2
0
mirror of https://opendev.org/x/pyghmi synced 2025-11-01 20:02:24 +00:00
Files
pyghmi/pyghmi/ipmi/private/session.py
Jarrod Johnson 44370a9a0b Fix race condition in requesting delays
When something other than the IO worker thread requests a delay,
there was an interval between pending requests and the new
deadline being calculated during which the non-IO thread would
erroneously consider the old rather than upcoming deadline.
Address by creating a worst case deadline prior to evaluating
pending requests.

Change-Id: Iabde555eb81d2155f4bc4562f0b3a209e1be42a9
2014-03-06 16:53:07 -05:00

1367 lines
58 KiB
Python

# vim: tabstop=4 shiftwidth=4 softtabstop=4
# Copyright 2013 IBM Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This represents the low layer message framing portion of IPMI
import atexit
import collections
import fcntl
import hashlib
import os
import random
import select
import socket
import struct
import threading
from Crypto.Cipher import AES
from Crypto.Hash import HMAC
from Crypto.Hash import SHA
import pyghmi.exceptions as exc
from pyghmi.ipmi.private import constants
initialtimeout = 0.5 # minimum timeout for first packet to retry in any given
# session. This will be randomized to stagger out retries
# in case of congestion
iothread = None # the thread in which all IO will be performed
# While the model as-is works fine for it's own coroutine
# structure, when combined with threading or something like
# eventlet, it becomes difficult for the calling code to cope
# This thread will tuck away the threading situation such that
# calling code doesn't have to do any gymnastics to cope with
# the nature of things.
ioqueue = collections.deque([])
selectbreak = None
selectdeadline = 0
running = True
iosockets = [] # set of iosockets that will be shared amongst Session objects
def _ioworker(initialized):
global selectbreak
global selectdeadline
selectbreak = os.pipe()
fcntl.fcntl(selectbreak[0], fcntl.F_SETFL, os.O_NONBLOCK)
iosockets.append(selectbreak[0])
iowaiters = []
timeout = 300
initialized.set()
while running:
if timeout < 0:
timeout = 0
selectdeadline = _monotonic_time() + timeout
tmplist, _, _ = select.select(iosockets, (), (), timeout)
# pessimistically move out the deadline
# doing it this early (before ioqueue is evaluated)
# this avoids other threads making a bad assumption
# about not having to break into the select
selectdeadline = _monotonic_time() + 300
rdylist = []
for handle in tmplist:
if handle is selectbreak[0]:
try: # flush all requests to interrupt that may be pending
while True:
os.read(handle, 1)
except OSError:
# this means an EWOULDBLOCK occurred, ignore that as that
# was the endgame
pass
else:
rdylist.append(handle)
for w in iowaiters:
w[2].append(tuple(rdylist))
w[3].set()
iowaiters = []
timeout = 300
while ioqueue:
workitem = ioqueue.popleft()
# structure is function, args, list to append to ,event to set
if isinstance(workitem[1], tuple): # positional arguments
workitem[2].append(workitem[0](*workitem[1]))
workitem[3].set()
elif isinstance(workitem[1], dict):
workitem[2].append(workitem[0](**workitem[1]))
workitem[3].set()
elif workitem[0] == 'wait':
if len(rdylist) > 0:
workitem[2].append(tuple(rdylist))
workitem[3].set()
else:
ltimeout = workitem[1] - _monotonic_time()
if ltimeout < timeout:
timeout = ltimeout
iowaiters.append(workitem)
def _io_apply(function, args):
global selectbreak
evt = threading.Event()
result = []
ioqueue.append((function, args, result, evt))
if not (function == 'wait' and selectdeadline < args):
os.write(selectbreak[1], '1')
evt.wait()
return result[0]
selectdeadline = 0
selectwait = None
def _io_sendto(mysocket, packet, sockaddr):
#Want sendto to act reasonably sane..
mysocket.setblocking(1)
mysocket.sendto(packet, sockaddr)
def _io_recvfrom(mysocket, size):
mysocket.setblocking(0)
try:
return mysocket.recvfrom(size)
except socket.error:
return None
def _monotonic_time():
"""Provides a monotonic timer
This code is concerned with relative, not absolute time.
This function facilitates that prior to python 3.3
"""
# Python does not provide one until 3.3, so we make do
# for most OSes, os.times()[4] works well.
# for microsoft, GetTickCount64
return os.times()[4]
def _poller(readhandles, timeout=0):
rdylist = _io_apply('wait', timeout + _monotonic_time())
return rdylist
def _aespad(data):
"""ipmi demands a certain pad scheme,
per table 13-20 AES-CBC encrypted payload fields.
"""
newdata = list(data)
currlen = len(data) + 1 # need to count the pad length field as well
neededpad = currlen % 16
if neededpad: # if it happens to be zero, hurray, but otherwise invert the
# sense of the padding
neededpad = 16 - neededpad
padval = 1
while padval <= neededpad:
newdata.append(padval)
padval += 1
newdata.append(neededpad)
return newdata
def get_ipmi_error(response, suffix=""):
if 'error' in response:
return response['error'] + suffix
code = response['code']
if code == 0:
return False
command = response['command']
netfn = response['netfn']
if ((netfn, command) in constants.command_completion_codes
and code in constants.command_completion_codes[(netfn, command)]):
res = constants.command_completion_codes[(netfn, command)][code]
res += suffix
elif code in constants.ipmi_completion_codes:
res = constants.ipmi_completion_codes[code] + suffix
else:
res = "Unknown code 0x%2x encountered" % code
return res
class Session(object):
"""A class to manage common IPMI session logistics
Almost all developers should not worry about this class and instead be
looking toward ipmi.Command and ipmi.Console.
For those that do have to worry, the main interesting thing is that the
event loop can go one of two ways. Either a larger manager can query using
class methods
the soonest timeout deadline and the filehandles to poll and assume
responsibility for the polling, or it can register filehandles to be
watched. This is primarily of interest to Console class, which may have an
input filehandle to watch and can pass it to Session.
