
||
|
* and then raising and then lowering the clock (the SK bit controls
|
||
|
* the clock input to the EEPROM). A "0" is shifted out to the EEPROM
|
||
|
* by setting "DI" to "0" and then raising and then lowering the clock.
|
||
|
*/
|
||
|
eecd &= ~E1000_EECD_DI;
|
||
|
|
||
|
if(data & mask)
|
||
|
eecd |= E1000_EECD_DI;
|
||
|
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
|
||
|
udelay(eeprom->delay_usec);
|
||
|
|
||
|
e1000_raise_ee_clk(hw, &eecd);
|
||
|
e1000_lower_ee_clk(hw, &eecd);
|
||
|
|
||
|
mask = mask >> 1;
|
||
|
|
||
|
} while(mask);
|
||
|
|
||
|
/* We leave the "DI" bit set to "0" when we leave this routine. */
|
||
|
eecd &= ~E1000_EECD_DI;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Shift data bits in from the EEPROM
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static uint16_t
|
||
|
e1000_shift_in_ee_bits(struct e1000_hw *hw,
|
||
|
uint16_t count)
|
||
|
{
|
||
|
uint32_t eecd;
|
||
|
uint32_t i;
|
||
|
uint16_t data;
|
||
|
|
||
|
/* In order to read a register from the EEPROM, we need to shift 'count'
|
||
|
* bits in from the EEPROM. Bits are "shifted in" by raising the clock
|
||
|
* input to the EEPROM (setting the SK bit), and then reading the value of
|
||
|
* the "DO" bit. During this "shifting in" process the "DI" bit should
|
||
|
* always be clear.
|
||
|
*/
|
||
|
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
|
||
|
eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
|
||
|
data = 0;
|
||
|
|
||
|
for(i = 0; i < count; i++) {
|
||
|
data = data << 1;
|
||
|
e1000_raise_ee_clk(hw, &eecd);
|
||
|
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
|
||
|
eecd &= ~(E1000_EECD_DI);
|
||
|
if(eecd & E1000_EECD_DO)
|
||
|
data |= 1;
|
||
|
|
||
|
e1000_lower_ee_clk(hw, &eecd);
|
||
|
}
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Prepares EEPROM for access
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This
|
||
|
* function should be called before issuing a command to the EEPROM.
|
||
|
*****************************************************************************/
|
||
|
static int32_t
|
||
|
e1000_acquire_eeprom(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
||
|
uint32_t eecd, i=0;
|
||
|
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
|
||
|
/* Request EEPROM Access */
|
||
|
if(hw->mac_type > e1000_82544) {
|
||
|
eecd |= E1000_EECD_REQ;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
while((!(eecd & E1000_EECD_GNT)) &&
|
||
|
(i < E1000_EEPROM_GRANT_ATTEMPTS)) {
|
||
|
i++;
|
||
|
udelay(5);
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
}
|
||
|
if(!(eecd & E1000_EECD_GNT)) {
|
||
|
eecd &= ~E1000_EECD_REQ;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
DEBUGOUT("Could not acquire EEPROM grant\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Setup EEPROM for Read/Write */
|
||
|
|
||
|
if (eeprom->type == e1000_eeprom_microwire) {
|
||
|
/* Clear SK and DI */
|
||
|
eecd &= ~(E1000_EECD_DI | E1000_EECD_SK);
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
|
||
|
/* Set CS */
|
||
|
eecd |= E1000_EECD_CS;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
} else if (eeprom->type == e1000_eeprom_spi) {
|
||
|
/* Clear SK and CS */
|
||
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
udelay(1);
|
||
|
}
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Returns EEPROM to a "standby" state
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_standby_eeprom(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
||
|
uint32_t eecd;
|
||
|
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
|
||
|
if(eeprom->type == e1000_eeprom_microwire) {
|
||
|
|
||
|
/* Deselect EEPROM */
|
||
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(eeprom->delay_usec);
|
||
|
|
||
|
/* Clock high */
|
||
|
eecd |= E1000_EECD_SK;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(eeprom->delay_usec);
|
||
|
|
||
|
/* Select EEPROM */
|
||
|
eecd |= E1000_EECD_CS;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(eeprom->delay_usec);
|
||
|
|
||
|
/* Clock low */
|
||
|
eecd &= ~E1000_EECD_SK;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(eeprom->delay_usec);
|
||
|
} else if(eeprom->type == e1000_eeprom_spi) {
|
||
|
/* Toggle CS to flush commands */
|
||
|
eecd |= E1000_EECD_CS;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(eeprom->delay_usec);
|
||
|
eecd &= ~E1000_EECD_CS;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(eeprom->delay_usec);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Terminates a command by inverting the EEPROM's chip select pin
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_release_eeprom(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t eecd;
|
||
|
|
||
|
eecd = E1000_READ_REG(hw, EECD);
|
||
|
|
||
|
if (hw->eeprom.type == e1000_eeprom_spi) {
|
||
|
eecd |= E1000_EECD_CS; /* Pull CS high */
|
||
|
eecd &= ~E1000_EECD_SK; /* Lower SCK */
|
||
|
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
|
||
|
udelay(hw->eeprom.delay_usec);
|
||
|
} else if(hw->eeprom.type == e1000_eeprom_microwire) {
|
||
|
/* cleanup eeprom */
|
||
|
|
||
|
/* CS on Microwire is active-high */
|
||
|
eecd &= ~(E1000_EECD_CS | E1000_EECD_DI);
|
||
|
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
|
||
|
/* Rising edge of clock */
|
||
|
eecd |= E1000_EECD_SK;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(hw->eeprom.delay_usec);
|
||
|
|
||
|
/* Falling edge of clock */
|
||
|
eecd &= ~E1000_EECD_SK;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(hw->eeprom.delay_usec);
|
||
|
}
|
||
|
|
||
|
/* Stop requesting EEPROM access */
|
||
|
if(hw->mac_type > e1000_82544) {
|
||
|
eecd &= ~E1000_EECD_REQ;
|
||
|
E1000_WRITE_REG(hw, EECD, eecd);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Reads a 16 bit word from the EEPROM.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static int32_t
|
||
|
e1000_spi_eeprom_ready(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint16_t retry_count = 0;
|
||
|
uint8_t spi_stat_reg;
|
||
|
|
||
|
/* Read "Status Register" repeatedly until the LSB is cleared. The
|
||
|
* EEPROM will signal that the command has been completed by clearing
|
||
|
* bit 0 of the internal status register. If it's not cleared within
|
||
|
* 5 milliseconds, then error out.
|
||
|
*/
|
||
|
retry_count = 0;
|
||
|
do {
|
||
|
e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI,
|
||
|
hw->eeprom.opcode_bits);
|
||
|
spi_stat_reg = (uint8_t)e1000_shift_in_ee_bits(hw, 8);
|
||
|
if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI))
|
||
|
break;
|
||
|
|
||
|
udelay(5);
|
||
|
retry_count += 5;
|
||
|
|
||
|
} while(retry_count < EEPROM_MAX_RETRY_SPI);
|
||
|
|
||
|
/* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and
|
||
|
* only 0-5mSec on 5V devices)
|
||
|
*/
|
||
|
if(retry_count >= EEPROM_MAX_RETRY_SPI) {
|
||
|
DEBUGOUT("SPI EEPROM Status error\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Reads a 16 bit word from the EEPROM.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* offset - offset of word in the EEPROM to read
|
||
|
* data - word read from the EEPROM
|
||
|
* words - number of words to read
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_read_eeprom(struct e1000_hw *hw,
|
||
|
uint16_t offset,
|
||
|
uint16_t words,
|
||
|
uint16_t *data)
|
||
|
{
|
||
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
||
|
uint32_t i = 0;
|
||
|
|
||
|
DEBUGFUNC("e1000_read_eeprom");
|
||
|
|
||
|
/* A check for invalid values: offset too large, too many words, and not
|
||
|
* enough words.
|
||
|
*/
|
||
|
if((offset > eeprom->word_size) || (words > eeprom->word_size - offset) ||
|
||
|
(words == 0)) {
|
||
|
DEBUGOUT("\"words\" parameter out of bounds\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
|
||
|
/* Prepare the EEPROM for reading */
|
||
|
if(e1000_acquire_eeprom(hw) != E1000_SUCCESS)
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
|
||
|
if(eeprom->type == e1000_eeprom_spi) {
|
||
|
uint16_t word_in;
|
||
|
uint8_t read_opcode = EEPROM_READ_OPCODE_SPI;
|
||
|
|
||
|
if(e1000_spi_eeprom_ready(hw)) {
|
||
|
e1000_release_eeprom(hw);
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
|
||
|
e1000_standby_eeprom(hw);
|
||
|
|
||
|
/* Some SPI eeproms use the 8th address bit embedded in the opcode */
|
||
|
if((eeprom->address_bits == 8) && (offset >= 128))
|
||
|
read_opcode |= EEPROM_A8_OPCODE_SPI;
|
||
|
|
||
|
/* Send the READ command (opcode + addr) */
|
||
|
e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits);
|
||
|
e1000_shift_out_ee_bits(hw, (uint16_t)(offset*2), eeprom->address_bits);
|
||
|
|
||
|
/* Read the data. The address of the eeprom internally increments with
|
||
|
* each byte (spi) being read, saving on the overhead of eeprom setup
|
||
|
* and tear-down. The address counter will roll over if reading beyond
|
||
|
* the size of the eeprom, thus allowing the entire memory to be read
|
||
|
* starting from any offset. */
|
||
|
for (i = 0; i < words; i++) {
|
||
|
word_in = e1000_shift_in_ee_bits(hw, 16);
|
||
|
data[i] = (word_in >> 8) | (word_in << 8);
|
||
|
}
|
||
|
} else if(eeprom->type == e1000_eeprom_microwire) {
|
||
|
for (i = 0; i < words; i++) {
|
||
|
/* Send the READ command (opcode + addr) */
|
||
|
e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE,
|
||
|
eeprom->opcode_bits);
|
||
|
e1000_shift_out_ee_bits(hw, (uint16_t)(offset + i),
|
||
|
eeprom->address_bits);
|
||
|
|
||
|
/* Read the data. For microwire, each word requires the overhead
|
||
|
* of eeprom setup and tear-down. */
|
||
|
data[i] = e1000_shift_in_ee_bits(hw, 16);
|
||
|
e1000_standby_eeprom(hw);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* End this read operation */
|
||
|
e1000_release_eeprom(hw);
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Verifies that the EEPROM has a valid checksum
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Reads the first 64 16 bit words of the EEPROM and sums the values read.
|
||
|
* If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is
|
||
|
* valid.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_validate_eeprom_checksum(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint16_t checksum = 0;
|
||
|
uint16_t i, eeprom_data;
|
||
|
|
||
|
DEBUGFUNC("e1000_validate_eeprom_checksum");
|
||
|
|
||
|
for(i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
|
||
|
if(e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) {
|
||
|
DEBUGOUT("EEPROM Read Error\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
checksum += eeprom_data;
|
||
|
}
|
||
|
|
||
|
if(checksum == (uint16_t) EEPROM_SUM)
|
||
|
return E1000_SUCCESS;
|
||
|
else {
|
||
|
DEBUGOUT("EEPROM Checksum Invalid\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Reads the adapter's MAC address from the EEPROM and inverts the LSB for the
|
||
|
* second function of dual function devices
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_read_mac_addr(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint16_t offset;
|
||
|
uint16_t eeprom_data;
|
||
|
int i;
|
||
|
|
||
|
DEBUGFUNC("e1000_read_mac_addr");
|
||
|
|
||
|
for(i = 0; i < NODE_ADDRESS_SIZE; i += 2) {
|
||
|
offset = i >> 1;
|
||
|
if(e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) {
|
||
|
DEBUGOUT("EEPROM Read Error\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
hw->mac_addr[i] = eeprom_data & 0xff;
|
||
|
hw->mac_addr[i+1] = (eeprom_data >> 8) & 0xff;
|
||
|
}
|
||
|
if(((hw->mac_type == e1000_82546) || (hw->mac_type == e1000_82546_rev_3)) &&
|
||
|
(E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1))
|
||
|
/* Invert the last bit if this is the second device */
|
||
|
hw->mac_addr[5] ^= 1;
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Initializes receive address filters.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Places the MAC address in receive address register 0 and clears the rest
|
||
|
* of the receive addresss registers. Clears the multicast table. Assumes
|
||
|
* the receiver is in reset when the routine is called.