:param bmc: hostname or ip address of the BMC
:param userid: username to use to connect
:param password: password to connect to the BMC
:param kg: optional parameter if BMC requires Kg be set
:param port: UDP port to communicate with, pretty much always 623
:param onlogon: callback to receive notification of login completion
"""
bmc_handlers = {}
waiting_sessions = {}
keepalive_sessions = {}
peeraddr_to_nodes = {}
iterwaiters = []
# Upon exit of python, make sure we play nice with BMCs by assuring closed
# sessions for all that we tracked
@classmethod
def _cleanup(cls):
global running
for session in cls.bmc_handlers.itervalues():
session.cleaningup = True
session.logout()
running = False
@classmethod
def _createsocket(cls):
global iowork
global iothread
global iosockets
if iothread is None:
initevt = threading.Event()
iothread = threading.Thread(target=_ioworker, args=(initevt,))
iothread.daemon = True
iothread.start()
initevt.wait()
atexit.register(cls._cleanup)
cls.socket = _io_apply(socket.socket,
(socket.AF_INET6, socket.SOCK_DGRAM)) # INET6
# can do IPv4 if you are nice to it
try: # we will try to fixup our receive buffer size if we are smaller
# than allowed.
maxmf = open("/proc/sys/net/core/rmem_max")
rmemmax = int(maxmf.read())
rmemmax = rmemmax / 2
curmax = cls.socket.getsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF)
curmax = curmax / 2
if (rmemmax > curmax):
_io_apply(cls.socket.setsockopt, (socket.SOL_SOCKET,
socket.SO_RCVBUF,
rmemmax))
except Exception:
# FIXME: be more selective in catching exceptions
pass
curmax = _io_apply(cls.socket.getsockopt,
(socket.SOL_SOCKET, socket.SO_RCVBUF))
iosockets.append(cls.socket)
curmax = curmax / 2
# we throttle such that we never have no more outstanding packets than
# our receive buffer should be able to handle
cls.pending = 0
cls.maxpending = curmax / 1000
# pessimistically assume 1 kilobyte messages,
# which is way larger than almost all ipmi datagrams.
# For faster performance, sysadmins may want to examine and tune
# /proc/sys/net/core/rmem_max up. This allows the module to request
# more, but does not increase buffers for applications that do less
# creative things
# TODO(jbjohnso): perhaps spread sessions across a socket pool when
# rmem_max is small, still get ~65/socket, but avoid long queues that
# might happen with low rmem_max and putting thousands of nodes in line
def _sync_login(self, response):
"""Handle synchronous callers in liue of
a client-provided callback.
"""
if 'error' in response:
raise exc.IpmiException(response['error'])
def __new__(cls,
bmc,
userid,
password,
port=623,
kg=None,
onlogon=None):
trueself = None
for res in socket.getaddrinfo(bmc, port, 0, socket.SOCK_DGRAM):
sockaddr = res[4]
if (res[0] == socket.AF_INET): # convert the sockaddr to AF_INET6
newhost = '::ffff:' + sockaddr[0]
sockaddr = (newhost, sockaddr[1], 0, 0)
if sockaddr in cls.bmc_handlers:
self = cls.bmc_handlers[sockaddr]
if (self.bmc == bmc and self.userid == userid and
self.password == password and self.kgo == kg):
trueself = self
else:
del cls.bmc_handlers[sockaddr]
if trueself:
return trueself
return object.__new__(cls)
def __init__(self,
bmc,
userid,
password,
port=623,
kg=None,
onlogon=None):
if hasattr(self, 'initialized'):
# new found an existing session, do not corrupt it
if onlogon is None:
while not self.logged:
Session.wait_for_rsp()
else:
if not self.logged:
self.logonwaiters.append(onlogon)
else:
self.iterwaiters.append(onlogon)
return
self.maxtimeout = 3 # be aggressive about giving up on initial packet
self.incommand = False
self.initialized = True
self.cleaningup = False
self.lastpayload = None
self.bmc = bmc
self.userid = userid
self.password = password
self.nowait = False
self.pendingpayloads = collections.deque([])
self.request_entry = []
self.kgo = kg
if kg is not None:
self.kg = kg
else:
self.kg = password
self.port = port
if (onlogon is None):
self.async = False
self.logonwaiters = [self._sync_login]
else:
self.async = True
self.logonwaiters = [onlogon]
if not hasattr(Session, 'socket'):
self._createsocket()
self.login()
if not self.async:
while not self.logged:
Session.wait_for_rsp()
def _mark_broken(self):
# since our connection has failed retries
# deregister our keepalive facility
Session.keepalive_sessions.pop(self, None)
self.logged = 0 # mark session as busted
# since this session is broken, remove it from the handler list.
# This allows constructor to create a new, functional object to
# replace this one
for sockaddr in self.allsockaddrs:
if sockaddr in Session.bmc_handlers:
del Session.bmc_handlers[sockaddr]
if self.sol_handler:
self.sol_handler({'error': 'Session Disconnected'})
def onlogon(self, parameter):
if 'error' in parameter:
self._mark_broken()
while self.logonwaiters:
waiter = self.logonwaiters.pop()
waiter(parameter)
def _initsession(self):
# NOTE(jbjohnso): this number can be whatever we want.
# I picked 'xCAT' minus 1 so that a hexdump of packet
# would show xCAT
self.localsid = 2017673555
# NOTE(jbjohnso): for the moment, assume admin access
# TODO(jbjohnso): make flexible
self.privlevel = 4
self.confalgo = 0
self.aeskey = None
self.integrityalgo = 0
self.k1 = None
self.rmcptag = 1
self.ipmicallback = None
self.sessioncontext = None
self.sequencenumber = 0
self.sessionid = 0
self.authtype = 0
self.ipmiversion = 1.5
self.timeout = initialtimeout + (0.5 * random.random())
self.seqlun = 0
# NOTE(jbjohnso): per IPMI table 5-4, software ids in the ipmi spec may
# be 0x81 through 0x8d. We'll stick with 0x81 for now,
# do not forsee a reason to adjust
self.rqaddr = 0x81
self.logged = 0
# NOTE(jbjohnso): when we confirm a working sockaddr, put it here to
# skip getaddrinfo
self.sockaddr = None
# NOTE(jbjohnso): this tracks netfn,command,seqlun combinations that
# were retried so that we don't loop around and reuse
# the same request data and cause potential ambiguity
# in return
self.tabooseq = {}
# NOTE(jbjohnso): default to supporting ipmi 2.0. Strictly by spec,
# this should gracefully be backwards compat, but some
# 1.5 implementations checked reserved bits
self.ipmi15only = 0
self.sol_handler = None
# NOTE(jbjohnso): This is the callback handler for any SOL payload
def _checksum(self, *data): # Two's complement over the data
csum = sum(data)
csum = csum ^ 0xff
csum += 1
csum &= 0xff
return csum
def _make_bridge_request_msg(self, channel, netfn, command):
"""This function generate message for bridge request. It is a
part of ipmi payload.
"""
head = [constants.IPMI_BMC_ADDRESS,
constants.netfn_codes['application'] << 2]
check_sum = self._checksum(*head)
#NOTE(fengqian): according IPMI Figure 14-11, rqSWID is set to 81h
boday = [0x81, self.seqlun, constants.IPMI_SEND_MESSAGE_CMD]
#NOTE(fengqian): Track request
boday.append(0x40 | channel)
self._add_request_entry((constants.netfn_codes['application'] + 1,
self.seqlun, constants.IPMI_SEND_MESSAGE_CMD))
return head + [check_sum] + boday
def _add_request_entry(self, entry=()):
"""This function record the request with netfn, sequence number and
command, which will be used in parse_ipmi_payload.
:param entry: a set of netfn, sequence number and command.
"""
if not self._lookup_request_entry(entry):
self.request_entry.append(entry)
def _lookup_request_entry(self, entry=()):
return entry in self.request_entry
def _remove_request_entry(self, entry=()):
if self._lookup_request_entry(entry):
self.request_entry.remove(entry)
def _make_ipmi_payload(self, netfn, command, bridge_request={}, data=()):
"""This function generates the core ipmi payload that would be
applicable for any channel (including KCS)
"""
bridge_msg = []
payload = []
self.expectedcmd = command
self.expectednetfn = netfn + \
1 # in ipmi, the response netfn is always one
# higher than the request payload, we assume
# we are always the requestor for now
seqincrement = 7 # IPMI spec forbids gaps bigger then 7 in seq number.
# Risk the taboo rather than violate the rules
while ((netfn, command, self.seqlun) in self.tabooseq and
self.tabooseq[(netfn, command, self.seqlun)] and seqincrement):
self.tabooseq[(self.expectednetfn, command, self.seqlun)] -= 1
# Allow taboo to eventually expire after a few rounds
self.seqlun += 4 # the last two bits are lun, so add 4 to add 1
self.seqlun &= 0xff # we only have one byte, wrap when exceeded
seqincrement -= 1
if bridge_request:
addr = bridge_request.get('addr', 0x0)
channel = bridge_request.get('channel', 0x0)
bridge_msg = self._make_bridge_request_msg(channel, netfn, command)
#NOTE(fengqian): For bridge request, rsaddr is specified and
# rqaddr is BMC address.
rqaddr = constants.IPMI_BMC_ADDRESS
rsaddr = addr
else:
rqaddr = self.rqaddr
rsaddr = constants.IPMI_BMC_ADDRESS
#figure 13-4, first two bytes are rsaddr and
# netfn, for non-bridge request, rsaddr is always 0x20 since we are
# addressing BMC while rsaddr is specified forbridge request
header = [rsaddr, netfn << 2]
reqbody = [rqaddr, self.seqlun, command] + list(data)
headsum = self._checksum(*header)
bodysum = self._checksum(*reqbody)
payload = header + [headsum] + reqbody + [bodysum]
if bridge_request:
payload = bridge_msg + payload
#NOTE(fengqian): For bridge request, another check sum is needed.
tail_csum = self._checksum(*payload[3:])
payload.append(tail_csum)
self._add_request_entry((self.expectednetfn, self.seqlun, command))
return payload
def _generic_callback(self, response):
errorstr = get_ipmi_error(response)
if errorstr:
response['error'] = errorstr
self.lastresponse = response
def raw_command(self,
netfn,
command,
bridge_request={},
data=[],
retry=True,
delay_xmit=None):
if not self.logged:
raise exc.IpmiException('Session no longer connected')
while self.incommand:
Session.wait_for_rsp()
if not self.logged:
raise exc.IpmiException('Session no longer connected')
self.incommand = True
self.lastresponse = None
self.ipmicallback = self._generic_callback
self._send_ipmi_net_payload(netfn, command, data,
bridge_request=bridge_request,
retry=retry, delay_xmit=delay_xmit)
if retry: # in retry case, let the retry timers indicate wait time
timeout = None
else: # if not retry, give it a second before surrending
timeout = 1
#The event loop is shared amongst pyghmi session instances
#within a process. In this way, synchronous usage of the interface
#plays well with asynchronous use. In fact, this produces the behavior
#of only the constructor needing a callback. From then on,
#synchronous usage of the class acts in a greenthread style governed by
#order of data on the network
while self.lastresponse is None:
Session.wait_for_rsp(timeout=timeout)
return self.lastresponse
def _send_ipmi_net_payload(self, netfn, command, data, bridge_request={},
retry=True, delay_xmit=None):
ipmipayload = self._make_ipmi_payload(netfn, command, bridge_request,
data)
payload_type = constants.payload_types['ipmi']
self.send_payload(payload=ipmipayload, payload_type=payload_type,
retry=retry, delay_xmit=delay_xmit)
def send_payload(self, payload=None, payload_type=None, retry=True,
delay_xmit=None, needskeepalive=False):
"""Send payload over the IPMI Session
:param needskeepalive: If the payload is expected not to count as
'active' by the BMC, set this to True
to avoid Session considering the
job done because of this payload.
Notably, 0-length SOL packets
are prone to confusion.