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_init_rx_addrs(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
uint32_t addr_low;
|
||
|
uint32_t addr_high;
|
||
|
|
||
|
DEBUGFUNC("e1000_init_rx_addrs");
|
||
|
|
||
|
/* Setup the receive address. */
|
||
|
DEBUGOUT("Programming MAC Address into RAR[0]\n");
|
||
|
addr_low = (hw->mac_addr[0] |
|
||
|
(hw->mac_addr[1] << 8) |
|
||
|
(hw->mac_addr[2] << 16) | (hw->mac_addr[3] << 24));
|
||
|
|
||
|
addr_high = (hw->mac_addr[4] |
|
||
|
(hw->mac_addr[5] << 8) | E1000_RAH_AV);
|
||
|
|
||
|
E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low);
|
||
|
E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high);
|
||
|
|
||
|
/* Zero out the other 15 receive addresses. */
|
||
|
DEBUGOUT("Clearing RAR[1-15]\n");
|
||
|
for(i = 1; i < E1000_RAR_ENTRIES; i++) {
|
||
|
E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0);
|
||
|
E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Clears the VLAN filer table
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_clear_vfta(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t offset;
|
||
|
|
||
|
for(offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++)
|
||
|
E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Writes a value to one of the devices registers using port I/O (as opposed to
|
||
|
* memory mapped I/O). Only 82544 and newer devices support port I/O. *
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* offset - offset to write to * value - value to write
|
||
|
*****************************************************************************/
|
||
|
void e1000_write_reg_io(struct e1000_hw *hw, uint32_t offset, uint32_t value){
|
||
|
uint32_t io_addr = hw->io_base;
|
||
|
uint32_t io_data = hw->io_base + 4;
|
||
|
e1000_io_write(hw, io_addr, offset);
|
||
|
e1000_io_write(hw, io_data, value);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Set the phy type member in the hw struct.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static int32_t
|
||
|
e1000_set_phy_type(struct e1000_hw *hw)
|
||
|
{
|
||
|
DEBUGFUNC("e1000_set_phy_type");
|
||
|
|
||
|
switch(hw->phy_id) {
|
||
|
case M88E1000_E_PHY_ID:
|
||
|
case M88E1000_I_PHY_ID:
|
||
|
case M88E1011_I_PHY_ID:
|
||
|
hw->phy_type = e1000_phy_m88;
|
||
|
break;
|
||
|
case IGP01E1000_I_PHY_ID:
|
||
|
hw->phy_type = e1000_phy_igp;
|
||
|
break;
|
||
|
default:
|
||
|
/* Should never have loaded on this device */
|
||
|
hw->phy_type = e1000_phy_undefined;
|
||
|
return -E1000_ERR_PHY_TYPE;
|
||
|
}
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* IGP phy init script - initializes the GbE PHY
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_phy_init_script(struct e1000_hw *hw)
|
||
|
{
|
||
|
DEBUGFUNC("e1000_phy_init_script");
|
||
|
|
||
|
#if 0
|
||
|
/* See e1000_sw_init() of the Linux driver */
|
||
|
if(hw->phy_init_script) {
|
||
|
#else
|
||
|
if((hw->mac_type == e1000_82541) ||
|
||
|
(hw->mac_type == e1000_82547) ||
|
||
|
(hw->mac_type == e1000_82541_rev_2) ||
|
||
|
(hw->mac_type == e1000_82547_rev_2)) {
|
||
|
#endif
|
||
|
mdelay(20);
|
||
|
|
||
|
e1000_write_phy_reg(hw,0x0000,0x0140);
|
||
|
|
||
|
mdelay(5);
|
||
|
|
||
|
if(hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547) {
|
||
|
e1000_write_phy_reg(hw, 0x1F95, 0x0001);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F71, 0xBD21);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F79, 0x0018);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F30, 0x1600);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F31, 0x0014);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F32, 0x161C);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F94, 0x0003);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x1F96, 0x003F);
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x2010, 0x0008);
|
||
|
} else {
|
||
|
e1000_write_phy_reg(hw, 0x1F73, 0x0099);
|
||
|
}
|
||
|
|
||
|
e1000_write_phy_reg(hw, 0x0000, 0x3300);
|
||
|
|
||
|
|
||
|
if(hw->mac_type == e1000_82547) {
|
||
|
uint16_t fused, fine, coarse;
|
||
|
|
||
|
/* Move to analog registers page */
|
||
|
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused);
|
||
|
|
||
|
if(!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) {
|
||
|
e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused);
|
||
|
|
||
|
fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK;
|
||
|
coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK;
|
||
|
|
||
|
if(coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) {
|
||
|
coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10;
|
||
|
fine -= IGP01E1000_ANALOG_FUSE_FINE_1;
|
||
|
} else if(coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH)
|
||
|
fine -= IGP01E1000_ANALOG_FUSE_FINE_10;
|
||
|
|
||
|
fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) |
|
||
|
(fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) |
|
||
|
(coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK);
|
||
|
|
||
|
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused);
|
||
|
e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS,
|
||
|
IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Set the mac type member in the hw struct.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_set_mac_type(struct e1000_hw *hw)
|
||
|
{
|
||
|
DEBUGFUNC("e1000_set_mac_type");
|
||
|
|
||
|
switch (hw->device_id) {
|
||
|
case E1000_DEV_ID_82542:
|
||
|
switch (hw->revision_id) {
|
||
|
case E1000_82542_2_0_REV_ID:
|
||
|
hw->mac_type = e1000_82542_rev2_0;
|
||
|
break;
|
||
|
case E1000_82542_2_1_REV_ID:
|
||
|
hw->mac_type = e1000_82542_rev2_1;
|
||
|
break;
|
||
|
default:
|
||
|
/* Invalid 82542 revision ID */
|
||
|
return -E1000_ERR_MAC_TYPE;
|
||
|
}
|
||
|
break;
|
||
|
case E1000_DEV_ID_82543GC_FIBER:
|
||
|
case E1000_DEV_ID_82543GC_COPPER:
|
||
|
hw->mac_type = e1000_82543;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82544EI_COPPER:
|
||
|
case E1000_DEV_ID_82544EI_FIBER:
|
||
|
case E1000_DEV_ID_82544GC_COPPER:
|
||
|
case E1000_DEV_ID_82544GC_LOM:
|
||
|
hw->mac_type = e1000_82544;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82540EM:
|
||
|
case E1000_DEV_ID_82540EM_LOM:
|
||
|
case E1000_DEV_ID_82540EP:
|
||
|
case E1000_DEV_ID_82540EP_LOM:
|
||
|
case E1000_DEV_ID_82540EP_LP:
|
||
|
hw->mac_type = e1000_82540;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82545EM_COPPER:
|
||
|
case E1000_DEV_ID_82545EM_FIBER:
|
||
|
hw->mac_type = e1000_82545;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82545GM_COPPER:
|
||
|
case E1000_DEV_ID_82545GM_FIBER:
|
||
|
case E1000_DEV_ID_82545GM_SERDES:
|
||
|
hw->mac_type = e1000_82545_rev_3;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82546EB_COPPER:
|
||
|
case E1000_DEV_ID_82546EB_FIBER:
|
||
|
case E1000_DEV_ID_82546EB_QUAD_COPPER:
|
||
|
hw->mac_type = e1000_82546;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82546GB_COPPER:
|
||
|
case E1000_DEV_ID_82546GB_FIBER:
|
||
|
case E1000_DEV_ID_82546GB_SERDES:
|
||
|
hw->mac_type = e1000_82546_rev_3;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82541EI:
|
||
|
case E1000_DEV_ID_82541EI_MOBILE:
|
||
|
hw->mac_type = e1000_82541;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82541ER:
|
||
|
case E1000_DEV_ID_82541GI:
|
||
|
case E1000_DEV_ID_82541GI_MOBILE:
|
||
|
hw->mac_type = e1000_82541_rev_2;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82547EI:
|
||
|
hw->mac_type = e1000_82547;
|
||
|
break;
|
||
|
case E1000_DEV_ID_82547GI:
|
||
|
hw->mac_type = e1000_82547_rev_2;
|
||
|
break;
|
||
|
default:
|
||
|
/* Should never have loaded on this device */
|
||
|
return -E1000_ERR_MAC_TYPE;
|
||
|
}
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Set media type and TBI compatibility.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* **************************************************************************/
|
||
|
static void
|
||
|
e1000_set_media_type(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t status;
|
||
|
|
||
|
DEBUGFUNC("e1000_set_media_type");
|
||
|
|
||
|
if(hw->mac_type != e1000_82543) {
|
||
|
/* tbi_compatibility is only valid on 82543 */
|
||
|
hw->tbi_compatibility_en = FALSE;
|
||
|
}
|
||
|
|
||
|
switch (hw->device_id) {
|
||
|
case E1000_DEV_ID_82545GM_SERDES:
|
||
|
case E1000_DEV_ID_82546GB_SERDES:
|
||
|
hw->media_type = e1000_media_type_internal_serdes;
|
||
|
break;
|
||
|
default:
|
||
|
if(hw->mac_type >= e1000_82543) {
|
||
|
status = E1000_READ_REG(hw, STATUS);
|
||
|
if(status & E1000_STATUS_TBIMODE) {
|
||
|
hw->media_type = e1000_media_type_fiber;
|
||
|
/* tbi_compatibility not valid on fiber */
|
||
|
hw->tbi_compatibility_en = FALSE;
|
||
|
} else {
|
||
|
hw->media_type = e1000_media_type_copper;
|
||
|
}
|
||
|
} else {
|
||
|
/* This is an 82542 (fiber only) */
|
||
|
hw->media_type = e1000_media_type_fiber;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Reset the transmit and receive units; mask and clear all interrupts.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_reset_hw(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
uint32_t ctrl_ext;
|
||
|
uint32_t icr;
|
||
|
uint32_t manc;
|
||
|
|
||
|
DEBUGFUNC("e1000_reset_hw");
|
||
|
|
||
|
/* For 82542 (rev 2.0), disable MWI before issuing a device reset */
|
||
|
if(hw->mac_type == e1000_82542_rev2_0) {
|
||
|
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
||
|
e1000_pci_clear_mwi(hw);
|
||
|
}
|
||
|
|
||
|
/* Clear interrupt mask to stop board from generating interrupts */
|
||
|
DEBUGOUT("Masking off all interrupts\n");
|
||
|
E1000_WRITE_REG(hw, IMC, 0xffffffff);
|
||
|
|
||
|
/* Disable the Transmit and Receive units. Then delay to allow
|
||
|
* any pending transactions to complete before we hit the MAC with
|
||
|
* the global reset.
|
||
|
*/
|
||
|
E1000_WRITE_REG(hw, RCTL, 0);
|
||
|
E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
|
||
|
/* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */
|
||
|
hw->tbi_compatibility_on = FALSE;
|
||
|
|
||
|
/* Delay to allow any outstanding PCI transactions to complete before
|
||
|
* resetting the device
|
||
|
*/
|
||
|
mdelay(10);
|
||
|
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
|
||
|
/* Must reset the PHY before resetting the MAC */
|
||
|
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
||
|
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_PHY_RST));
|
||
|
mdelay(5);
|
||
|
}
|
||
|
|
||
|
/* Issue a global reset to the MAC. This will reset the chip's
|
||
|
* transmit, receive, DMA, and link units. It will not effect
|
||
|
* the current PCI configuration. The global reset bit is self-
|
||
|
* clearing, and should clear within a microsecond.
|
||
|
*/
|
||
|
DEBUGOUT("Issuing a global reset to MAC\n");
|
||
|
|
||
|
switch(hw->mac_type) {
|
||
|
case e1000_82544:
|
||
|
case e1000_82540:
|
||
|
case e1000_82545:
|
||
|
case e1000_82546:
|
||
|
case e1000_82541:
|
||
|
case e1000_82541_rev_2:
|
||
|
/* These controllers can't ack the 64-bit write when issuing the
|
||
|
* reset, so use IO-mapping as a workaround to issue the reset */
|
||
|
E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
||
|
break;
|
||
|
case e1000_82545_rev_3:
|
||
|
case e1000_82546_rev_3:
|
||
|
/* Reset is performed on a shadow of the control register */
|
||
|
E1000_WRITE_REG(hw, CTRL_DUP, (ctrl | E1000_CTRL_RST));
|
||
|
break;
|
||
|
default:
|
||
|
E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST));
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* After MAC reset, force reload of EEPROM to restore power-on settings to
|
||
|
* device. Later controllers reload the EEPROM automatically, so just wait
|
||
|
* for reload to complete.
|
||
|
*/
|
||
|
switch(hw->mac_type) {
|
||
|
case e1000_82542_rev2_0:
|
||
|
case e1000_82542_rev2_1:
|
||
|
case e1000_82543:
|
||
|
case e1000_82544:
|
||
|
/* Wait for reset to complete */
|
||
|
udelay(10);
|
||
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
||
|
ctrl_ext |= E1000_CTRL_EXT_EE_RST;
|
||
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
/* Wait for EEPROM reload */
|
||
|
mdelay(2);
|
||
|
break;
|
||
|
case e1000_82541:
|
||
|
case e1000_82541_rev_2:
|
||
|
case e1000_82547:
|
||
|
case e1000_82547_rev_2:
|
||
|
/* Wait for EEPROM reload */
|
||
|
mdelay(20);
|
||
|
break;
|
||
|
default:
|
||
|
/* Wait for EEPROM reload (it happens automatically) */
|
||
|
mdelay(5);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Disable HW ARPs on ASF enabled adapters */
|
||
|
if(hw->mac_type >= e1000_82540) {
|
||
|
manc = E1000_READ_REG(hw, MANC);
|
||
|
manc &= ~(E1000_MANC_ARP_EN);
|
||
|
E1000_WRITE_REG(hw, MANC, manc);
|
||
|
}
|
||
|
|
||
|
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
||
|
e1000_phy_init_script(hw);
|
||
|
}
|
||
|
|
||
|
/* Clear interrupt mask to stop board from generating interrupts */
|
||
|
DEBUGOUT("Masking off all interrupts\n");
|
||
|
E1000_WRITE_REG(hw, IMC, 0xffffffff);
|
||
|
|
||
|
/* Clear any pending interrupt events. */
|
||
|
icr = E1000_READ_REG(hw, ICR);
|
||
|
|
||
|
/* If MWI was previously enabled, reenable it. */
|
||
|
if(hw->mac_type == e1000_82542_rev2_0) {
|
||
|
#ifdef LINUX_DRIVER
|
||
|
if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
||
|
#endif
|
||
|
e1000_pci_set_mwi(hw);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Performs basic configuration of the adapter.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Assumes that the controller has previously been reset and is in a
|
||
|
* post-reset uninitialized state. Initializes the receive address registers,
|
||
|
* multicast table, and VLAN filter table. Calls routines to setup link
|
||
|
* configuration and flow control settings. Clears all on-chip counters. Leaves
|
||
|
* the transmit and receive units disabled and uninitialized.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_init_hw(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl, status;
|
||
|
uint32_t i;
|
||
|
int32_t ret_val;
|
||
|
uint16_t pcix_cmd_word;
|
||
|
uint16_t pcix_stat_hi_word;
|
||
|
uint16_t cmd_mmrbc;
|
||
|
uint16_t stat_mmrbc;
|
||
|
e1000_bus_type bus_type = e1000_bus_type_unknown;
|
||
|
|
||
|
DEBUGFUNC("e1000_init_hw");
|
||
|
|
||
|
/* Set the media type and TBI compatibility */
|
||
|
e1000_set_media_type(hw);
|
||
|
|
||
|
/* Disabling VLAN filtering. */
|
||
|
DEBUGOUT("Initializing the IEEE VLAN\n");
|
||
|
E1000_WRITE_REG(hw, VET, 0);
|
||
|
|
||
|
e1000_clear_vfta(hw);
|
||
|
|
||
|
/* For 82542 (rev 2.0), disable MWI and put the receiver into reset */
|
||
|
if(hw->mac_type == e1000_82542_rev2_0) {
|
||
|
DEBUGOUT("Disabling MWI on 82542 rev 2.0\n");
|
||
|
e1000_pci_clear_mwi(hw);
|
||
|
E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
mdelay(5);
|
||
|
}
|
||
|
|
||
|
/* Setup the receive address. This involves initializing all of the Receive
|
||
|
* Address Registers (RARs 0 - 15).
|
||
|
*/
|
||
|
e1000_init_rx_addrs(hw);
|
||
|
|
||
|
/* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */
|
||
|
if(hw->mac_type == e1000_82542_rev2_0) {
|
||
|
E1000_WRITE_REG(hw, RCTL, 0);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
mdelay(1);
|
||
|
#ifdef LINUX_DRIVER
|
||
|
if(hw->pci_cmd_word & CMD_MEM_WRT_INVALIDATE)
|
||
|
#endif
|
||
|
e1000_pci_set_mwi(hw);
|
||
|
}
|
||
|
|
||
|
/* Zero out the Multicast HASH table */
|
||
|
DEBUGOUT("Zeroing the MTA\n");
|
||
|
for(i = 0; i < E1000_MC_TBL_SIZE; i++)
|
||
|
E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
|
||
|
|
||
|
#if 0
|
||
|
/* Set the PCI priority bit correctly in the CTRL register. This
|
||
|
* determines if the adapter gives priority to receives, or if it
|
||
|
* gives equal priority to transmits and receives.
|
||
|
*/
|
||
|
if(hw->dma_fairness) {
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR);
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
switch(hw->mac_type) {
|
||
|
case e1000_82545_rev_3:
|
||
|
case e1000_82546_rev_3:
|
||
|
break;
|
||
|
default:
|
||
|
if (hw->mac_type >= e1000_82543) {
|
||
|
/* See e1000_get_bus_info() of the Linux driver */
|
||
|
status = E1000_READ_REG(hw, STATUS);
|
||
|
bus_type = (status & E1000_STATUS_PCIX_MODE) ?
|
||
|
e1000_bus_type_pcix : e1000_bus_type_pci;
|
||
|
}
|
||
|
|
||
|
/* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */
|
||
|
if(bus_type == e1000_bus_type_pcix) {
|
||
|
pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, &pcix_cmd_word);
|
||
|
pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, &pcix_stat_hi_word);
|
||
|
cmd_mmrbc = (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >>
|
||
|
PCIX_COMMAND_MMRBC_SHIFT;
|
||
|
stat_mmrbc = (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >>
|
||
|
PCIX_STATUS_HI_MMRBC_SHIFT;
|
||
|
if(stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K)
|
||
|
stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K;
|
||
|
if(cmd_mmrbc > stat_mmrbc) {
|
||
|
pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK;
|
||
|
pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT;
|
||
|
pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, pcix_cmd_word);
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Call a subroutine to configure the link and setup flow control. */
|
||
|
ret_val = e1000_setup_link(hw);
|
||
|
|
||
|
/* Set the transmit descriptor write-back policy */
|
||
|
if(hw->mac_type > e1000_82544) {
|
||
|
ctrl = E1000_READ_REG(hw, TXDCTL);
|
||
|
ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB;
|
||
|
E1000_WRITE_REG(hw, TXDCTL, ctrl);
|
||
|
}
|
||
|
|
||
|
#if 0
|
||
|
/* Clear all of the statistics registers (clear on read). It is
|
||
|
* important that we do this after we have tried to establish link
|
||
|
* because the symbol error count will increment wildly if there
|
||
|
* is no link.
|
||
|
*/
|
||
|
e1000_clear_hw_cntrs(hw);
|
||
|
#endif
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Adjust SERDES output amplitude based on EEPROM setting.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code.
|
||
|
*****************************************************************************/
|
||
|
static int32_t
|
||
|
e1000_adjust_serdes_amplitude(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint16_t eeprom_data;
|
||
|
int32_t ret_val;
|
||
|
|
||
|
DEBUGFUNC("e1000_adjust_serdes_amplitude");
|
||
|
|
||
|
if(hw->media_type != e1000_media_type_internal_serdes)
|
||
|
return E1000_SUCCESS;
|
||
|
|
||
|
switch(hw->mac_type) {
|
||
|
case e1000_82545_rev_3:
|
||
|
case e1000_82546_rev_3:
|
||
|
break;
|
||
|
default:
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
if ((ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1,
|
||
|
&eeprom_data))) {
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
if(eeprom_data != EEPROM_RESERVED_WORD) {
|
||
|
/* Adjust SERDES output amplitude only. */
|
||
|
eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK;
|
||
|
if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL,
|
||
|
eeprom_data)))
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Configures flow control and link settings.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Determines which flow control settings to use. Calls the apropriate media-
|
||
|
* specific link configuration function. Configures the flow control settings.