"""
if payload is not None and self.lastpayload is not None:
#we already have a packet outgoing, make this
# a pending payload
# this way a simplistic BMC won't get confused
# and we also avoid having to do more complicated
# retry mechanism where each payload is
# retried separately
self.pendingpayloads.append((payload, payload_type, retry))
return
if payload_type is None:
payload_type = self.last_payload_type
if payload is None:
payload = self.lastpayload
message = [0x6, 0, 0xff, 0x07] # constant RMCP header for IPMI
if retry:
self.lastpayload = payload
self.last_payload_type = payload_type
message.append(self.authtype)
baretype = payload_type
if self.integrityalgo:
payload_type |= 0b01000000
if self.confalgo:
payload_type |= 0b10000000
if (self.ipmiversion == 2.0):
message.append(payload_type)
if (baretype == 2):
#TODO(jbjohnso): OEM payload types
raise NotImplementedError("OEM Payloads")
elif baretype not in constants.payload_types.values():
raise NotImplementedError(
"Unrecognized payload type %d" % baretype)
message += struct.unpack("!4B", struct.pack("<I", self.sessionid))
message += struct.unpack("!4B", struct.pack("<I", self.sequencenumber))
if (self.ipmiversion == 1.5):
message += struct.unpack("!4B", struct.pack("<I", self.sessionid))
if not self.authtype == 0:
message += self._ipmi15authcode(payload)
message.append(len(payload))
message += payload
totlen = 34 + \
len(message) # Guessing the ipmi spec means the whole
# packet and assume no tag in old 1.5 world
if (totlen in (56, 84, 112, 128, 156)):
message.append(0) # Legacy pad as mandated by ipmi spec
elif self.ipmiversion == 2.0:
psize = len(payload)
if self.confalgo:
pad = (
psize + 1) % 16 # pad has to cope with one byte field like
# the _aespad function
if pad: # if no pad needed, then we take no more action
pad = 16 - pad
newpsize = psize + pad + \
17 # new payload size grew according to pad
# size, plus pad length, plus 16 byte IV
#(Table 13-20)
message.append(newpsize & 0xff)
message.append(newpsize >> 8)
iv = os.urandom(16)
message += list(struct.unpack("16B", iv))
payloadtocrypt = _aespad(payload)
crypter = AES.new(self.aeskey, AES.MODE_CBC, iv)
crypted = crypter.encrypt(struct.pack("%dB" %
len(payloadtocrypt),
*payloadtocrypt))
crypted = list(struct.unpack("%dB" % len(crypted), crypted))
message += crypted
else: # no confidetiality algorithm
message.append(psize & 0xff)
message.append(psize >> 8)
message += list(payload)
if self.integrityalgo: # see table 13-8,
# RMCP+ packet format
# TODO(jbjohnso): SHA256 which is now
# allowed
neededpad = (len(message) - 2) % 4
if neededpad:
neededpad = 4 - neededpad
message += [0xff] * neededpad
message.append(neededpad)
message.append(7) # reserved, 7 is the required value for the
# specification followed
integdata = message[4:]
authcode = HMAC.new(self.k1,
struct.pack("%dB" % len(integdata),
*integdata),
SHA).digest()[:12] # SHA1-96
# per RFC2404 truncates to 96 bits
message += struct.unpack("12B", authcode)
self.netpacket = struct.pack("!%dB" % len(message), *message)
#advance idle timer since we don't need keepalive while sending packets
#out naturally
if self in Session.keepalive_sessions and not needskeepalive:
Session.keepalive_sessions[self]['timeout'] = _monotonic_time() + \
25 + (random.random() * 4.9)
self._xmit_packet(retry, delay_xmit=delay_xmit)
def _ipmi15authcode(self, payload, checkremotecode=False):
#checkremotecode is used to verify remote code,
#otherwise this function is used to general authcode for local
if self.authtype == 0: # Only for things before auth in ipmi 1.5, not
# like 2.0 cipher suite 0
return ()
password = self.password
padneeded = 16 - len(password)
if padneeded < 0:
raise exc.IpmiException("Password is too long for ipmi 1.5")
password += '\x00' * padneeded
passdata = struct.unpack("16B", password)
if checkremotecode:
seqbytes = struct.unpack("!4B",
struct.pack("<I", self.remsequencenumber))
else:
seqbytes = struct.unpack("!4B",
struct.pack("<I", self.sequencenumber))
sessdata = struct.unpack("!4B", struct.pack("<I", self.sessionid))
bodydata = passdata + sessdata + tuple(payload) + seqbytes + passdata
dgst = hashlib.md5(
struct.pack("%dB" % len(bodydata), *bodydata)).digest()
hashdata = struct.unpack("!%dB" % len(dgst), dgst)
return hashdata
def _got_channel_auth_cap(self, response):
if 'error' in response:
self.onlogon(response)
return
self.maxtimeout = 6 # we have a confirmed bmc, be more tenacious
if response['code'] == 0xcc and self.ipmi15only is not None:
# tried ipmi 2.0 against a 1.5 which should work, but some bmcs
# thought 'reserved' meant 'must be zero'
self.ipmi15only = 1
return self._get_channel_auth_cap()
mysuffix = " while trying to get channel authentication capabalities"
errstr = get_ipmi_error(response, suffix=mysuffix)
if errstr:
self.onlogon({'error': errstr})
return
data = response['data']
self.currentchannel = data[0]
if data[1] & 0b10000000 and data[3] & 0b10: # ipmi 2.0 support
self.ipmiversion = 2.0
if self.ipmiversion == 1.5:
if not (data[1] & 0b100):
self.onlogon(
{'error':
"MD5 required but not enabled/available on target BMC"})
return
self._get_session_challenge()
elif self.ipmiversion == 2.0:
self._open_rmcpplus_request()
def _got_session_challenge(self, response):
errstr = get_ipmi_error(response,
suffix=" while getting session challenge")
if errstr:
self.onlogon({'error': errstr})
return
data = response['data']
self.sessionid = struct.unpack("<I", struct.pack("4B", *data[0:4]))[0]
self.authtype = 2
self._activate_session(data[4:])
'''
This sends the activate session payload. We pick '1' as the requested
sequence number without perturbing our real sequence number
'''
def _activate_session(self, data):
rqdata = [2, 4] + list(data) + [1, 0, 0, 0]
# TODO(jbjohnso): this always requests admin level (1.5)
self.ipmicallback = self._activated_session
self._send_ipmi_net_payload(netfn=0x6, command=0x3a, data=rqdata)
def _activated_session(self, response):
errstr = get_ipmi_error(response)
if errstr:
self.onlogon({'error': errstr})
return
data = response['data']
self.sessionid = struct.unpack("<I", struct.pack("4B", *data[1:5]))[0]
self.sequencenumber = struct.unpack("<I",
struct.pack("4B", *data[5:9]))[0]
self._req_priv_level()
def _req_priv_level(self):
self.ipmicallback = self._got_priv_level
self._send_ipmi_net_payload(netfn=0x6,
command=0x3b,
data=[self.privlevel])
def _got_priv_level(self, response):
mysuffix = " while requesting privelege level %d for %s" % (
self.privlevel, self.userid)
errstr = get_ipmi_error(response, suffix=mysuffix)
if errstr:
self.onlogon({'error': errstr})
return
self.logged = 1
Session.keepalive_sessions[self] = {}
Session.keepalive_sessions[self]['ipmisession'] = self
Session.keepalive_sessions[self]['timeout'] = _monotonic_time() + \
25 + (random.random() * 4.9)
self.onlogon({'success': True})
def _get_session_challenge(self):
reqdata = [2]
if len(self.userid) > 16:
raise exc.IpmiException(
"Username too long for IPMI, must not exceed 16")
padneeded = 16 - len(self.userid)
userid = self.userid + ('\x00' * padneeded)
reqdata += struct.unpack("!16B", userid)
self.ipmicallback = self._got_session_challenge
self._send_ipmi_net_payload(netfn=0x6, command=0x39, data=reqdata)
def _open_rmcpplus_request(self):
self.authtype = 6
self.localsid += 1 # have unique local session ids to ignore aborted
# login attempts from the past
self.rmcptag += 1
data = [
self.rmcptag,
0, # request as much privilege as the channel will give us
0, 0, # reserved
]
data += list(struct.unpack("4B", struct.pack("<I", self.localsid)))
data += [
0, 0, 0, 8, 1, 0, 0, 0, # table 13-17, SHA-1
1, 0, 0, 8, 1, 0, 0, 0, # SHA-1 integrity
2, 0, 0, 8, 1, 0, 0, 0, # AES privacy
#2,0,0,8,0,0,0,0, #no privacy confalgo
]
self.sessioncontext = 'OPENSESSION'
self.send_payload(
payload=data,
payload_type=constants.payload_types['rmcpplusopenreq'])
def _get_channel_auth_cap(self):
self.ipmicallback = self._got_channel_auth_cap
if (self.ipmi15only):
self._send_ipmi_net_payload(netfn=0x6,
command=0x38,
data=[0x0e, self.privlevel])
else:
self._send_ipmi_net_payload(netfn=0x6,
command=0x38,
data=[0x8e, self.privlevel])
def login(self):
self.logontries = 5
self._initsession()
self._get_channel_auth_cap()
@classmethod
def pulltoqueue(cls, mysocket, queue):
while True:
rdata = _io_apply(_io_recvfrom, (mysocket, 3000))
if rdata is None:
break
queue.append(rdata)
@classmethod
def wait_for_rsp(cls, timeout=None, callout=True):
"""IPMI Session Event loop iteration
This watches for any activity on IPMI handles and handles registered
by register_handle_callback. Callers are satisfied in the order that
packets return from nework, not in the order of calling.
:param timeout: Maximum time to wait for data to come across. If
unspecified, will autodetect based on earliest timeout
"""
global iosockets
#Assume:
#Instance A sends request to packet B
#Then Instance C sends request to BMC D
#BMC D was faster, so data comes back before BMC B
#Instance C gets to go ahead of Instance A, because
#Instance C can get work done, but instance A cannot
curtime = _monotonic_time()