|
||
|
* Assuming the adapter has a valid link partner, a valid link should be
|
||
|
* established. Assumes the hardware has previously been reset and the
|
||
|
* transmitter and receiver are not enabled.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_setup_link(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl_ext;
|
||
|
int32_t ret_val;
|
||
|
uint16_t eeprom_data;
|
||
|
|
||
|
DEBUGFUNC("e1000_setup_link");
|
||
|
|
||
|
/* Read and store word 0x0F of the EEPROM. This word contains bits
|
||
|
* that determine the hardware's default PAUSE (flow control) mode,
|
||
|
* a bit that determines whether the HW defaults to enabling or
|
||
|
* disabling auto-negotiation, and the direction of the
|
||
|
* SW defined pins. If there is no SW over-ride of the flow
|
||
|
* control setting, then the variable hw->fc will
|
||
|
* be initialized based on a value in the EEPROM.
|
||
|
*/
|
||
|
if(e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data) < 0) {
|
||
|
DEBUGOUT("EEPROM Read Error\n");
|
||
|
return -E1000_ERR_EEPROM;
|
||
|
}
|
||
|
|
||
|
if(hw->fc == e1000_fc_default) {
|
||
|
if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0)
|
||
|
hw->fc = e1000_fc_none;
|
||
|
else if((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) ==
|
||
|
EEPROM_WORD0F_ASM_DIR)
|
||
|
hw->fc = e1000_fc_tx_pause;
|
||
|
else
|
||
|
hw->fc = e1000_fc_full;
|
||
|
}
|
||
|
|
||
|
/* We want to save off the original Flow Control configuration just
|
||
|
* in case we get disconnected and then reconnected into a different
|
||
|
* hub or switch with different Flow Control capabilities.
|
||
|
*/
|
||
|
if(hw->mac_type == e1000_82542_rev2_0)
|
||
|
hw->fc &= (~e1000_fc_tx_pause);
|
||
|
|
||
|
#if 0
|
||
|
/* See e1000_sw_init() of the Linux driver */
|
||
|
if((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1))
|
||
|
#else
|
||
|
if((hw->mac_type < e1000_82543) && (hw->mac_type >= e1000_82543))
|
||
|
#endif
|
||
|
hw->fc &= (~e1000_fc_rx_pause);
|
||
|
|
||
|
#if 0
|
||
|
hw->original_fc = hw->fc;
|
||
|
#endif
|
||
|
|
||
|
DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc);
|
||
|
|
||
|
/* Take the 4 bits from EEPROM word 0x0F that determine the initial
|
||
|
* polarity value for the SW controlled pins, and setup the
|
||
|
* Extended Device Control reg with that info.
|
||
|
* This is needed because one of the SW controlled pins is used for
|
||
|
* signal detection. So this should be done before e1000_setup_pcs_link()
|
||
|
* or e1000_phy_setup() is called.
|
||
|
*/
|
||
|
if(hw->mac_type == e1000_82543) {
|
||
|
ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) <<
|
||
|
SWDPIO__EXT_SHIFT);
|
||
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
||
|
}
|
||
|
|
||
|
/* Call the necessary subroutine to configure the link. */
|
||
|
ret_val = (hw->media_type == e1000_media_type_copper) ?
|
||
|
e1000_setup_copper_link(hw) :
|
||
|
e1000_setup_fiber_serdes_link(hw);
|
||
|
if (ret_val < 0) {
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Initialize the flow control address, type, and PAUSE timer
|
||
|
* registers to their default values. This is done even if flow
|
||
|
* control is disabled, because it does not hurt anything to
|
||
|
* initialize these registers.
|
||
|
*/
|
||
|
DEBUGOUT("Initializing the Flow Control address, type and timer regs\n");
|
||
|
|
||
|
E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW);
|
||
|
E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH);
|
||
|
E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE);
|
||
|
#if 0
|
||
|
E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time);
|
||
|
#else
|
||
|
E1000_WRITE_REG(hw, FCTTV, FC_DEFAULT_TX_TIMER);
|
||
|
#endif
|
||
|
|
||
|
/* Set the flow control receive threshold registers. Normally,
|
||
|
* these registers will be set to a default threshold that may be
|
||
|
* adjusted later by the driver's runtime code. However, if the
|
||
|
* ability to transmit pause frames in not enabled, then these
|
||
|
* registers will be set to 0.
|
||
|
*/
|
||
|
if(!(hw->fc & e1000_fc_tx_pause)) {
|
||
|
E1000_WRITE_REG(hw, FCRTL, 0);
|
||
|
E1000_WRITE_REG(hw, FCRTH, 0);
|
||
|
} else {
|
||
|
/* We need to set up the Receive Threshold high and low water marks
|
||
|
* as well as (optionally) enabling the transmission of XON frames.
|
||
|
*/
|
||
|
#if 0
|
||
|
if(hw->fc_send_xon) {
|
||
|
E1000_WRITE_REG(hw, FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE));
|
||
|
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
|
||
|
} else {
|
||
|
E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water);
|
||
|
E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water);
|
||
|
}
|
||
|
#else
|
||
|
E1000_WRITE_REG(hw, FCRTL, (FC_DEFAULT_LO_THRESH | E1000_FCRTL_XONE));
|
||
|
E1000_WRITE_REG(hw, FCRTH, FC_DEFAULT_HI_THRESH);
|
||
|
#endif
|
||
|
}
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Sets up link for a fiber based or serdes based adapter
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Manipulates Physical Coding Sublayer functions in order to configure
|
||
|
* link. Assumes the hardware has been previously reset and the transmitter
|
||
|
* and receiver are not enabled.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_setup_fiber_serdes_link(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
uint32_t status;
|
||
|
uint32_t txcw = 0;
|
||
|
uint32_t i;
|
||
|
uint32_t signal = 0;
|
||
|
int32_t ret_val;
|
||
|
|
||
|
DEBUGFUNC("e1000_setup_fiber_serdes_link");
|
||
|
|
||
|
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
|
||
|
* set when the optics detect a signal. On older adapters, it will be
|
||
|
* cleared when there is a signal. This applies to fiber media only.
|
||
|
* If we're on serdes media, adjust the output amplitude to value set in
|
||
|
* the EEPROM.
|
||
|
*/
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
if(hw->media_type == e1000_media_type_fiber)
|
||
|
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
||
|
|
||
|
if((ret_val = e1000_adjust_serdes_amplitude(hw)))
|
||
|
return ret_val;
|
||
|
|
||
|
/* Take the link out of reset */
|
||
|
ctrl &= ~(E1000_CTRL_LRST);
|
||
|
|
||
|
#if 0
|
||
|
/* Adjust VCO speed to improve BER performance */
|
||
|
if((ret_val = e1000_set_vco_speed(hw)))
|
||
|
return ret_val;
|
||
|
#endif
|
||
|
|
||
|
e1000_config_collision_dist(hw);
|
||
|
|
||
|
/* Check for a software override of the flow control settings, and setup
|
||
|
* the device accordingly. If auto-negotiation is enabled, then software
|
||
|
* will have to set the "PAUSE" bits to the correct value in the Tranmsit
|
||
|
* Config Word Register (TXCW) and re-start auto-negotiation. However, if
|
||
|
* auto-negotiation is disabled, then software will have to manually
|
||
|
* configure the two flow control enable bits in the CTRL register.
|
||
|
*
|
||
|
* The possible values of the "fc" parameter are:
|
||
|
* 0: Flow control is completely disabled
|
||
|
* 1: Rx flow control is enabled (we can receive pause frames, but
|
||
|
* not send pause frames).
|
||
|
* 2: Tx flow control is enabled (we can send pause frames but we do
|
||
|
* not support receiving pause frames).
|
||
|
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
||
|
*/
|
||
|
switch (hw->fc) {
|
||
|
case e1000_fc_none:
|
||
|
/* Flow control is completely disabled by a software over-ride. */
|
||
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD);
|
||
|
break;
|
||
|
case e1000_fc_rx_pause:
|
||
|
/* RX Flow control is enabled and TX Flow control is disabled by a
|
||
|
* software over-ride. Since there really isn't a way to advertise
|
||
|
* that we are capable of RX Pause ONLY, we will advertise that we
|
||
|
* support both symmetric and asymmetric RX PAUSE. Later, we will
|
||
|
* disable the adapter's ability to send PAUSE frames.
|
||
|
*/
|
||
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
||
|
break;
|
||
|
case e1000_fc_tx_pause:
|
||
|
/* TX Flow control is enabled, and RX Flow control is disabled, by a
|
||
|
* software over-ride.
|
||
|
*/
|
||
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR);
|
||
|
break;
|
||
|
case e1000_fc_full:
|
||
|
/* Flow control (both RX and TX) is enabled by a software over-ride. */
|
||
|
txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK);
|
||
|
break;
|
||
|
default:
|
||
|
DEBUGOUT("Flow control param set incorrectly\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Since auto-negotiation is enabled, take the link out of reset (the link
|
||
|
* will be in reset, because we previously reset the chip). This will
|
||
|
* restart auto-negotiation. If auto-neogtiation is successful then the
|
||
|
* link-up status bit will be set and the flow control enable bits (RFCE
|
||
|
* and TFCE) will be set according to their negotiated value.
|
||
|
*/
|
||
|
DEBUGOUT("Auto-negotiation enabled\n");
|
||
|
|
||
|
E1000_WRITE_REG(hw, TXCW, txcw);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
|
||
|
hw->txcw = txcw;
|
||
|
mdelay(1);
|
||
|
|
||
|
/* If we have a signal (the cable is plugged in) then poll for a "Link-Up"
|
||
|
* indication in the Device Status Register. Time-out if a link isn't
|
||
|
* seen in 500 milliseconds seconds (Auto-negotiation should complete in
|
||
|
* less than 500 milliseconds even if the other end is doing it in SW).
|
||
|
* For internal serdes, we just assume a signal is present, then poll.
|
||
|
*/
|
||
|
if(hw->media_type == e1000_media_type_internal_serdes ||
|
||
|
(E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) {
|
||
|
DEBUGOUT("Looking for Link\n");
|
||
|
for(i = 0; i < (LINK_UP_TIMEOUT / 10); i++) {
|
||
|
mdelay(10);
|
||
|
status = E1000_READ_REG(hw, STATUS);
|
||
|
if(status & E1000_STATUS_LU) break;
|
||
|
}
|
||
|
if(i == (LINK_UP_TIMEOUT / 10)) {
|
||
|
DEBUGOUT("Never got a valid link from auto-neg!!!\n");
|
||
|
hw->autoneg_failed = 1;
|
||
|
/* AutoNeg failed to achieve a link, so we'll call
|
||
|
* e1000_check_for_link. This routine will force the link up if
|
||
|
* we detect a signal. This will allow us to communicate with
|
||
|
* non-autonegotiating link partners.
|
||
|
*/
|
||
|
if((ret_val = e1000_check_for_link(hw))) {
|
||
|
DEBUGOUT("Error while checking for link\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
hw->autoneg_failed = 0;
|
||
|
} else {
|
||
|
hw->autoneg_failed = 0;
|
||
|
DEBUGOUT("Valid Link Found\n");
|
||
|
}
|
||
|
} else {
|
||
|
DEBUGOUT("No Signal Detected\n");
|
||
|
}
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Detects which PHY is present and the speed and duplex
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_setup_copper_link(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
int32_t ret_val;
|
||
|
uint16_t i;
|
||
|
uint16_t phy_data;
|
||
|
|
||
|
DEBUGFUNC("e1000_setup_copper_link");
|
||
|
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
/* With 82543, we need to force speed and duplex on the MAC equal to what
|
||
|
* the PHY speed and duplex configuration is. In addition, we need to
|
||
|
* perform a hardware reset on the PHY to take it out of reset.
|
||
|
*/
|
||
|
if(hw->mac_type > e1000_82543) {
|
||
|
ctrl |= E1000_CTRL_SLU;
|
||
|
ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
} else {
|
||
|
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
e1000_phy_hw_reset(hw);
|
||
|
}
|
||
|
|
||
|
/* Make sure we have a valid PHY */
|
||
|
if((ret_val = e1000_detect_gig_phy(hw))) {
|
||
|
DEBUGOUT("Error, did not detect valid phy.\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
DEBUGOUT1("Phy ID = %x \n", hw->phy_id);
|
||
|
|
||
|
if(hw->mac_type <= e1000_82543 ||
|
||
|
hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 ||
|
||
|
#if 0
|
||
|
hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2)
|
||
|
hw->phy_reset_disable = FALSE;
|
||
|
|
||
|
if(!hw->phy_reset_disable) {
|
||
|
#else
|
||
|
hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) {
|
||
|
#endif
|
||
|
if (hw->phy_type == e1000_phy_igp) {
|
||
|
|
||
|
if((ret_val = e1000_phy_reset(hw))) {
|
||
|
DEBUGOUT("Error Resetting the PHY\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Wait 10ms for MAC to configure PHY from eeprom settings */
|
||
|
mdelay(15);
|
||
|
|
||
|
#if 0
|
||
|
/* disable lplu d3 during driver init */
|
||
|
if((ret_val = e1000_set_d3_lplu_state(hw, FALSE))) {
|
||
|
DEBUGOUT("Error Disabling LPLU D3\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* Configure mdi-mdix settings */
|
||
|
if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
if((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) {
|
||
|
hw->dsp_config_state = e1000_dsp_config_disabled;
|
||
|
/* Force MDI for IGP B-0 PHY */
|
||
|
phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX |
|
||
|
IGP01E1000_PSCR_FORCE_MDI_MDIX);
|
||
|
hw->mdix = 1;
|
||
|
|
||
|
} else {
|
||
|
hw->dsp_config_state = e1000_dsp_config_enabled;
|
||
|
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
|
||
|
|
||
|
switch (hw->mdix) {
|
||
|
case 1:
|
||
|
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
||
|
break;
|
||
|
case 2:
|
||
|
phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
|
||
|
break;
|
||
|
case 0:
|
||
|
default:
|
||
|
phy_data |= IGP01E1000_PSCR_AUTO_MDIX;
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
if((ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL,
|
||
|
phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
/* set auto-master slave resolution settings */
|
||
|
e1000_ms_type phy_ms_setting = hw->master_slave;
|
||
|
|
||
|
if(hw->ffe_config_state == e1000_ffe_config_active)
|
||
|
hw->ffe_config_state = e1000_ffe_config_enabled;
|
||
|
|
||
|
if(hw->dsp_config_state == e1000_dsp_config_activated)
|
||
|
hw->dsp_config_state = e1000_dsp_config_enabled;
|
||
|
#endif
|
||
|
|
||
|
/* when autonegotiation advertisment is only 1000Mbps then we
|
||
|
* should disable SmartSpeed and enable Auto MasterSlave
|
||
|
* resolution as hardware default. */
|
||
|
if(hw->autoneg_advertised == ADVERTISE_1000_FULL) {
|
||
|
/* Disable SmartSpeed */
|
||
|
if((ret_val = e1000_read_phy_reg(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED;
|
||
|
if((ret_val = e1000_write_phy_reg(hw,
|
||
|
IGP01E1000_PHY_PORT_CONFIG,
|
||
|
phy_data)))
|
||
|
return ret_val;
|
||
|
/* Set auto Master/Slave resolution process */
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
phy_data &= ~CR_1000T_MS_ENABLE;
|
||
|
if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
|
||
|
phy_data)))
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
#if 0
|
||
|
/* load defaults for future use */
|
||
|
hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ?
|
||
|
((phy_data & CR_1000T_MS_VALUE) ?