# There ar a number of parties that each has their own timeout
# The caller can specify a deadline in timeout argument
# each session with active outbound payload has callback to
# handle retry/timout error
# each session that is 'alive' wants to send a keepalive ever so often.
# We want to make sure the most strict request is honored and block for
# no more time than that, so that whatever part(ies) need to service in
# a deadline, will be honored
if timeout != 0:
for session, parms in cls.waiting_sessions.iteritems():
if parms['timeout'] <= curtime:
timeout = 0 # exit after one guaranteed pass
break
if (timeout is not None and
timeout < parms['timeout'] - curtime):
continue # timeout smaller than the current session needs
timeout = parms['timeout'] - curtime # set new timeout value
for session, parms in cls.keepalive_sessions.iteritems():
if parms['timeout'] <= curtime:
timeout = 0
break
if (timeout is not None and
timeout < parms['timeout'] - curtime):
continue
timeout = parms['timeout'] - curtime
# If the loop above found no sessions wanting *and* the caller had no
# timeout, exit function. In this case there is no way a session
# could be waiting so we can always return 0
while cls.iterwaiters:
waiter = cls.iterwaiters.pop()
waiter({'success': True})
# cause a quick exit from the event loop iteration for calling code
# to be able to reasonably set up for the next iteration before
# a long select comes along
if timeout is not None:
timeout = 0
if timeout is None:
return 0
rdylist = _poller(iosockets, timeout=timeout)
if len(rdylist) > 0:
while _poller((cls.socket,)): # if the somewhat lengthy
# queue # processing takes long enough for packets to
# come in, be eager
pktqueue = collections.deque([])
cls.pulltoqueue(cls.socket, pktqueue)
while len(pktqueue):
(data, sockaddr) = pktqueue.popleft()
cls._route_ipmiresponse(sockaddr, data)
cls.pulltoqueue(cls.socket, pktqueue)
sessionstodel = []
sessionstokeepalive = []
for session, parms in cls.keepalive_sessions.iteritems():
if parms['timeout'] < curtime:
cls.keepalive_sessions[session]['timeout'] = 25 + \
(random.random() * 4.9)
sessionstokeepalive.append(session)
for session in sessionstokeepalive:
session._keepalive()
for session, parms in cls.waiting_sessions.iteritems():
if parms['timeout'] < curtime: # timeout has expired, time to
# give up on it and trigger timeout
# response in the respective
# session
sessionstodel.append(
session) # defer deletion until after loop
# to avoid confusing the for loop
for session in sessionstodel:
cls.pending -= 1
cls.waiting_sessions.pop(session, None)
session._timedout()
return len(cls.waiting_sessions)
def _keepalive(self):
"""Performs a keepalive to avoid idle disconnect
"""
if self.incommand: # if currently in command, no cause to keepalive
return
self.raw_command(netfn=6, command=1)
@classmethod
def _route_ipmiresponse(cls, sockaddr, data):
if not (data[0] == '\x06' and data[2:4] == '\xff\x07'): # not ipmi
return
try:
cls.bmc_handlers[sockaddr]._handle_ipmi_packet(data,
sockaddr=sockaddr)
cls.pending -= 1
except KeyError:
pass
def _handle_ipmi_packet(self, data, sockaddr=None):
if self.sockaddr is None and sockaddr is not None:
self.sockaddr = sockaddr
elif (self.sockaddr is not None and
sockaddr is not None and
self.sockaddr != sockaddr):
return # here, we might have sent an ipv4 and ipv6 packet to kick
# things off ignore the second reply since we have one
# satisfactory answer
if data[4] in ('\x00', '\x02'): # This is an ipmi 1.5 paylod
remsequencenumber = struct.unpack('<I', data[5:9])[0]
if (hasattr(self, 'remsequencenumber') and
remsequencenumber < self.remsequencenumber):
return -5 # remote sequence number is too low, reject it
self.remsequencenumber = remsequencenumber
if ord(data[4]) != self.authtype:
return -2 # BMC responded with mismatch authtype, for
# mutual authentication reject it. If this causes
# legitimate issues, it's the vendor's fault
remsessid = struct.unpack("<I", data[9:13])[0]
if remsessid != self.sessionid:
return -1 # does not match our session id, drop it
# now we need a mutable representation of the packet, rather than
# copying pieces of the packet over and over
rsp = list(struct.unpack("!%dB" % len(data), data))
authcode = False
if data[4] == '\x02': # we have authcode in this ipmi 1.5 packet
authcode = data[13:29]
del rsp[13:29]
# this is why we needed a mutable representation
payload = list(rsp[14:14 + rsp[13]])
if authcode:
expectedauthcode = self._ipmi15authcode(payload,
checkremotecode=True)
expectedauthcode = struct.pack("%dB" % len(expectedauthcode),
*expectedauthcode)
if expectedauthcode != authcode:
return
self._parse_ipmi_payload(payload)
elif data[4] == '\x06':
self._handle_ipmi2_packet(data)
else:
return # unrecognized data, assume evil
def _handle_ipmi2_packet(self, rawdata):
data = list(struct.unpack("%dB" % len(rawdata), rawdata))
#now need mutable array
ptype = data[5] & 0b00111111
# the first 16 bytes are header information as can be seen in 13-8 that
# we will toss out
if ptype == 0x11: # rmcp+ response
return self._got_rmcp_response(data[16:])
elif ptype == 0x13:
return self._got_rakp2(data[16:])
elif ptype == 0x15:
return self._got_rakp4(data[16:])
elif ptype == 0 or ptype == 1: # good old ipmi payload or sol
# If endorsing a shared secret scheme, then at the very least it
# needs to do mutual assurance
if not (data[5] & 0b01000000): # This would be the line that might
# trip up some insecure BMC
# implementation
return
encrypted = 0
if data[5] & 0b10000000:
encrypted = 1
authcode = rawdata[-12:]
expectedauthcode = HMAC.new(
self.k1, rawdata[4:-12], SHA).digest()[:12]
if authcode != expectedauthcode:
return # BMC failed to assure integrity to us, drop it
sid = struct.unpack("<I", rawdata[6:10])[0]
if sid != self.localsid: # session id mismatch, drop it
return
remseqnumber = struct.unpack("<I", rawdata[10:14])[0]
if (hasattr(self, 'remseqnumber') and
(remseqnumber < self.remseqnumber) and
(self.remseqnumber != 0xffffffff)):
return
self.remseqnumber = remseqnumber
psize = data[14] + (data[15] << 8)
payload = data[16:16 + psize]
if encrypted:
iv = rawdata[16:32]
decrypter = AES.new(self.aeskey, AES.MODE_CBC, iv)
decrypted = decrypter.decrypt(
struct.pack("%dB" % len(payload[16:]),
*payload[16:]))
payload = struct.unpack("%dB" % len(decrypted), decrypted)
padsize = payload[-1] + 1
payload = list(payload[:-padsize])
if ptype == 0:
self._parse_ipmi_payload(payload)
elif ptype == 1: # There should be no other option
# note that we assume the SOL payload is good enough to avoid
# retry SOL logic is sufficiently different, we just
# defer that call to the sol handler, it can re submit if it
# is unhappy
if self.last_payload_type == 1: # but only if SOL was last tx
self.lastpayload = None
self.last_payload_type = None
Session.waiting_sessions.pop(self, None)
if len(self.pendingpayloads) > 0:
(nextpayload, nextpayloadtype, retry) = \
self.pendingpayloads.popleft()
self.send_payload(payload=nextpayload,
payload_type=nextpayloadtype,
retry=retry)
if self.sol_handler:
self.sol_handler(payload)
def _got_rmcp_response(self, data):
# see RMCP+ open session response table
if not (self.sessioncontext and self.sessioncontext != "Established"):
return -9
# ignore payload as we are not in a state valid it
if data[0] != self.rmcptag:
return -9 # use rmcp tag to track and reject stale responses
if data[1] != 0: # response code...