|
||
|
e1000_ms_force_master :
|
||
|
e1000_ms_force_slave) :
|
||
|
e1000_ms_auto;
|
||
|
|
||
|
switch (phy_ms_setting) {
|
||
|
case e1000_ms_force_master:
|
||
|
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
|
||
|
break;
|
||
|
case e1000_ms_force_slave:
|
||
|
phy_data |= CR_1000T_MS_ENABLE;
|
||
|
phy_data &= ~(CR_1000T_MS_VALUE);
|
||
|
break;
|
||
|
case e1000_ms_auto:
|
||
|
phy_data &= ~CR_1000T_MS_ENABLE;
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL,
|
||
|
phy_data)))
|
||
|
return ret_val;
|
||
|
} else {
|
||
|
/* Enable CRS on TX. This must be set for half-duplex operation. */
|
||
|
if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
|
||
|
|
||
|
/* Options:
|
||
|
* MDI/MDI-X = 0 (default)
|
||
|
* 0 - Auto for all speeds
|
||
|
* 1 - MDI mode
|
||
|
* 2 - MDI-X mode
|
||
|
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
|
||
|
*/
|
||
|
#if 0
|
||
|
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
|
||
|
|
||
|
switch (hw->mdix) {
|
||
|
case 1:
|
||
|
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
|
||
|
break;
|
||
|
case 2:
|
||
|
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
|
||
|
break;
|
||
|
case 3:
|
||
|
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
|
||
|
break;
|
||
|
case 0:
|
||
|
default:
|
||
|
#endif
|
||
|
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
|
||
|
#if 0
|
||
|
break;
|
||
|
}
|
||
|
#endif
|
||
|
|
||
|
/* Options:
|
||
|
* disable_polarity_correction = 0 (default)
|
||
|
* Automatic Correction for Reversed Cable Polarity
|
||
|
* 0 - Disabled
|
||
|
* 1 - Enabled
|
||
|
*/
|
||
|
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
|
||
|
if((ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL,
|
||
|
phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
/* Force TX_CLK in the Extended PHY Specific Control Register
|
||
|
* to 25MHz clock.
|
||
|
*/
|
||
|
if((ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= M88E1000_EPSCR_TX_CLK_25;
|
||
|
|
||
|
#ifdef LINUX_DRIVER
|
||
|
if (hw->phy_revision < M88E1011_I_REV_4) {
|
||
|
#endif
|
||
|
/* Configure Master and Slave downshift values */
|
||
|
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
|
||
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
|
||
|
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
|
||
|
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
|
||
|
if((ret_val = e1000_write_phy_reg(hw,
|
||
|
M88E1000_EXT_PHY_SPEC_CTRL,
|
||
|
phy_data)))
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* SW Reset the PHY so all changes take effect */
|
||
|
if((ret_val = e1000_phy_reset(hw))) {
|
||
|
DEBUGOUT("Error Resetting the PHY\n");
|
||
|
return ret_val;
|
||
|
#ifdef LINUX_DRIVER
|
||
|
}
|
||
|
#endif
|
||
|
}
|
||
|
|
||
|
/* Options:
|
||
|
* autoneg = 1 (default)
|
||
|
* PHY will advertise value(s) parsed from
|
||
|
* autoneg_advertised and fc
|
||
|
* autoneg = 0
|
||
|
* PHY will be set to 10H, 10F, 100H, or 100F
|
||
|
* depending on value parsed from forced_speed_duplex.
|
||
|
*/
|
||
|
|
||
|
/* Is autoneg enabled? This is enabled by default or by software
|
||
|
* override. If so, call e1000_phy_setup_autoneg routine to parse the
|
||
|
* autoneg_advertised and fc options. If autoneg is NOT enabled, then
|
||
|
* the user should have provided a speed/duplex override. If so, then
|
||
|
* call e1000_phy_force_speed_duplex to parse and set this up.
|
||
|
*/
|
||
|
/* Perform some bounds checking on the hw->autoneg_advertised
|
||
|
* parameter. If this variable is zero, then set it to the default.
|
||
|
*/
|
||
|
hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
||
|
|
||
|
/* If autoneg_advertised is zero, we assume it was not defaulted
|
||
|
* by the calling code so we set to advertise full capability.
|
||
|
*/
|
||
|
if(hw->autoneg_advertised == 0)
|
||
|
hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT;
|
||
|
|
||
|
DEBUGOUT("Reconfiguring auto-neg advertisement params\n");
|
||
|
if((ret_val = e1000_phy_setup_autoneg(hw))) {
|
||
|
DEBUGOUT("Error Setting up Auto-Negotiation\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
DEBUGOUT("Restarting Auto-Neg\n");
|
||
|
|
||
|
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
|
||
|
* the Auto Neg Restart bit in the PHY control register.
|
||
|
*/
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
|
||
|
if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
#if 0
|
||
|
/* Does the user want to wait for Auto-Neg to complete here, or
|
||
|
* check at a later time (for example, callback routine).
|
||
|
*/
|
||
|
if(hw->wait_autoneg_complete) {
|
||
|
if((ret_val = e1000_wait_autoneg(hw))) {
|
||
|
DEBUGOUT("Error while waiting for autoneg to complete\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
#else
|
||
|
/* If we do not wait for autonegotiation to complete I
|
||
|
* do not see a valid link status.
|
||
|
*/
|
||
|
if((ret_val = e1000_wait_autoneg(hw))) {
|
||
|
DEBUGOUT("Error while waiting for autoneg to complete\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
#endif
|
||
|
} /* !hw->phy_reset_disable */
|
||
|
|
||
|
/* Check link status. Wait up to 100 microseconds for link to become
|
||
|
* valid.
|
||
|
*/
|
||
|
for(i = 0; i < 10; i++) {
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
||
|
return ret_val;
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
if(phy_data & MII_SR_LINK_STATUS) {
|
||
|
/* We have link, so we need to finish the config process:
|
||
|
* 1) Set up the MAC to the current PHY speed/duplex
|
||
|
* if we are on 82543. If we
|
||
|
* are on newer silicon, we only need to configure
|
||
|
* collision distance in the Transmit Control Register.
|
||
|
* 2) Set up flow control on the MAC to that established with
|
||
|
* the link partner.
|
||
|
*/
|
||
|
if(hw->mac_type >= e1000_82544) {
|
||
|
e1000_config_collision_dist(hw);
|
||
|
} else {
|
||
|
if((ret_val = e1000_config_mac_to_phy(hw))) {
|
||
|
DEBUGOUT("Error configuring MAC to PHY settings\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
if((ret_val = e1000_config_fc_after_link_up(hw))) {
|
||
|
DEBUGOUT("Error Configuring Flow Control\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
#if 0
|
||
|
if(hw->phy_type == e1000_phy_igp) {
|
||
|
if((ret_val = e1000_config_dsp_after_link_change(hw, TRUE))) {
|
||
|
DEBUGOUT("Error Configuring DSP after link up\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
DEBUGOUT("Valid link established!!!\n");
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
udelay(10);
|
||
|
}
|
||
|
|
||
|
DEBUGOUT("Unable to establish link!!!\n");
|
||
|
return -E1000_ERR_NOLINK;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Configures PHY autoneg and flow control advertisement settings
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_phy_setup_autoneg(struct e1000_hw *hw)
|
||
|
{
|
||
|
int32_t ret_val;
|
||
|
uint16_t mii_autoneg_adv_reg;
|
||
|
uint16_t mii_1000t_ctrl_reg;
|
||
|
|
||
|
DEBUGFUNC("e1000_phy_setup_autoneg");
|
||
|
|
||
|
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
||
|
&mii_autoneg_adv_reg)))
|
||
|
return ret_val;
|
||
|
|
||
|
/* Read the MII 1000Base-T Control Register (Address 9). */
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg)))
|
||
|
return ret_val;
|
||
|
|
||
|
/* Need to parse both autoneg_advertised and fc and set up
|
||
|
* the appropriate PHY registers. First we will parse for
|
||
|
* autoneg_advertised software override. Since we can advertise
|
||
|
* a plethora of combinations, we need to check each bit
|
||
|
* individually.
|
||
|
*/
|
||
|
|
||
|
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
|
||
|
* Advertisement Register (Address 4) and the 1000 mb speed bits in
|
||
|
* the 1000Base-T Control Register (Address 9).
|
||
|
*/
|
||
|
mii_autoneg_adv_reg &= ~REG4_SPEED_MASK;
|
||
|
mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK;
|
||
|
|
||
|
DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised);
|
||
|
|
||
|
/* Do we want to advertise 10 Mb Half Duplex? */
|
||
|
if(hw->autoneg_advertised & ADVERTISE_10_HALF) {
|
||
|
DEBUGOUT("Advertise 10mb Half duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 10 Mb Full Duplex? */
|
||
|
if(hw->autoneg_advertised & ADVERTISE_10_FULL) {
|
||
|
DEBUGOUT("Advertise 10mb Full duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 100 Mb Half Duplex? */
|
||
|
if(hw->autoneg_advertised & ADVERTISE_100_HALF) {
|
||
|
DEBUGOUT("Advertise 100mb Half duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 100 Mb Full Duplex? */
|
||
|
if(hw->autoneg_advertised & ADVERTISE_100_FULL) {
|
||
|
DEBUGOUT("Advertise 100mb Full duplex\n");
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
|
||
|
if(hw->autoneg_advertised & ADVERTISE_1000_HALF) {
|
||
|
DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n");
|
||
|
}
|
||
|
|
||
|
/* Do we want to advertise 1000 Mb Full Duplex? */
|
||
|
if(hw->autoneg_advertised & ADVERTISE_1000_FULL) {
|
||
|
DEBUGOUT("Advertise 1000mb Full duplex\n");
|
||
|
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
|
||
|
}
|
||
|
|
||
|
/* Check for a software override of the flow control settings, and
|
||
|
* setup the PHY advertisement registers accordingly. If
|
||
|
* auto-negotiation is enabled, then software will have to set the
|
||
|
* "PAUSE" bits to the correct value in the Auto-Negotiation
|
||
|
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation.
|
||
|
*
|
||
|
* The possible values of the "fc" parameter are:
|
||
|
* 0: Flow control is completely disabled
|
||
|
* 1: Rx flow control is enabled (we can receive pause frames
|
||
|
* but not send pause frames).
|
||
|
* 2: Tx flow control is enabled (we can send pause frames
|
||
|
* but we do not support receiving pause frames).
|
||
|
* 3: Both Rx and TX flow control (symmetric) are enabled.
|
||
|
* other: No software override. The flow control configuration
|
||
|
* in the EEPROM is used.
|
||
|
*/
|
||
|
switch (hw->fc) {
|
||
|
case e1000_fc_none: /* 0 */
|
||
|
/* Flow control (RX & TX) is completely disabled by a
|
||
|
* software over-ride.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||
|
break;
|
||
|
case e1000_fc_rx_pause: /* 1 */
|
||
|
/* RX Flow control is enabled, and TX Flow control is
|
||
|
* disabled, by a software over-ride.
|
||
|
*/
|
||
|
/* Since there really isn't a way to advertise that we are
|
||
|
* capable of RX Pause ONLY, we will advertise that we
|
||
|
* support both symmetric and asymmetric RX PAUSE. Later
|
||
|
* (in e1000_config_fc_after_link_up) we will disable the
|
||
|
*hw's ability to send PAUSE frames.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||
|
break;
|
||
|
case e1000_fc_tx_pause: /* 2 */
|
||
|
/* TX Flow control is enabled, and RX Flow control is
|
||
|
* disabled, by a software over-ride.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
|
||
|
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
|
||
|
break;
|
||
|
case e1000_fc_full: /* 3 */
|
||
|
/* Flow control (both RX and TX) is enabled by a software
|
||
|
* over-ride.
|
||
|
*/
|
||
|
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
|
||
|
break;
|
||
|
default:
|
||
|
DEBUGOUT("Flow control param set incorrectly\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
if((ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV,
|
||
|
mii_autoneg_adv_reg)))
|
||
|
return ret_val;
|
||
|
|
||
|
DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
|
||
|
|
||
|
if((ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg)))
|
||
|
return ret_val;
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Sets the collision distance in the Transmit Control register
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Link should have been established previously. Reads the speed and duplex
|
||
|
* information from the Device Status register.
|
||
|
******************************************************************************/
|
||
|
static void
|
||
|
e1000_config_collision_dist(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t tctl;
|
||
|
|
||
|
tctl = E1000_READ_REG(hw, TCTL);
|
||
|
|
||
|
tctl &= ~E1000_TCTL_COLD;
|
||
|
tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
|
||
|
|
||
|
E1000_WRITE_REG(hw, TCTL, tctl);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Sets MAC speed and duplex settings to reflect the those in the PHY
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* mii_reg - data to write to the MII control register
|
||
|
*
|
||
|
* The contents of the PHY register containing the needed information need to
|
||
|
* be passed in.
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_config_mac_to_phy(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
int32_t ret_val;
|
||
|
uint16_t phy_data;
|
||
|
|
||
|
DEBUGFUNC("e1000_config_mac_to_phy");
|
||
|
|
||
|
/* Read the Device Control Register and set the bits to Force Speed
|
||
|
* and Duplex.
|
||
|
*/
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
|
||
|
ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS);
|
||
|
|
||
|
/* Set up duplex in the Device Control and Transmit Control
|
||
|
* registers depending on negotiated values.
|
||
|
*/
|
||
|
if (hw->phy_type == e1000_phy_igp) {
|
||
|
if((ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
if(phy_data & IGP01E1000_PSSR_FULL_DUPLEX) ctrl |= E1000_CTRL_FD;
|
||
|
else ctrl &= ~E1000_CTRL_FD;
|
||
|
|
||
|
e1000_config_collision_dist(hw);
|
||
|
|
||
|
/* Set up speed in the Device Control register depending on
|
||
|
* negotiated values.
|
||
|
*/
|
||
|
if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
||
|
IGP01E1000_PSSR_SPEED_1000MBPS)
|
||
|
ctrl |= E1000_CTRL_SPD_1000;
|
||
|
else if((phy_data & IGP01E1000_PSSR_SPEED_MASK) ==
|
||
|
IGP01E1000_PSSR_SPEED_100MBPS)
|
||
|
ctrl |= E1000_CTRL_SPD_100;
|
||
|
} else {
|
||
|
if((ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS,
|
||
|
&phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
if(phy_data & M88E1000_PSSR_DPLX) ctrl |= E1000_CTRL_FD;
|
||
|
else ctrl &= ~E1000_CTRL_FD;
|
||
|
|
||
|
e1000_config_collision_dist(hw);
|
||
|
|
||
|
/* Set up speed in the Device Control register depending on
|
||
|
* negotiated values.
|
||
|
*/
|
||
|
if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS)
|
||
|
ctrl |= E1000_CTRL_SPD_1000;
|
||
|
else if((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS)
|
||
|
ctrl |= E1000_CTRL_SPD_100;
|
||
|
}
|
||
|
/* Write the configured values back to the Device Control Reg. */
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Forces the MAC's flow control settings.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Sets the TFCE and RFCE bits in the device control register to reflect
|
||
|
* the adapter settings. TFCE and RFCE need to be explicitly set by
|
||
|
* software when a Copper PHY is used because autonegotiation is managed
|
||
|
* by the PHY rather than the MAC. Software must also configure these
|
||
|
* bits when link is forced on a fiber connection.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_force_mac_fc(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
|
||
|
DEBUGFUNC("e1000_force_mac_fc");
|
||
|
|
||
|
/* Get the current configuration of the Device Control Register */
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
|
||
|
/* Because we didn't get link via the internal auto-negotiation
|
||
|
* mechanism (we either forced link or we got link via PHY
|
||
|
* auto-neg), we have to manually enable/disable transmit an
|
||
|
* receive flow control.
|
||
|
*
|
||
|
* The "Case" statement below enables/disable flow control
|
||
|
* according to the "hw->fc" parameter.
|
||
|
*
|
||
|
* The possible values of the "fc" parameter are:
|
||
|
* 0: Flow control is completely disabled
|
||
|
* 1: Rx flow control is enabled (we can receive pause
|
||
|
* frames but not send pause frames).
|
||
|
* 2: Tx flow control is enabled (we can send pause frames
|
||
|
* frames but we do not receive pause frames).
|
||
|
* 3: Both Rx and TX flow control (symmetric) is enabled.
|
||
|
* other: No other values should be possible at this point.