if data[1] in constants.rmcp_codes:
errstr = constants.rmcp_codes[data[1]]
else:
errstr = "Unrecognized RMCP code %d" % data[1]
self.onlogon({'error': errstr})
return -9
self.allowedpriv = data[2]
# TODO(jbjohnso): enable lower priv access (e.g. operator/user)
localsid = struct.unpack("<I", struct.pack("4B", *data[4:8]))[0]
if self.localsid != localsid:
return -9
self.pendingsessionid = struct.unpack(
"<I", struct.pack("4B", *data[8:12]))[0]
# TODO(jbjohnso): currently, we take it for granted that the responder
# accepted our integrity/auth/confidentiality proposal
self.lastpayload = None
self._send_rakp1()
def _send_rakp1(self):
self.rmcptag += 1
self.randombytes = os.urandom(16)
userlen = len(self.userid)
payload = [self.rmcptag, 0, 0, 0] + \
list(struct.unpack("4B",
struct.pack("<I", self.pendingsessionid))) +\
list(struct.unpack("16B", self.randombytes)) +\
[self.privlevel, 0, 0] +\
[userlen] +\
list(struct.unpack("%dB" % userlen, self.userid))
self.sessioncontext = "EXPECTINGRAKP2"
self.send_payload(
payload=payload, payload_type=constants.payload_types['rakp1'])
def _got_rakp2(self, data):
if not (self.sessioncontext in ('EXPECTINGRAKP2', 'EXPECTINGRAKP4')):
return -9 # if we are not expecting rakp2, ignore. In a retry
# scenario, replying from stale RAKP2 after sending
# RAKP3 seems to be best
if data[0] != self.rmcptag: # ignore mismatched tags for retry logic
return -9
if data[1] != 0: # if not successful, consider next move
if data[1] == 2: # invalid sessionid 99% of the time means a retry
# scenario invalidated an in-flight transaction
return
if data[1] in constants.rmcp_codes:
errstr = constants.rmcp_codes[data[1]]
else:
errstr = "Unrecognized RMCP code %d" % data[1]
self.onlogon({'error': errstr + " in RAKP2"})
return -9
localsid = struct.unpack("<I", struct.pack("4B", *data[4:8]))[0]
if localsid != self.localsid:
return -9 # discard mismatch in the session identifier
self.remoterandombytes = struct.pack("16B", *data[8:24])
self.remoteguid = struct.pack("16B", *data[24:40])
userlen = len(self.userid)
hmacdata = struct.pack("<II", localsid, self.pendingsessionid) +\
self.randombytes + self.remoterandombytes + self.remoteguid +\
struct.pack("2B", self.privlevel, userlen) +\
self.userid
expectedhash = HMAC.new(self.password, hmacdata, SHA).digest()
givenhash = struct.pack("%dB" % len(data[40:]), *data[40:])
if givenhash != expectedhash:
self.sessioncontext = "FAILED"
self.onlogon({'error': "Incorrect password provided"})
return -9
# We have now validated that the BMC and client agree on password, time
# to store the keys
self.sik = HMAC.new(self.kg,
self.randombytes + self.remoterandombytes +
struct.pack("2B", self.privlevel, userlen) +
self.userid, SHA).digest()
self.k1 = HMAC.new(self.sik, '\x01' * 20, SHA).digest()
self.k2 = HMAC.new(self.sik, '\x02' * 20, SHA).digest()
self.aeskey = self.k2[0:16]
self.sessioncontext = "EXPECTINGRAKP4"
self.lastpayload = None
self._send_rakp3()
def _send_rakp3(self): # rakp message 3
self.rmcptag += 1
# rmcptag, then status 0, then two reserved 0s
payload = [self.rmcptag, 0, 0, 0] +\
list(struct.unpack("4B", struct.pack("<I", self.pendingsessionid)))
hmacdata = self.remoterandombytes +\
struct.pack("<I", self.localsid) +\
struct.pack("2B", self.privlevel, len(self.userid)) +\
self.userid
authcode = HMAC.new(self.password, hmacdata, SHA).digest()
payload += list(struct.unpack("%dB" % len(authcode), authcode))
self.send_payload(
payload=payload, payload_type=constants.payload_types['rakp3'])
def _relog(self):
self._initsession()
self.logontries -= 1
return self._get_channel_auth_cap()
def _got_rakp4(self, data):
if self.sessioncontext != "EXPECTINGRAKP4" or data[0] != self.rmcptag:
return -9
if data[1] != 0:
if data[1] == 2 and self.logontries: # if we retried RAKP3 because
# RAKP4 got dropped, BMC can consider it done and we must
# restart
self._relog()
if data[1] == 15 and self.logontries: # ignore 15 value if we are
# retrying. xCAT did but I can't recall why exactly
# TODO(jbjohnso) jog my memory to update the comment
return
if data[1] in constants.rmcp_codes:
errstr = constants.rmcp_codes[data[1]]
else:
errstr = "Unrecognized RMCP code %d" % data[1]
self.onlogon({'error': errstr + " reported in RAKP4"})
return -9
localsid = struct.unpack("<I", struct.pack("4B", *data[4:8]))[0]
if localsid != self.localsid: # ignore if wrong session id indicated
return -9
hmacdata = self.randombytes +\
struct.pack("<I", self.pendingsessionid) +\
self.remoteguid
expectedauthcode = HMAC.new(self.sik, hmacdata, SHA).digest()[:12]
authcode = struct.pack("%dB" % len(data[8:]), *data[8:])
if authcode != expectedauthcode:
self.onlogon({'error': "Invalid RAKP4 integrity code (wrong Kg?)"})
return
self.sessionid = self.pendingsessionid
self.integrityalgo = 'sha1'
self.confalgo = 'aes'
self.sequencenumber = 1
self.sessioncontext = 'ESTABLISHED'
self.lastpayload = None
self._req_priv_level()
'''
Internal function to parse IPMI nugget once extracted from its framing
'''
def _parse_ipmi_payload(self, payload):
# For now, skip the checksums since we are in LAN only,
# TODO(jbjohnso): if implementing other channels, add checksum checks
# here
entry = (payload[1] >> 2, payload[4], payload[5])
if self._lookup_request_entry(entry):
self._remove_request_entry(entry)
#NOTE(fengqian): for bridge request, we need to handle the response
#twice. First response shows if message send correctly, second
#response is the real response.