|
||
|
*/
|
||
|
|
||
|
switch (hw->fc) {
|
||
|
case e1000_fc_none:
|
||
|
ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
|
||
|
break;
|
||
|
case e1000_fc_rx_pause:
|
||
|
ctrl &= (~E1000_CTRL_TFCE);
|
||
|
ctrl |= E1000_CTRL_RFCE;
|
||
|
break;
|
||
|
case e1000_fc_tx_pause:
|
||
|
ctrl &= (~E1000_CTRL_RFCE);
|
||
|
ctrl |= E1000_CTRL_TFCE;
|
||
|
break;
|
||
|
case e1000_fc_full:
|
||
|
ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
|
||
|
break;
|
||
|
default:
|
||
|
DEBUGOUT("Flow control param set incorrectly\n");
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
|
||
|
/* Disable TX Flow Control for 82542 (rev 2.0) */
|
||
|
if(hw->mac_type == e1000_82542_rev2_0)
|
||
|
ctrl &= (~E1000_CTRL_TFCE);
|
||
|
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Configures flow control settings after link is established
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Should be called immediately after a valid link has been established.
|
||
|
* Forces MAC flow control settings if link was forced. When in MII/GMII mode
|
||
|
* and autonegotiation is enabled, the MAC flow control settings will be set
|
||
|
* based on the flow control negotiated by the PHY. In TBI mode, the TFCE
|
||
|
* and RFCE bits will be automaticaly set to the negotiated flow control mode.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_config_fc_after_link_up(struct e1000_hw *hw)
|
||
|
{
|
||
|
int32_t ret_val;
|
||
|
uint16_t mii_status_reg;
|
||
|
uint16_t mii_nway_adv_reg;
|
||
|
uint16_t mii_nway_lp_ability_reg;
|
||
|
uint16_t speed;
|
||
|
uint16_t duplex;
|
||
|
|
||
|
DEBUGFUNC("e1000_config_fc_after_link_up");
|
||
|
|
||
|
/* Check for the case where we have fiber media and auto-neg failed
|
||
|
* so we had to force link. In this case, we need to force the
|
||
|
* configuration of the MAC to match the "fc" parameter.
|
||
|
*/
|
||
|
if(((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) ||
|
||
|
((hw->media_type == e1000_media_type_internal_serdes) && (hw->autoneg_failed))) {
|
||
|
if((ret_val = e1000_force_mac_fc(hw))) {
|
||
|
DEBUGOUT("Error forcing flow control settings\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Check for the case where we have copper media and auto-neg is
|
||
|
* enabled. In this case, we need to check and see if Auto-Neg
|
||
|
* has completed, and if so, how the PHY and link partner has
|
||
|
* flow control configured.
|
||
|
*/
|
||
|
if(hw->media_type == e1000_media_type_copper) {
|
||
|
/* Read the MII Status Register and check to see if AutoNeg
|
||
|
* has completed. We read this twice because this reg has
|
||
|
* some "sticky" (latched) bits.
|
||
|
*/
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
|
||
|
return ret_val;
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg)))
|
||
|
return ret_val;
|
||
|
|
||
|
if(mii_status_reg & MII_SR_AUTONEG_COMPLETE) {
|
||
|
/* The AutoNeg process has completed, so we now need to
|
||
|
* read both the Auto Negotiation Advertisement Register
|
||
|
* (Address 4) and the Auto_Negotiation Base Page Ability
|
||
|
* Register (Address 5) to determine how flow control was
|
||
|
* negotiated.
|
||
|
*/
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV,
|
||
|
&mii_nway_adv_reg)))
|
||
|
return ret_val;
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
|
||
|
&mii_nway_lp_ability_reg)))
|
||
|
return ret_val;
|
||
|
|
||
|
/* Two bits in the Auto Negotiation Advertisement Register
|
||
|
* (Address 4) and two bits in the Auto Negotiation Base
|
||
|
* Page Ability Register (Address 5) determine flow control
|
||
|
* for both the PHY and the link partner. The following
|
||
|
* table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
|
||
|
* 1999, describes these PAUSE resolution bits and how flow
|
||
|
* control is determined based upon these settings.
|
||
|
* NOTE: DC = Don't Care
|
||
|
*
|
||
|
* LOCAL DEVICE | LINK PARTNER
|
||
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
|
||
|
*-------|---------|-------|---------|--------------------
|
||
|
* 0 | 0 | DC | DC | e1000_fc_none
|
||
|
* 0 | 1 | 0 | DC | e1000_fc_none
|
||
|
* 0 | 1 | 1 | 0 | e1000_fc_none
|
||
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
||
|
* 1 | 0 | 0 | DC | e1000_fc_none
|
||
|
* 1 | DC | 1 | DC | e1000_fc_full
|
||
|
* 1 | 1 | 0 | 0 | e1000_fc_none
|
||
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
||
|
*
|
||
|
*/
|
||
|
/* Are both PAUSE bits set to 1? If so, this implies
|
||
|
* Symmetric Flow Control is enabled at both ends. The
|
||
|
* ASM_DIR bits are irrelevant per the spec.
|
||
|
*
|
||
|
* For Symmetric Flow Control:
|
||
|
*
|
||
|
* LOCAL DEVICE | LINK PARTNER
|
||
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
||
|
*-------|---------|-------|---------|--------------------
|
||
|
* 1 | DC | 1 | DC | e1000_fc_full
|
||
|
*
|
||
|
*/
|
||
|
if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
||
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
|
||
|
/* Now we need to check if the user selected RX ONLY
|
||
|
* of pause frames. In this case, we had to advertise
|
||
|
* FULL flow control because we could not advertise RX
|
||
|
* ONLY. Hence, we must now check to see if we need to
|
||
|
* turn OFF the TRANSMISSION of PAUSE frames.
|
||
|
*/
|
||
|
#if 0
|
||
|
if(hw->original_fc == e1000_fc_full) {
|
||
|
hw->fc = e1000_fc_full;
|
||
|
#else
|
||
|
if(hw->fc == e1000_fc_full) {
|
||
|
#endif
|
||
|
DEBUGOUT("Flow Control = FULL.\r\n");
|
||
|
} else {
|
||
|
hw->fc = e1000_fc_rx_pause;
|
||
|
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
|
||
|
}
|
||
|
}
|
||
|
/* For receiving PAUSE frames ONLY.
|
||
|
*
|
||
|
* LOCAL DEVICE | LINK PARTNER
|
||
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
||
|
*-------|---------|-------|---------|--------------------
|
||
|
* 0 | 1 | 1 | 1 | e1000_fc_tx_pause
|
||
|
*
|
||
|
*/
|
||
|
else if(!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
||
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
||
|
(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
||
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
||
|
hw->fc = e1000_fc_tx_pause;
|
||
|
DEBUGOUT("Flow Control = TX PAUSE frames only.\r\n");
|
||
|
}
|
||
|
/* For transmitting PAUSE frames ONLY.
|
||
|
*
|
||
|
* LOCAL DEVICE | LINK PARTNER
|
||
|
* PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
|
||
|
*-------|---------|-------|---------|--------------------
|
||
|
* 1 | 1 | 0 | 1 | e1000_fc_rx_pause
|
||
|
*
|
||
|
*/
|
||
|
else if((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
|
||
|
(mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
|
||
|
!(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
|
||
|
(mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
|
||
|
hw->fc = e1000_fc_rx_pause;
|
||
|
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
|
||
|
}
|
||
|
/* Per the IEEE spec, at this point flow control should be
|
||
|
* disabled. However, we want to consider that we could
|
||
|
* be connected to a legacy switch that doesn't advertise
|
||
|
* desired flow control, but can be forced on the link
|
||
|
* partner. So if we advertised no flow control, that is
|
||
|
* what we will resolve to. If we advertised some kind of
|
||
|
* receive capability (Rx Pause Only or Full Flow Control)
|
||
|
* and the link partner advertised none, we will configure
|
||
|
* ourselves to enable Rx Flow Control only. We can do
|
||
|
* this safely for two reasons: If the link partner really
|
||
|
* didn't want flow control enabled, and we enable Rx, no
|
||
|
* harm done since we won't be receiving any PAUSE frames
|
||
|
* anyway. If the intent on the link partner was to have
|
||
|
* flow control enabled, then by us enabling RX only, we
|
||
|
* can at least receive pause frames and process them.
|
||
|
* This is a good idea because in most cases, since we are
|
||
|
* predominantly a server NIC, more times than not we will
|
||
|
* be asked to delay transmission of packets than asking
|
||
|
* our link partner to pause transmission of frames.
|
||
|
*/
|
||
|
#if 0
|
||
|
else if(hw->original_fc == e1000_fc_none ||
|
||
|
hw->original_fc == e1000_fc_tx_pause) {
|
||
|
#else
|
||
|
else if(hw->fc == e1000_fc_none)
|
||
|
DEBUGOUT("Flow Control = NONE.\r\n");
|
||
|
else if(hw->fc == e1000_fc_tx_pause) {
|
||
|
#endif
|
||
|
hw->fc = e1000_fc_none;
|
||
|
DEBUGOUT("Flow Control = NONE.\r\n");
|
||
|
} else {
|
||
|
hw->fc = e1000_fc_rx_pause;
|
||
|
DEBUGOUT("Flow Control = RX PAUSE frames only.\r\n");
|
||
|
}
|
||
|
|
||
|
/* Now we need to do one last check... If we auto-
|
||
|
* negotiated to HALF DUPLEX, flow control should not be
|
||
|
* enabled per IEEE 802.3 spec.
|
||
|
*/
|
||
|
e1000_get_speed_and_duplex(hw, &speed, &duplex);
|
||
|
|
||
|
if(duplex == HALF_DUPLEX)
|
||
|
hw->fc = e1000_fc_none;
|
||
|
|
||
|
/* Now we call a subroutine to actually force the MAC
|
||
|
* controller to use the correct flow control settings.
|
||
|
*/
|
||
|
if((ret_val = e1000_force_mac_fc(hw))) {
|
||
|
DEBUGOUT("Error forcing flow control settings\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
} else {
|
||
|
DEBUGOUT("Copper PHY and Auto Neg has not completed.\r\n");
|
||
|
}
|
||
|
}
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Checks to see if the link status of the hardware has changed.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Called by any function that needs to check the link status of the adapter.
|
||
|
*****************************************************************************/
|
||
|
static int
|
||
|
e1000_check_for_link(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t rxcw;
|
||
|
uint32_t ctrl;
|
||
|
uint32_t status;
|
||
|
uint32_t rctl;
|
||
|
uint32_t signal = 0;
|
||
|
int32_t ret_val;
|
||
|
uint16_t phy_data;
|
||
|
uint16_t lp_capability;
|
||
|
|
||
|
DEBUGFUNC("e1000_check_for_link");
|
||
|
|
||
|
/* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be
|
||
|
* set when the optics detect a signal. On older adapters, it will be
|
||
|
* cleared when there is a signal. This applies to fiber media only.
|
||
|
*/
|
||
|
if(hw->media_type == e1000_media_type_fiber)
|
||
|
signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0;
|
||
|
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
status = E1000_READ_REG(hw, STATUS);
|
||
|
rxcw = E1000_READ_REG(hw, RXCW);
|
||
|
|
||
|
/* If we have a copper PHY then we only want to go out to the PHY
|
||
|
* registers to see if Auto-Neg has completed and/or if our link
|
||
|
* status has changed. The get_link_status flag will be set if we
|
||
|
* receive a Link Status Change interrupt or we have Rx Sequence
|
||
|
* Errors.
|
||
|
*/
|
||
|
#if 0
|
||
|
if((hw->media_type == e1000_media_type_copper) && hw->get_link_status) {
|
||
|
#else
|
||
|
if(hw->media_type == e1000_media_type_copper) {
|
||
|
#endif
|
||
|
/* First we want to see if the MII Status Register reports
|
||
|
* link. If so, then we want to get the current speed/duplex
|
||
|
* of the PHY.
|
||
|
* Read the register twice since the link bit is sticky.
|
||
|
*/
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
||
|
return ret_val;
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
if(phy_data & MII_SR_LINK_STATUS) {
|
||
|
#if 0
|
||
|
hw->get_link_status = FALSE;
|
||
|
#endif
|
||
|
} else {
|
||
|
/* No link detected */
|
||
|
return -E1000_ERR_NOLINK;
|
||
|
}
|
||
|
|
||
|
/* We have a M88E1000 PHY and Auto-Neg is enabled. If we
|
||
|
* have Si on board that is 82544 or newer, Auto
|
||
|
* Speed Detection takes care of MAC speed/duplex
|
||
|
* configuration. So we only need to configure Collision
|
||
|
* Distance in the MAC. Otherwise, we need to force
|
||
|
* speed/duplex on the MAC to the current PHY speed/duplex
|
||
|
* settings.
|
||
|
*/
|
||
|
if(hw->mac_type >= e1000_82544)
|
||
|
e1000_config_collision_dist(hw);
|
||
|
else {
|
||
|
if((ret_val = e1000_config_mac_to_phy(hw))) {
|
||
|
DEBUGOUT("Error configuring MAC to PHY settings\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* Configure Flow Control now that Auto-Neg has completed. First, we
|
||
|
* need to restore the desired flow control settings because we may
|
||
|
* have had to re-autoneg with a different link partner.
|
||
|
*/
|
||
|
if((ret_val = e1000_config_fc_after_link_up(hw))) {
|
||
|
DEBUGOUT("Error configuring flow control\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
/* At this point we know that we are on copper and we have
|
||
|
* auto-negotiated link. These are conditions for checking the link
|
||
|
* parter capability register. We use the link partner capability to
|
||
|
* determine if TBI Compatibility needs to be turned on or off. If
|
||
|
* the link partner advertises any speed in addition to Gigabit, then
|
||
|
* we assume that they are GMII-based, and TBI compatibility is not
|
||
|
* needed. If no other speeds are advertised, we assume the link
|
||
|
* partner is TBI-based, and we turn on TBI Compatibility.
|
||
|
*/
|
||
|
if(hw->tbi_compatibility_en) {
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY,
|
||
|
&lp_capability)))
|
||
|
return ret_val;
|
||
|
if(lp_capability & (NWAY_LPAR_10T_HD_CAPS |
|
||
|
NWAY_LPAR_10T_FD_CAPS |
|
||
|
NWAY_LPAR_100TX_HD_CAPS |
|
||
|
NWAY_LPAR_100TX_FD_CAPS |
|
||
|
NWAY_LPAR_100T4_CAPS)) {
|
||
|
/* If our link partner advertises anything in addition to
|
||
|
* gigabit, we do not need to enable TBI compatibility.
|
||
|
*/
|
||
|
if(hw->tbi_compatibility_on) {
|
||
|
/* If we previously were in the mode, turn it off. */
|
||
|
rctl = E1000_READ_REG(hw, RCTL);
|
||
|
rctl &= ~E1000_RCTL_SBP;
|
||
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
||
|
hw->tbi_compatibility_on = FALSE;
|
||
|
}
|
||
|
} else {
|
||
|
/* If TBI compatibility is was previously off, turn it on. For
|
||
|
* compatibility with a TBI link partner, we will store bad
|
||
|
* packets. Some frames have an additional byte on the end and
|
||
|
* will look like CRC errors to to the hardware.
|
||
|
*/
|
||
|
if(!hw->tbi_compatibility_on) {
|
||
|
hw->tbi_compatibility_on = TRUE;
|
||
|
rctl = E1000_READ_REG(hw, RCTL);
|
||
|
rctl |= E1000_RCTL_SBP;
|
||
|
E1000_WRITE_REG(hw, RCTL, rctl);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
/* If we don't have link (auto-negotiation failed or link partner cannot
|
||
|
* auto-negotiate), the cable is plugged in (we have signal), and our
|
||
|
* link partner is not trying to auto-negotiate with us (we are receiving
|
||
|
* idles or data), we need to force link up. We also need to give
|
||
|
* auto-negotiation time to complete, in case the cable was just plugged
|
||
|
* in. The autoneg_failed flag does this.
|
||
|
*/
|
||
|
else if((((hw->media_type == e1000_media_type_fiber) &&
|
||
|
((ctrl & E1000_CTRL_SWDPIN1) == signal)) ||
|
||
|
(hw->media_type == e1000_media_type_internal_serdes)) &&
|
||
|
(!(status & E1000_STATUS_LU)) &&
|
||
|
(!(rxcw & E1000_RXCW_C))) {
|
||
|
if(hw->autoneg_failed == 0) {
|
||
|
hw->autoneg_failed = 1;
|
||
|
return 0;
|
||
|
}
|
||
|
DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n");
|
||
|
|
||
|
/* Disable auto-negotiation in the TXCW register */
|
||
|
E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE));
|
||
|
|
||
|
/* Force link-up and also force full-duplex. */
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
|
||
|
/* Configure Flow Control after forcing link up. */
|
||
|
if((ret_val = e1000_config_fc_after_link_up(hw))) {
|
||
|
DEBUGOUT("Error configuring flow control\n");
|
||
|
return ret_val;
|
||
|
}
|
||
|
}
|
||
|
/* If we are forcing link and we are receiving /C/ ordered sets, re-enable
|
||
|
* auto-negotiation in the TXCW register and disable forced link in the
|
||
|
* Device Control register in an attempt to auto-negotiate with our link
|
||
|
* partner.
|
||
|
*/
|
||
|
else if(((hw->media_type == e1000_media_type_fiber) ||
|
||
|
(hw->media_type == e1000_media_type_internal_serdes)) &&
|
||
|
(ctrl & E1000_CTRL_SLU) &&
|
||
|
(rxcw & E1000_RXCW_C)) {
|
||
|
DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\r\n");
|
||
|
E1000_WRITE_REG(hw, TXCW, hw->txcw);
|
||
|
E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU));
|
||
|
}
|
||
|
#if 0
|
||
|
/* If we force link for non-auto-negotiation switch, check link status
|
||
|
* based on MAC synchronization for internal serdes media type.
|
||
|
*/
|
||
|
else if((hw->media_type == e1000_media_type_internal_serdes) &&
|
||
|
!(E1000_TXCW_ANE & E1000_READ_REG(hw, TXCW))) {
|
||
|
/* SYNCH bit and IV bit are sticky. */
|
||
|
udelay(10);
|
||
|
if(E1000_RXCW_SYNCH & E1000_READ_REG(hw, RXCW)) {
|
||
|
if(!(rxcw & E1000_RXCW_IV)) {
|
||
|
hw->serdes_link_down = FALSE;
|
||
|
DEBUGOUT("SERDES: Link is up.\n");
|
||
|
}
|
||
|
} else {
|
||
|
hw->serdes_link_down = TRUE;
|
||
|
DEBUGOUT("SERDES: Link is down.\n");
|
||
|
}
|
||
|
}
|
||
|
#endif
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Detects the current speed and duplex settings of the hardware.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* speed - Speed of the connection
|
||
|
* duplex - Duplex setting of the connection
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_get_speed_and_duplex(struct e1000_hw *hw,
|
||
|
uint16_t *speed,
|
||
|
uint16_t *duplex)
|
||
|
{
|
||
|
uint32_t status;
|
||
|
|
||
|
DEBUGFUNC("e1000_get_speed_and_duplex");
|
||
|
|
||
|
if(hw->mac_type >= e1000_82543) {
|
||
|
status = E1000_READ_REG(hw, STATUS);
|
||
|
if(status & E1000_STATUS_SPEED_1000) {
|
||
|
*speed = SPEED_1000;
|
||
|
DEBUGOUT("1000 Mbs, ");
|
||
|
} else if(status & E1000_STATUS_SPEED_100) {
|
||
|
*speed = SPEED_100;
|
||
|
DEBUGOUT("100 Mbs, ");
|
||
|
} else {
|
||
|
*speed = SPEED_10;
|
||
|
DEBUGOUT("10 Mbs, ");
|
||
|
}
|
||
|
|
||
|
if(status & E1000_STATUS_FD) {
|
||
|
*duplex = FULL_DUPLEX;
|
||
|
DEBUGOUT("Full Duplex\r\n");
|
||
|
} else {
|
||
|
*duplex = HALF_DUPLEX;
|
||
|
DEBUGOUT(" Half Duplex\r\n");
|
||
|
}
|
||
|
} else {
|
||
|
DEBUGOUT("1000 Mbs, Full Duplex\r\n");
|
||
|
*speed = SPEED_1000;
|
||
|
*duplex = FULL_DUPLEX;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Blocks until autoneg completes or times out (~4.5 seconds)
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_wait_autoneg(struct e1000_hw *hw)
|
||
|
{
|
||
|
int32_t ret_val;
|
||
|
uint16_t i;
|
||
|
uint16_t phy_data;
|
||
|
|
||
|
DEBUGFUNC("e1000_wait_autoneg");
|
||
|
DEBUGOUT("Waiting for Auto-Neg to complete.\n");
|
||
|
|
||
|
/* We will wait for autoneg to complete or 4.5 seconds to expire. */
|
||
|
for(i = PHY_AUTO_NEG_TIME; i > 0; i--) {
|
||
|
/* Read the MII Status Register and wait for Auto-Neg
|
||
|
* Complete bit to be set.
|
||
|
*/
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
||
|
return ret_val;
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data)))
|
||
|
return ret_val;
|
||
|
if(phy_data & MII_SR_AUTONEG_COMPLETE) {
|
||
|
DEBUGOUT("Auto-Neg complete.\n");
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
mdelay(100);
|
||
|
}
|
||
|
DEBUGOUT("Auto-Neg timedout.\n");
|
||
|
return -E1000_ERR_TIMEOUT;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Raises the Management Data Clock
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* ctrl - Device control register's current value
|
||
|
******************************************************************************/
|
||
|
static void
|
||
|
e1000_raise_mdi_clk(struct e1000_hw *hw,
|
||
|
uint32_t *ctrl)
|
||
|
{
|
||
|
/* Raise the clock input to the Management Data Clock (by setting the MDC
|
||
|
* bit), and then delay 10 microseconds.
|
||
|
*/
|
||
|
E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC));
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(10);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Lowers the Management Data Clock
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* ctrl - Device control register's current value
|
||
|
******************************************************************************/
|
||
|
static void
|
||
|
e1000_lower_mdi_clk(struct e1000_hw *hw,
|
||
|
uint32_t *ctrl)
|
||
|
{
|
||
|
/* Lower the clock input to the Management Data Clock (by clearing the MDC
|
||
|
* bit), and then delay 10 microseconds.
|
||
|
*/
|
||
|
E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC));
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
udelay(10);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Shifts data bits out to the PHY
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* data - Data to send out to the PHY
|
||
|
* count - Number of bits to shift out
|
||
|
*
|
||
|
* Bits are shifted out in MSB to LSB order.
|
||
|
******************************************************************************/
|
||
|
static void
|
||
|
e1000_shift_out_mdi_bits(struct e1000_hw *hw,
|
||
|
uint32_t data,
|
||
|
uint16_t count)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
uint32_t mask;
|
||
|
|
||
|
/* We need to shift "count" number of bits out to the PHY. So, the value
|
||
|
* in the "data" parameter will be shifted out to the PHY one bit at a
|
||
|
* time. In order to do this, "data" must be broken down into bits.
|
||
|
*/
|
||
|
mask = 0x01;
|
||
|
mask <<= (count - 1);
|
||
|
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
|
||
|
/* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */
|
||
|
ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR);
|
||
|
|
||
|
while(mask) {
|
||
|
/* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and
|
||
|
* then raising and lowering the Management Data Clock. A "0" is
|
||
|
* shifted out to the PHY by setting the MDIO bit to "0" and then
|
||
|
* raising and lowering the clock.
|
||
|
*/
|
||
|
if(data & mask) ctrl |= E1000_CTRL_MDIO;
|
||
|
else ctrl &= ~E1000_CTRL_MDIO;
|
||
|
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
|
||
|
udelay(10);
|
||
|
|
||
|
e1000_raise_mdi_clk(hw, &ctrl);
|
||
|
e1000_lower_mdi_clk(hw, &ctrl);
|
||
|
|
||
|
mask = mask >> 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Shifts data bits in from the PHY
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Bits are shifted in in MSB to LSB order.
|
||
|
******************************************************************************/
|
||
|
static uint16_t
|
||
|
e1000_shift_in_mdi_bits(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl;
|
||
|
uint16_t data = 0;
|
||
|
uint8_t i;
|
||
|
|
||
|
/* In order to read a register from the PHY, we need to shift in a total
|
||
|
* of 18 bits from the PHY. The first two bit (turnaround) times are used
|
||
|
* to avoid contention on the MDIO pin when a read operation is performed.
|
||
|
* These two bits are ignored by us and thrown away. Bits are "shifted in"
|
||
|
* by raising the input to the Management Data Clock (setting the MDC bit),
|
||
|
* and then reading the value of the MDIO bit.
|
||
|
*/
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
|
||
|
/* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */
|
||
|
ctrl &= ~E1000_CTRL_MDIO_DIR;
|
||
|
ctrl &= ~E1000_CTRL_MDIO;
|
||
|
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
|
||
|
/* Raise and Lower the clock before reading in the data. This accounts for
|
||
|
* the turnaround bits. The first clock occurred when we clocked out the
|
||
|
* last bit of the Register Address.
|
||
|
*/
|
||
|
e1000_raise_mdi_clk(hw, &ctrl);
|
||
|
e1000_lower_mdi_clk(hw, &ctrl);
|
||
|
|
||
|
for(data = 0, i = 0; i < 16; i++) {
|
||
|
data = data << 1;
|
||
|
e1000_raise_mdi_clk(hw, &ctrl);
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
/* Check to see if we shifted in a "1". */
|
||
|
if(ctrl & E1000_CTRL_MDIO) data |= 1;
|
||
|
e1000_lower_mdi_clk(hw, &ctrl);
|
||
|
}
|
||
|
|
||
|
e1000_raise_mdi_clk(hw, &ctrl);
|
||
|
e1000_lower_mdi_clk(hw, &ctrl);
|
||
|
|
||
|
return data;
|
||
|
}
|
||
|
|
||
|
/*****************************************************************************
|
||
|
* Reads the value from a PHY register, if the value is on a specific non zero
|
||
|
* page, sets the page first.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* reg_addr - address of the PHY register to read
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_read_phy_reg(struct e1000_hw *hw,
|
||
|
uint32_t reg_addr,
|
||
|
uint16_t *phy_data)
|
||
|
{
|
||
|
uint32_t ret_val;
|
||
|
|
||
|
DEBUGFUNC("e1000_read_phy_reg");
|
||
|
|
||
|
if(hw->phy_type == e1000_phy_igp &&
|
||
|
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
||
|
if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
||
|
(uint16_t)reg_addr)))
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
ret_val = e1000_read_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
|
||
|
phy_data);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
e1000_read_phy_reg_ex(struct e1000_hw *hw,
|
||
|
uint32_t reg_addr,
|
||
|
uint16_t *phy_data)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
uint32_t mdic = 0;
|
||
|
const uint32_t phy_addr = 1;
|
||
|
|
||
|
DEBUGFUNC("e1000_read_phy_reg_ex");
|
||
|
|
||
|
if(reg_addr > MAX_PHY_REG_ADDRESS) {
|
||
|
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
||
|
return -E1000_ERR_PARAM;
|
||
|
}
|
||
|
|
||
|
if(hw->mac_type > e1000_82543) {
|
||
|
/* Set up Op-code, Phy Address, and register address in the MDI
|
||
|
* Control register. The MAC will take care of interfacing with the
|
||
|
* PHY to retrieve the desired data.
|
||
|
*/
|
||
|
mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) |
|
||
|
(phy_addr << E1000_MDIC_PHY_SHIFT) |
|
||
|
(E1000_MDIC_OP_READ));
|
||
|
|
||
|
E1000_WRITE_REG(hw, MDIC, mdic);
|
||
|
|
||
|
/* Poll the ready bit to see if the MDI read completed */
|
||
|
for(i = 0; i < 64; i++) {
|
||
|
udelay(50);
|
||
|
mdic = E1000_READ_REG(hw, MDIC);
|
||
|
if(mdic & E1000_MDIC_READY) break;
|
||
|
}
|
||
|
if(!(mdic & E1000_MDIC_READY)) {
|
||
|
DEBUGOUT("MDI Read did not complete\n");
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
if(mdic & E1000_MDIC_ERROR) {
|
||
|
DEBUGOUT("MDI Error\n");
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
*phy_data = (uint16_t) mdic;
|
||
|
} else {
|
||
|
/* We must first send a preamble through the MDIO pin to signal the
|
||
|
* beginning of an MII instruction. This is done by sending 32
|
||
|
* consecutive "1" bits.
|
||
|
*/
|
||
|
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
||
|
|
||
|
/* Now combine the next few fields that are required for a read
|
||
|
* operation. We use this method instead of calling the
|
||
|
* e1000_shift_out_mdi_bits routine five different times. The format of
|
||
|
* a MII read instruction consists of a shift out of 14 bits and is
|
||
|
* defined as follows:
|
||
|
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr>
|
||
|
* followed by a shift in of 18 bits. This first two bits shifted in
|
||
|
* are TurnAround bits used to avoid contention on the MDIO pin when a
|
||
|
* READ operation is performed. These two bits are thrown away
|
||
|
* followed by a shift in of 16 bits which contains the desired data.
|
||
|
*/
|
||
|
mdic = ((reg_addr) | (phy_addr << 5) |
|
||
|
(PHY_OP_READ << 10) | (PHY_SOF << 12));
|
||
|
|
||
|
e1000_shift_out_mdi_bits(hw, mdic, 14);
|
||
|
|
||
|
/* Now that we've shifted out the read command to the MII, we need to
|
||
|
* "shift in" the 16-bit value (18 total bits) of the requested PHY
|
||
|
* register address.
|
||
|
*/
|
||
|
*phy_data = e1000_shift_in_mdi_bits(hw);
|
||
|
}
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Writes a value to a PHY register
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
* reg_addr - address of the PHY register to write
|
||
|
* data - data to write to the PHY
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_write_phy_reg(struct e1000_hw *hw,
|
||
|
uint32_t reg_addr,
|
||
|
uint16_t phy_data)
|
||
|
{
|
||
|
uint32_t ret_val;
|
||
|
|
||
|
DEBUGFUNC("e1000_write_phy_reg");
|
||
|
|
||
|
if(hw->phy_type == e1000_phy_igp &&
|
||
|
(reg_addr > MAX_PHY_MULTI_PAGE_REG)) {
|
||
|
if((ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT,
|
||
|
(uint16_t)reg_addr)))
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT & reg_addr,
|
||
|
phy_data);
|
||
|
|
||
|
return ret_val;
|
||
|
}
|
||
|
|
||
|
static int
|
||
|
e1000_write_phy_reg_ex(struct e1000_hw *hw,
|
||
|
uint32_t reg_addr,
|
||
|
uint16_t phy_data)
|
||
|
{
|
||
|
uint32_t i;
|
||
|
uint32_t mdic = 0;
|
||
|
const uint32_t phy_addr = 1;
|
||
|
|
||
|
DEBUGFUNC("e1000_write_phy_reg_ex");
|
||
|
|
||
|
if(reg_addr > MAX_PHY_REG_ADDRESS) {
|
||
|
DEBUGOUT1("PHY Address %d is out of range\n", reg_addr);
|
||
|
return -E1000_ERR_PARAM;
|
||
|
}
|
||
|
|
||
|
if(hw->mac_type > e1000_82543) {
|
||
|
/* Set up Op-code, Phy Address, register address, and data intended
|
||
|
* for the PHY register in the MDI Control register. The MAC will take
|
||
|
* care of interfacing with the PHY to send the desired data.
|
||
|
*/
|
||
|
mdic = (((uint32_t) phy_data) |
|
||
|
(reg_addr << E1000_MDIC_REG_SHIFT) |
|
||
|
(phy_addr << E1000_MDIC_PHY_SHIFT) |
|
||
|
(E1000_MDIC_OP_WRITE));
|
||
|
|
||
|
E1000_WRITE_REG(hw, MDIC, mdic);
|
||
|
|
||
|
/* Poll the ready bit to see if the MDI read completed */
|
||
|
for(i = 0; i < 640; i++) {
|
||
|
udelay(5);
|
||
|
mdic = E1000_READ_REG(hw, MDIC);
|
||
|
if(mdic & E1000_MDIC_READY) break;
|
||
|
}
|
||
|
if(!(mdic & E1000_MDIC_READY)) {
|
||
|
DEBUGOUT("MDI Write did not complete\n");
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
} else {
|
||
|
/* We'll need to use the SW defined pins to shift the write command
|
||
|
* out to the PHY. We first send a preamble to the PHY to signal the
|
||
|
* beginning of the MII instruction. This is done by sending 32
|
||
|
* consecutive "1" bits.