#If the message is send crrectly, we will discard the first
#response or else error message will be parsed and return.
if ((entry[0] in [0x06, 0x07]) and (entry[2] == 0x34)
and (payload[-2] == 0x0)):
return -1
else:
self._parse_payload(payload)
#NOTE(fengqian): recheck if the certain entry is removed in
#case that bridge request failed.
if self.request_entry:
self._remove_request_entry((self.expectednetfn,
self.seqlun, self.expectedcmd))
else:
# payload is not a match for our last packet
# it is also not a bridge request.
return -1
def _parse_payload(self, payload):
if hasattr(self, 'hasretried') and self.hasretried:
self.hasretried = 0
self.tabooseq[
(self.expectednetfn, self.expectedcmd, self.seqlun)] = 16
# try to skip it for at most 16 cycles of overflow
# We want to now remember that we do not have an expected packet
self.expectednetfn = 0x1ff # bigger than one byte means it can never
# match the one byte value by mistake
self.expectedcmd = 0x1ff
self.seqlun += 4 # prepare seqlun for next transmit
self.seqlun &= 0xff # when overflowing, wrap around
Session.waiting_sessions.pop(self, None)
self.lastpayload = None # render retry mechanism utterly incapable of
# doing anything, though it shouldn't matter
self.last_payload_type = None
response = {}
response['netfn'] = payload[1] >> 2
del payload[0:5]
# ^^ remove header of rsaddr/netfn/lun/checksum/rq/seq/lun
del payload[-1] # remove the trailing checksum
response['command'] = payload[0]
response['code'] = payload[1]
del payload[0:2]
response['data'] = payload
self.timeout = initialtimeout + (0.5 * random.random())
if len(self.pendingpayloads) > 0:
(nextpayload, nextpayloadtype, retry) = \
self.pendingpayloads.popleft()
self.send_payload(payload=nextpayload,
payload_type=nextpayloadtype,
retry=retry)
self.incommand = False
self.ipmicallback(response)
def _timedout(self):
if not self.lastpayload:
return
self.nowait = True
self.timeout += 1
if self.timeout > self.maxtimeout:
response = {'error': 'timeout'}
self.ipmicallback(response)
self.incommand = False
self.nowait = False
self._mark_broken()
return
elif self.sessioncontext == 'FAILED':
self.nowait = False
return
if self.sessioncontext == 'OPENSESSION':
# In this case, we want to craft a new session request to have
# unambiguous session id regardless of how packet was dropped or
# delayed in this case, it's safe to just redo the request
self._open_rmcpplus_request()
elif (self.sessioncontext == 'EXPECTINGRAKP2' or
self.sessioncontext == 'EXPECTINGRAKP4'):
# If we can't be sure which RAKP was dropped or if RAKP3/4 was just
# delayed, the most reliable thing to do is rewind and start over
# bmcs do not take kindly to receiving RAKP1 or RAKP3 twice
self._relog()
else: # in IPMI case, the only recourse is to act as if the packet is
# idempotent. SOL has more sophisticated retry handling
# the biggest risks are reset sp which is often fruitless to retry
# and chassis reset, which sometimes will shoot itself
# systematically in the head in a shared port case making replies
# impossible
self.hasretried = 1 # remember so that we can track taboo
# combinations
# of sequence number, netfn, and lun due to
# ambiguity on the wire
self.send_payload()
self.nowait = False
def _xmit_packet(self, retry=True, delay_xmit=None):
if not self.nowait: # if we are retrying, we really need to get the
# packet out and get our timeout updated
Session.wait_for_rsp(timeout=0, callout=False) # take opportunity
# to drain the socket queue if
# applicable
while Session.pending > Session.maxpending:
Session.wait_for_rsp()
if self.sequencenumber: # seq number of zero will be left alone, it is
# special, otherwise increment
self.sequencenumber += 1
if retry:
Session.waiting_sessions[self] = {}
Session.waiting_sessions[self]['ipmisession'] = self
Session.waiting_sessions[self]['timeout'] = self.timeout + \
_monotonic_time()
Session.pending += 1
if delay_xmit is not None:
Session.waiting_sessions[self]['timeout'] = delay_xmit + \
_monotonic_time()
return # skip transmit, let retry timer do it's thing
if self.sockaddr:
_io_apply(_io_sendto,
(Session.socket, self.netpacket, self.sockaddr))
else: # he have not yet picked a working sockaddr for this connection,
# try all the candidates that getaddrinfo provides
self.allsockaddrs = []
try:
for res in socket.getaddrinfo(self.bmc,
self.port,
0,
socket.SOCK_DGRAM):
sockaddr = res[4]
if (res[0] == socket.AF_INET): # convert the sockaddr
# to AF_INET6
newhost = '::ffff:' + sockaddr[0]
sockaddr = (newhost, sockaddr[1], 0, 0)
self.allsockaddrs.append(sockaddr)
Session.bmc_handlers[sockaddr] = self
_io_apply(_io_sendto, (Session.socket,
self.netpacket, sockaddr))
except socket.gaierror:
raise exc.IpmiException(
"Unable to transmit to specified address")
def logout(self):
if not self.logged:
return {'success': True}
if self.cleaningup:
self.nowait = True
self.raw_command(command=0x3c,
netfn=6,
data=struct.unpack("4B",
struct.pack("I", self.sessionid)),
retry=False)
self.logged = 0
self.nowait = False
return {'success': True}
if __name__ == "__main__":
import sys
ipmis = Session(bmc=sys.argv[1],
userid=sys.argv[2],
password=os.environ['IPMIPASS'])
print ipmis.raw_command(command=2, data=[1], netfn=0)
print get_ipmi_error({'command': 8, 'code': 128, 'netfn': 1})