|
||
|
*/
|
||
|
e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE);
|
||
|
|
||
|
/* Now combine the remaining required fields that will indicate a
|
||
|
* write operation. We use this method instead of calling the
|
||
|
* e1000_shift_out_mdi_bits routine for each field in the command. The
|
||
|
* format of a MII write instruction is as follows:
|
||
|
* <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>.
|
||
|
*/
|
||
|
mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) |
|
||
|
(PHY_OP_WRITE << 12) | (PHY_SOF << 14));
|
||
|
mdic <<= 16;
|
||
|
mdic |= (uint32_t) phy_data;
|
||
|
|
||
|
e1000_shift_out_mdi_bits(hw, mdic, 32);
|
||
|
}
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Returns the PHY to the power-on reset state
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
******************************************************************************/
|
||
|
static void
|
||
|
e1000_phy_hw_reset(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t ctrl, ctrl_ext;
|
||
|
|
||
|
DEBUGFUNC("e1000_phy_hw_reset");
|
||
|
|
||
|
DEBUGOUT("Resetting Phy...\n");
|
||
|
|
||
|
if(hw->mac_type > e1000_82543) {
|
||
|
/* Read the device control register and assert the E1000_CTRL_PHY_RST
|
||
|
* bit. Then, take it out of reset.
|
||
|
*/
|
||
|
ctrl = E1000_READ_REG(hw, CTRL);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
mdelay(10);
|
||
|
E1000_WRITE_REG(hw, CTRL, ctrl);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
} else {
|
||
|
/* Read the Extended Device Control Register, assert the PHY_RESET_DIR
|
||
|
* bit to put the PHY into reset. Then, take it out of reset.
|
||
|
*/
|
||
|
ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
|
||
|
ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR;
|
||
|
ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA;
|
||
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
mdelay(10);
|
||
|
ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA;
|
||
|
E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
|
||
|
E1000_WRITE_FLUSH(hw);
|
||
|
}
|
||
|
udelay(150);
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Resets the PHY
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*
|
||
|
* Sets bit 15 of the MII Control regiser
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_phy_reset(struct e1000_hw *hw)
|
||
|
{
|
||
|
int32_t ret_val;
|
||
|
uint16_t phy_data;
|
||
|
|
||
|
DEBUGFUNC("e1000_phy_reset");
|
||
|
|
||
|
if(hw->mac_type != e1000_82541_rev_2) {
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
phy_data |= MII_CR_RESET;
|
||
|
if((ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data)))
|
||
|
return ret_val;
|
||
|
|
||
|
udelay(1);
|
||
|
} else e1000_phy_hw_reset(hw);
|
||
|
|
||
|
if(hw->phy_type == e1000_phy_igp)
|
||
|
e1000_phy_init_script(hw);
|
||
|
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Probes the expected PHY address for known PHY IDs
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
******************************************************************************/
|
||
|
static int
|
||
|
e1000_detect_gig_phy(struct e1000_hw *hw)
|
||
|
{
|
||
|
int32_t phy_init_status, ret_val;
|
||
|
uint16_t phy_id_high, phy_id_low;
|
||
|
boolean_t match = FALSE;
|
||
|
|
||
|
DEBUGFUNC("e1000_detect_gig_phy");
|
||
|
|
||
|
/* Read the PHY ID Registers to identify which PHY is onboard. */
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high)))
|
||
|
return ret_val;
|
||
|
|
||
|
hw->phy_id = (uint32_t) (phy_id_high << 16);
|
||
|
udelay(20);
|
||
|
if((ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low)))
|
||
|
return ret_val;
|
||
|
|
||
|
hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK);
|
||
|
#ifdef LINUX_DRIVER
|
||
|
hw->phy_revision = (uint32_t) phy_id_low & ~PHY_REVISION_MASK;
|
||
|
#endif
|
||
|
|
||
|
switch(hw->mac_type) {
|
||
|
case e1000_82543:
|
||
|
if(hw->phy_id == M88E1000_E_PHY_ID) match = TRUE;
|
||
|
break;
|
||
|
case e1000_82544:
|
||
|
if(hw->phy_id == M88E1000_I_PHY_ID) match = TRUE;
|
||
|
break;
|
||
|
case e1000_82540:
|
||
|
case e1000_82545:
|
||
|
case e1000_82545_rev_3:
|
||
|
case e1000_82546:
|
||
|
case e1000_82546_rev_3:
|
||
|
if(hw->phy_id == M88E1011_I_PHY_ID) match = TRUE;
|
||
|
break;
|
||
|
case e1000_82541:
|
||
|
case e1000_82541_rev_2:
|
||
|
case e1000_82547:
|
||
|
case e1000_82547_rev_2:
|
||
|
if(hw->phy_id == IGP01E1000_I_PHY_ID) match = TRUE;
|
||
|
break;
|
||
|
default:
|
||
|
DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type);
|
||
|
return -E1000_ERR_CONFIG;
|
||
|
}
|
||
|
phy_init_status = e1000_set_phy_type(hw);
|
||
|
|
||
|
if ((match) && (phy_init_status == E1000_SUCCESS)) {
|
||
|
DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id);
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id);
|
||
|
return -E1000_ERR_PHY;
|
||
|
}
|
||
|
|
||
|
/******************************************************************************
|
||
|
* Sets up eeprom variables in the hw struct. Must be called after mac_type
|
||
|
* is configured.
|
||
|
*
|
||
|
* hw - Struct containing variables accessed by shared code
|
||
|
*****************************************************************************/
|
||
|
static void
|
||
|
e1000_init_eeprom_params(struct e1000_hw *hw)
|
||
|
{
|
||
|
struct e1000_eeprom_info *eeprom = &hw->eeprom;
|
||
|
uint32_t eecd = E1000_READ_REG(hw, EECD);
|
||
|
uint16_t eeprom_size;
|
||
|
|
||
|
DEBUGFUNC("e1000_init_eeprom_params");
|
||
|
|
||
|
switch (hw->mac_type) {
|
||
|
case e1000_82542_rev2_0:
|
||
|
case e1000_82542_rev2_1:
|
||
|
case e1000_82543:
|
||
|
case e1000_82544:
|
||
|
eeprom->type = e1000_eeprom_microwire;
|
||
|
eeprom->word_size = 64;
|
||
|
eeprom->opcode_bits = 3;
|
||
|
eeprom->address_bits = 6;
|
||
|
eeprom->delay_usec = 50;
|
||
|
break;
|
||
|
case e1000_82540:
|
||
|
case e1000_82545:
|
||
|
case e1000_82545_rev_3:
|
||
|
case e1000_82546:
|
||
|
case e1000_82546_rev_3:
|
||
|
eeprom->type = e1000_eeprom_microwire;
|
||
|
eeprom->opcode_bits = 3;
|
||
|
eeprom->delay_usec = 50;
|
||
|
if(eecd & E1000_EECD_SIZE) {
|
||
|
eeprom->word_size = 256;
|
||
|
eeprom->address_bits = 8;
|
||
|
} else {
|
||
|
eeprom->word_size = 64;
|
||
|
eeprom->address_bits = 6;
|
||
|
}
|
||
|
break;
|
||
|
case e1000_82541:
|
||
|
case e1000_82541_rev_2:
|
||
|
case e1000_82547:
|
||
|
case e1000_82547_rev_2:
|
||
|
if (eecd & E1000_EECD_TYPE) {
|
||
|
eeprom->type = e1000_eeprom_spi;
|
||
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
||
|
eeprom->page_size = 32;
|
||
|
eeprom->address_bits = 16;
|
||
|
} else {
|
||
|
eeprom->page_size = 8;
|
||
|
eeprom->address_bits = 8;
|
||
|
}
|
||
|
} else {
|
||
|
eeprom->type = e1000_eeprom_microwire;
|
||
|
eeprom->opcode_bits = 3;
|
||
|
eeprom->delay_usec = 50;
|
||
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
||
|
eeprom->word_size = 256;
|
||
|
eeprom->address_bits = 8;
|
||
|
} else {
|
||
|
eeprom->word_size = 64;
|
||
|
eeprom->address_bits = 6;
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
default:
|
||
|
eeprom->type = e1000_eeprom_spi;
|
||
|
if (eecd & E1000_EECD_ADDR_BITS) {
|
||
|
eeprom->page_size = 32;
|
||
|
eeprom->address_bits = 16;
|
||
|
} else {
|
||
|
eeprom->page_size = 8;
|
||
|
eeprom->address_bits = 8;
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
if (eeprom->type == e1000_eeprom_spi) {
|
||
|
eeprom->opcode_bits = 8;
|
||
|
eeprom->delay_usec = 1;
|
||
|
eeprom->word_size = 64;
|
||
|
if (e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size) == 0) {
|
||
|
eeprom_size &= EEPROM_SIZE_MASK;
|
||
|
|
||
|
switch (eeprom_size) {
|
||
|
case EEPROM_SIZE_16KB:
|
||
|
eeprom->word_size = 8192;
|
||
|
break;
|
||
|
case EEPROM_SIZE_8KB:
|
||
|
eeprom->word_size = 4096;
|
||
|
break;
|
||
|
case EEPROM_SIZE_4KB:
|
||
|
eeprom->word_size = 2048;
|
||
|
break;
|
||
|
case EEPROM_SIZE_2KB:
|
||
|
eeprom->word_size = 1024;
|
||
|
break;
|
||
|
case EEPROM_SIZE_1KB:
|
||
|
eeprom->word_size = 512;
|
||
|
break;
|
||
|
case EEPROM_SIZE_512B:
|
||
|
eeprom->word_size = 256;
|
||
|
break;
|
||
|
case EEPROM_SIZE_128B:
|
||
|
default:
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_reset - Reset the adapter
|
||
|
*/
|
||
|
|
||
|
static int
|
||
|
e1000_reset(struct e1000_hw *hw)
|
||
|
{
|
||
|
uint32_t pba;
|
||
|
/* Repartition Pba for greater than 9k mtu
|
||
|
* To take effect CTRL.RST is required.
|
||
|
*/
|
||
|
|
||
|
if(hw->mac_type < e1000_82547) {
|
||
|
pba = E1000_PBA_48K;
|
||
|
} else {
|
||
|
pba = E1000_PBA_30K;
|
||
|
}
|
||
|
E1000_WRITE_REG(hw, PBA, pba);
|
||
|
|
||
|
/* flow control settings */
|
||
|
#if 0
|
||
|
hw->fc_high_water = FC_DEFAULT_HI_THRESH;
|
||
|
hw->fc_low_water = FC_DEFAULT_LO_THRESH;
|
||
|
hw->fc_pause_time = FC_DEFAULT_TX_TIMER;
|
||
|
hw->fc_send_xon = 1;
|
||
|
hw->fc = hw->original_fc;
|
||
|
#endif
|
||
|
|
||
|
e1000_reset_hw(hw);
|
||
|
if(hw->mac_type >= e1000_82544)
|
||
|
E1000_WRITE_REG(hw, WUC, 0);
|
||
|
return e1000_init_hw(hw);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* e1000_sw_init - Initialize general software structures (struct e1000_adapter)
|
||
|
* @adapter: board private structure to initialize
|
||
|
*
|
||
|
* e1000_sw_init initializes the Adapter private data structure.
|
||
|
* Fields are initialized based on PCI device information and
|
||
|
* OS network device settings (MTU size).
|
||
|
**/
|
||
|
|
||
|
static int
|
||
|
e1000_sw_init(struct pci_device *pdev, struct e1000_hw *hw)
|
||
|
{
|
||
|
int result;
|
||
|
|
||
|
/* PCI config space info */
|
||
|
pci_read_config_word(pdev, PCI_VENDOR_ID, &hw->vendor_id);
|
||
|
pci_read_config_word(pdev, PCI_DEVICE_ID, &hw->device_id);
|
||
|
pci_read_config_byte(pdev, PCI_REVISION, &hw->revision_id);
|
||
|
#if 0
|
||
|
pci_read_config_word(pdev, PCI_SUBSYSTEM_VENDOR_ID,
|
||
|
&hw->subsystem_vendor_id);
|
||
|
pci_read_config_word(pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id);
|
||
|
#endif
|
||
|
|
||
|
pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
|
||
|
|
||
|
/* identify the MAC */
|
||
|
|
||
|
result = e1000_set_mac_type(hw);
|
||
|
if (result) {
|
||
|
E1000_ERR("Unknown MAC Type\n");
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/* initialize eeprom parameters */
|
||
|
|
||
|
e1000_init_eeprom_params(hw);
|
||
|
|
||
|
#if 0
|
||
|
if((hw->mac_type == e1000_82541) ||
|
||
|
(hw->mac_type == e1000_82547) ||
|
||
|
(hw->mac_type == e1000_82541_rev_2) ||
|
||
|
(hw->mac_type == e1000_82547_rev_2))
|
||
|
hw->phy_init_script = 1;
|
||
|
#endif
|
||
|
|
||
|
e1000_set_media_type(hw);
|
||
|
|
||
|
#if 0
|
||
|
if(hw->mac_type < e1000_82543)
|
||
|
hw->report_tx_early = 0;
|
||
|
else
|
||
|
hw->report_tx_early = 1;
|
||
|
|
||
|
hw->wait_autoneg_complete = FALSE;
|
||
|
#endif
|
||
|
hw->tbi_compatibility_en = TRUE;
|
||
|
#if 0
|
||
|
hw->adaptive_ifs = TRUE;
|
||
|
|
||
|
/* Copper options */
|
||
|
|
||
|
if(hw->media_type == e1000_media_type_copper) {
|
||
|
hw->mdix = AUTO_ALL_MODES;
|
||
|
hw->disable_polarity_correction = FALSE;
|
||
|
hw->master_slave = E1000_MASTER_SLAVE;
|
||
|
}
|
||
|
#endif
|
||
|
return E1000_SUCCESS;
|
||
|
}
|
||
|
|
||
|
static void fill_rx (void)
|
||
|
{
|
||
|
struct e1000_rx_desc *rd;
|
||
|
rx_last = rx_tail;
|
||
|
rd = rx_base + rx_tail;
|
||
|
rx_tail = (rx_tail + 1) % 8;
|
||
|
memset (rd, 0, 16);
|
||
|
rd->buffer_addr = virt_to_bus(&packet);
|
||
|
E1000_WRITE_REG (&hw, RDT, rx_tail);
|
||
|
}
|
||
|
|
||
|
static void init_descriptor (void)
|
||
|
{
|
||
|
unsigned long ptr;
|
||
|
unsigned long tctl;
|
||
|
|
||
|
ptr = virt_to_phys(tx_pool);
|
||
|
if (ptr & 0xf)
|
||
|
ptr = (ptr + 0x10) & (~0xf);
|
||
|
|
||
|
tx_base = phys_to_virt(ptr);
|
||
|
|
||
|
E1000_WRITE_REG (&hw, TDBAL, virt_to_bus(tx_base));
|
||
|
E1000_WRITE_REG (&hw, TDBAH, 0);
|
||
|
E1000_WRITE_REG (&hw, TDLEN, 128);
|
||
|
|
||
|
/* Setup the HW Tx Head and Tail descriptor pointers */
|
||
|
|
||
|
E1000_WRITE_REG (&hw, TDH, 0);
|
||
|
E1000_WRITE_REG (&hw, TDT, 0);
|
||
|
tx_tail = 0;
|
||
|
|
||
|
/* Program the Transmit Control Register */
|
||
|
|
||
|
#ifdef LINUX_DRIVER_TCTL
|
||
|
tctl = E1000_READ_REG(&hw, TCTL);
|
||
|
|
||
|
tctl &= ~E1000_TCTL_CT;
|
||
|
tctl |= E1000_TCTL_EN | E1000_TCTL_PSP |
|
||
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
|
||
|
#else
|
||
|
tctl = E1000_TCTL_PSP | E1000_TCTL_EN |
|
||
|
(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT) |
|
||
|
(E1000_HDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
|
||
|
#endif
|
||
|
|
||
|
E1000_WRITE_REG (&hw, TCTL, tctl);
|
||
|
|
||
|
e1000_config_collision_dist(&hw);
|
||
|
|
||
|
|
||
|
rx_tail = 0;
|
||
|
/* disable receive */
|
||
|
E1000_WRITE_REG (&hw, RCTL, 0);
|
||
|
ptr = virt_to_phys(rx_pool);
|
||
|
if (ptr & 0xf)
|
||
|
ptr = (ptr + 0x10) & (~0xf);
|
||
|
rx_base = phys_to_virt(ptr);
|
||
|
|
||
|
/* Setup the Base and Length of the Rx Descriptor Ring */
|
||
|
|
||
|
E1000_WRITE_REG (&hw, RDBAL, virt_to_bus(rx_base));
|
||
|
E1000_WRITE_REG (&hw, RDBAH, 0);
|
||
|
|
||
|
E1000_WRITE_REG (&hw, RDLEN, 128);
|
||
|
|
||
|
/* Setup the HW Rx Head and Tail Descriptor Pointers */
|
||
|
E1000_WRITE_REG (&hw, RDH, 0);
|
||
|
E1000_WRITE_REG (&hw, RDT, 0);
|
||
|
|
||
|
E1000_WRITE_REG (&hw, RCTL,
|
||
|
E1000_RCTL_EN |
|
||
|
E1000_RCTL_BAM |
|
||
|
E1000_RCTL_SZ_2048 |
|
||
|
E1000_RCTL_MPE);
|
||
|
fill_rx();
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/**************************************************************************
|
||
|
POLL - Wait for a frame
|
||
|
***************************************************************************/
|
||
|
static int
|
||
|
e1000_poll (struct nic *nic, int retrieve)
|
||
|
{
|
||
|
/* return true if there's an ethernet packet ready to read */
|
||
|
/* nic->packet should contain data on return */
|
||
|
/* nic->packetlen should contain length of data */
|
||
|
struct e1000_rx_desc *rd;
|
||
|
uint32_t icr;
|
||
|
|
||
|
rd = rx_base + rx_last;
|
||
|
if (!rd->status & E1000_RXD_STAT_DD)
|
||
|
return 0;
|
||
|
|
||
|
if ( ! retrieve ) return 1;
|
||
|
|
||
|
// printf("recv: packet %! -> %! len=%d \n", packet+6, packet,rd->Length);
|
||
|
memcpy (nic->packet, packet, rd->length);
|
||
|
nic->packetlen = rd->length;
|
||
|
fill_rx ();
|
||
|
|
||
|
/* Acknowledge interrupt. */
|
||
|
icr = E1000_READ_REG(&hw, ICR);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
TRANSMIT - Transmit a frame
|
||
|
***************************************************************************/
|
||
|
static void
|
||
|
e1000_transmit (struct nic *nic, const char *d, /* Destination */
|
||
|
unsigned int type, /* Type */
|
||
|
unsigned int size, /* size */
|
||
|
const char *p) /* Packet */
|
||
|
{
|
||
|
/* send the packet to destination */
|
||
|
struct eth_hdr {
|
||
|
unsigned char dst_addr[ETH_ALEN];
|
||
|
unsigned char src_addr[ETH_ALEN];
|
||
|
unsigned short type;
|
||
|
} hdr;
|
||
|
struct e1000_tx_desc *txhd; /* header */
|
||
|
struct e1000_tx_desc *txp; /* payload */
|
||
|
DEBUGFUNC("send");
|
||
|
|
||
|
memcpy (&hdr.dst_addr, d, ETH_ALEN);
|
||
|
memcpy (&hdr.src_addr, nic->node_addr, ETH_ALEN);
|
||
|
|
||
|
hdr.type = htons (type);
|
||
|
txhd = tx_base + tx_tail;
|
||
|
tx_tail = (tx_tail + 1) % 8;
|
||
|
txp = tx_base + tx_tail;
|
||
|
tx_tail = (tx_tail + 1) % 8;
|
||
|
|
||
|
txhd->buffer_addr = virt_to_bus (&hdr);
|
||
|
txhd->lower.data = sizeof (hdr);
|
||
|
txhd->upper.data = 0;
|
||
|
|
||
|
txp->buffer_addr = virt_to_bus(p);
|
||
|
txp->lower.data = E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS | size;
|
||
|
txp->upper.data = 0;
|
||
|
|
||
|
E1000_WRITE_REG (&hw, TDT, tx_tail);
|
||
|
while (!(txp->upper.data & E1000_TXD_STAT_DD)) {
|
||
|
udelay(10); /* give the nic a chance to write to the register */
|
||
|
poll_interruptions();
|
||
|
}
|
||
|
DEBUGFUNC("send end");
|
||
|
}
|
||
|
|
||
|
|
||
|
/**************************************************************************
|
||
|
DISABLE - Turn off ethernet interface
|
||
|
***************************************************************************/
|
||
|
static void e1000_disable (struct dev *dev __unused)
|
||
|
{
|
||
|
/* Clear the transmit ring */
|
||
|
E1000_WRITE_REG (&hw, TDH, 0);
|
||
|
E1000_WRITE_REG (&hw, TDT, 0);
|
||
|
|
||
|
/* Clear the receive ring */
|
||
|
E1000_WRITE_REG (&hw, RDH, 0);
|
||
|
E1000_WRITE_REG (&hw, RDT, 0);
|
||
|
|
||
|
/* put the card in its initial state */
|
||
|
switch(hw.mac_type) {
|
||
|
case e1000_82544:
|
||
|
case e1000_82540:
|
||
|
case e1000_82545:
|
||
|
case e1000_82546:
|
||
|
case e1000_82541:
|
||
|
case e1000_82541_rev_2:
|
||
|
/* These controllers can't ack the 64-bit write when issuing the
|
||
|
* reset, so use IO-mapping as a workaround to issue the reset */
|
||
|
E1000_WRITE_REG_IO(&hw, CTRL, E1000_CTRL_RST);
|
||
|
break;
|
||
|
case e1000_82545_rev_3:
|
||
|
case e1000_82546_rev_3:
|
||
|
/* Reset is performed on a shadow of the control register */
|
||
|
E1000_WRITE_REG(&hw, CTRL_DUP, E1000_CTRL_RST);
|
||
|
break;
|
||
|
default:
|
||
|
E1000_WRITE_REG(&hw, CTRL, E1000_CTRL_RST);
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Turn off the ethernet interface */
|
||
|
E1000_WRITE_REG (&hw, RCTL, 0);
|
||
|
E1000_WRITE_REG (&hw, TCTL, 0);
|
||
|
mdelay (10);
|
||
|
|
||
|
/* Unmap my window to the device */
|
||
|
iounmap(hw.hw_addr);
|
||
|
}
|
||
|
|
||
|
/**************************************************************************
|
||
|
IRQ - Enable, Disable, or Force interrupts
|
||
|
***************************************************************************/
|
||
|
static void e1000_irq(struct nic *nic __unused, irq_action_t action)
|
||
|
{
|
||
|
switch ( action ) {
|
||
|
case DISABLE :
|
||
|
E1000_WRITE_REG(&hw, IMC, ~0);
|
||
|
E1000_WRITE_FLUSH(&hw);
|
||
|
break;
|
||
|
case ENABLE :
|
||
|
E1000_WRITE_REG(&hw, IMS,
|
||
|
E1000_IMS_RXT0 | E1000_IMS_RXSEQ);
|
||
|
E1000_WRITE_FLUSH(&hw);
|
||
|
break;
|
||
|
case FORCE :
|
||
|
E1000_WRITE_REG(&hw, ICS, E1000_ICS_RXT0);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#define IORESOURCE_IO 0x00000100 /* Resource type */
|
||
|
#define BAR_0 0
|
||
|
#define BAR_1 1
|
||
|
#define BAR_5 5
|
||
|
|
||
|
/**************************************************************************
|
||
|
PROBE - Look for an adapter, this routine's visible to the outside
|
||
|
You should omit the last argument struct pci_device * for a non-PCI NIC
|
||
|
***************************************************************************/
|
||
|
static int e1000_probe(struct dev *dev, struct pci_device *p)
|
||
|
{
|
||
|
struct nic *nic = (struct nic *)dev;
|
||
|
unsigned long mmio_start, mmio_len;
|
||
|
int ret_val, i;
|
||
|
|
||
|
if (p == 0)
|
||
|
return 0;
|
||
|
/* Initialize hw with default values */
|
||
|
memset(&hw, 0, sizeof(hw));
|
||
|
hw.pdev = p;
|
||
|
|
||
|
#if 1
|
||
|
/* Are these variables needed? */
|
||
|
hw.fc = e1000_fc_none;
|
||
|
#if 0
|
||
|
hw.original_fc = e1000_fc_none;
|
||
|
#endif
|
||
|
hw.autoneg_failed = 0;
|
||
|
#if 0
|
||
|
hw.get_link_status = TRUE;
|
||
|
#endif
|
||
|
#endif
|
||
|
|
||
|
mmio_start = pci_bar_start(p, PCI_BASE_ADDRESS_0);
|
||
|
mmio_len = pci_bar_size(p, PCI_BASE_ADDRESS_0);
|
||
|
hw.hw_addr = ioremap(mmio_start, mmio_len);
|
||
|
|
||
|
for(i = BAR_1; i <= BAR_5; i++) {
|
||
|
if(pci_bar_size(p, i) == 0)
|
||
|
continue;
|
||
|
if(pci_find_capability(p, i) & IORESOURCE_IO) {
|
||
|
hw.io_base = pci_bar_start(p, i);
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
adjust_pci_device(p);
|
||
|
|
||
|
nic->ioaddr = p->ioaddr & ~3;
|
||
|
nic->irqno = p->irq;
|
||
|
|
||
|
/* From Matt Hortman <mbhortman@acpthinclient.com> */
|
||
|
/* MAC and Phy settings */
|
||
|
|
||
|
/* setup the private structure */
|
||
|
if (e1000_sw_init(p, &hw) < 0) {
|
||
|
iounmap(hw.hw_addr);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* make sure the EEPROM is good */
|
||
|
|
||
|
if (e1000_validate_eeprom_checksum(&hw) < 0) {
|
||
|
printf ("The EEPROM Checksum Is Not Valid\n");
|
||
|
iounmap(hw.hw_addr);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/* copy the MAC address out of the EEPROM */
|
||
|
|
||
|
e1000_read_mac_addr(&hw);
|
||
|
memcpy (nic->node_addr, hw.mac_addr, ETH_ALEN);
|
||
|
|
||
|
printf("Ethernet addr: %!\n", nic->node_addr);
|
||
|
|
||
|
/* reset the hardware with the new settings */
|
||
|
|
||
|
ret_val = e1000_reset(&hw);
|
||
|
if (ret_val < 0) {
|
||
|
if ((ret_val == -E1000_ERR_NOLINK) ||
|
||
|
(ret_val == -E1000_ERR_TIMEOUT)) {
|
||
|
E1000_ERR("Valid Link not detected\n");
|
||
|
} else {
|
||
|
E1000_ERR("Hardware Initialization Failed\n");
|
||
|
}
|
||
|
iounmap(hw.hw_addr);
|
||
|
return 0;
|
||
|
}
|
||
|
init_descriptor();
|
||
|
|
||
|
/* point to NIC specific routines */
|
||
|
dev->disable = e1000_disable;
|
||
|
nic->poll = e1000_poll;
|
||
|
nic->transmit = e1000_transmit;
|
||
|
nic->irq = e1000_irq;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static struct pci_id e1000_nics[] = {
|
||
|
PCI_ROM(0x8086, 0x1000, "e1000-82542", "Intel EtherExpressPro1000"),
|
||
|
PCI_ROM(0x8086, 0x1001, "e1000-82543gc-fiber", "Intel EtherExpressPro1000 82543GC Fiber"),
|
||
|
PCI_ROM(0x8086, 0x1004, "e1000-82543gc-copper", "Intel EtherExpressPro1000 82543GC Copper"),
|
||
|
PCI_ROM(0x8086, 0x1008, "e1000-82544ei-copper", "Intel EtherExpressPro1000 82544EI Copper"),
|
||
|
PCI_ROM(0x8086, 0x1009, "e1000-82544ei-fiber", "Intel EtherExpressPro1000 82544EI Fiber"),
|
||
|
PCI_ROM(0x8086, 0x100C, "e1000-82544gc-copper", "Intel EtherExpressPro1000 82544GC Copper"),
|
||
|
PCI_ROM(0x8086, 0x100D, "e1000-82544gc-lom", "Intel EtherExpressPro1000 82544GC LOM"),
|
||
|
PCI_ROM(0x8086, 0x100E, "e1000-82540em", "Intel EtherExpressPro1000 82540EM"),
|
||
|
PCI_ROM(0x8086, 0x100F, "e1000-82545em-copper", "Intel EtherExpressPro1000 82545EM Copper"),
|
||
|
PCI_ROM(0x8086, 0x1010, "e1000-82546eb-copper", "Intel EtherExpressPro1000 82546EB Copper"),
|
||
|
PCI_ROM(0x8086, 0x1011, "e1000-82545em-fiber", "Intel EtherExpressPro1000 82545EM Fiber"),
|
||
|
PCI_ROM(0x8086, 0x1012, "e1000-82546eb-fiber", "Intel EtherExpressPro1000 82546EB Copper"),
|
||
|
PCI_ROM(0x8086, 0x1013, "e1000-82541ei", "Intel EtherExpressPro1000 82541EI"),
|
||
|
PCI_ROM(0x8086, 0x1015, "e1000-82540em-lom", "Intel EtherExpressPro1000 82540EM LOM"),
|
||
|
PCI_ROM(0x8086, 0x1016, "e1000-82540ep-lom", "Intel EtherExpressPro1000 82540EP LOM"),
|
||
|
PCI_ROM(0x8086, 0x1017, "e1000-82540ep", "Intel EtherExpressPro1000 82540EP"),
|
||
|
PCI_ROM(0x8086, 0x1018, "e1000-82541ep", "Intel EtherExpressPro1000 82541EP"),
|
||
|
PCI_ROM(0x8086, 0x1019, "e1000-82547ei", "Intel EtherExpressPro1000 82547EI"),
|
||
|
PCI_ROM(0x8086, 0x101d, "e1000-82546eb-quad-copper", "Intel EtherExpressPro1000 82546EB Quad Copper"),
|
||
|
PCI_ROM(0x8086, 0x101e, "e1000-82540ep-lp", "Intel EtherExpressPro1000 82540EP LP"),
|
||
|
PCI_ROM(0x8086, 0x1026, "e1000-82545gm-copper", "Intel EtherExpressPro1000 82545GM Copper"),
|
||
|
PCI_ROM(0x8086, 0x1027, "e1000-82545gm-fiber", "Intel EtherExpressPro1000 82545GM Fiber"),
|
||
|
PCI_ROM(0x8086, 0x1028, "e1000-82545gm-serdes", "Intel EtherExpressPro1000 82545GM SERDES"),
|
||
|
PCI_ROM(0x8086, 0x1075, "e1000-82547gi", "Intel EtherExpressPro1000 82547GI"),
|
||
|
PCI_ROM(0x8086, 0x1076, "e1000-82541gi", "Intel EtherExpressPro1000 82541GI"),
|
||
|
PCI_ROM(0x8086, 0x1077, "e1000-82541gi-mobile", "Intel EtherExpressPro1000 82541GI Mobile"),
|
||
|
PCI_ROM(0x8086, 0x1078, "e1000-82541er", "Intel EtherExpressPro1000 82541ER"),
|
||
|
PCI_ROM(0x8086, 0x1079, "e1000-82546gb-copper", "Intel EtherExpressPro1000 82546GB Copper"),
|
||
|
PCI_ROM(0x8086, 0x107a, "e1000-82546gb-fiber", "Intel EtherExpressPro1000 82546GB Fiber"),
|
||
|
PCI_ROM(0x8086, 0x107b, "e1000-82546gb-serdes", "Intel EtherExpressPro1000 82546GB SERDES"),
|
||
|
};
|
||
|
|
||
|
static struct pci_driver e1000_driver __pci_driver = {
|
||
|
.type = NIC_DRIVER,
|
||
|
.name = "E1000",
|
||
|
.probe = e1000_probe,
|
||
|
.ids = e1000_nics,
|
||
|
.id_count = sizeof(e1000_nics)/sizeof(e1000_nics[0]),
|
||
|
.class = 0,
|
||
|
};
|