508 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			508 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Generic library functions for the microengines found on the Intel
 | |
|  * IXP2000 series of network processors.
 | |
|  *
 | |
|  * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org>
 | |
|  * Dedicated to Marija Kulikova.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU Lesser General Public License as
 | |
|  * published by the Free Software Foundation; either version 2.1 of the
 | |
|  * License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/io.h>
 | |
| #include <mach/hardware.h>
 | |
| #include <asm/hardware/uengine.h>
 | |
| 
 | |
| #if defined(CONFIG_ARCH_IXP2000)
 | |
| #define IXP_UENGINE_CSR_VIRT_BASE	IXP2000_UENGINE_CSR_VIRT_BASE
 | |
| #define IXP_PRODUCT_ID			IXP2000_PRODUCT_ID
 | |
| #define IXP_MISC_CONTROL		IXP2000_MISC_CONTROL
 | |
| #define IXP_RESET1			IXP2000_RESET1
 | |
| #else
 | |
| #if defined(CONFIG_ARCH_IXP23XX)
 | |
| #define IXP_UENGINE_CSR_VIRT_BASE	IXP23XX_UENGINE_CSR_VIRT_BASE
 | |
| #define IXP_PRODUCT_ID			IXP23XX_PRODUCT_ID
 | |
| #define IXP_MISC_CONTROL		IXP23XX_MISC_CONTROL
 | |
| #define IXP_RESET1			IXP23XX_RESET1
 | |
| #else
 | |
| #error unknown platform
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| #define USTORE_ADDRESS			0x000
 | |
| #define USTORE_DATA_LOWER		0x004
 | |
| #define USTORE_DATA_UPPER		0x008
 | |
| #define CTX_ENABLES			0x018
 | |
| #define CC_ENABLE			0x01c
 | |
| #define CSR_CTX_POINTER			0x020
 | |
| #define INDIRECT_CTX_STS		0x040
 | |
| #define ACTIVE_CTX_STS			0x044
 | |
| #define INDIRECT_CTX_SIG_EVENTS		0x048
 | |
| #define INDIRECT_CTX_WAKEUP_EVENTS	0x050
 | |
| #define NN_PUT				0x080
 | |
| #define NN_GET				0x084
 | |
| #define TIMESTAMP_LOW			0x0c0
 | |
| #define TIMESTAMP_HIGH			0x0c4
 | |
| #define T_INDEX_BYTE_INDEX		0x0f4
 | |
| #define LOCAL_CSR_STATUS		0x180
 | |
| 
 | |
| u32 ixp2000_uengine_mask;
 | |
| 
 | |
| static void *ixp2000_uengine_csr_area(int uengine)
 | |
| {
 | |
| 	return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR
 | |
|  * space means that the microengine we tried to access was also trying
 | |
|  * to access its own CSR space on the same clock cycle as we did.  When
 | |
|  * this happens, we lose the arbitration process by default, and the
 | |
|  * read or write we tried to do was not actually performed, so we try
 | |
|  * again until it succeeds.
 | |
|  */
 | |
| u32 ixp2000_uengine_csr_read(int uengine, int offset)
 | |
| {
 | |
| 	void *uebase;
 | |
| 	u32 *local_csr_status;
 | |
| 	u32 *reg;
 | |
| 	u32 value;
 | |
| 
 | |
| 	uebase = ixp2000_uengine_csr_area(uengine);
 | |
| 
 | |
| 	local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
 | |
| 	reg = (u32 *)(uebase + offset);
 | |
| 	do {
 | |
| 		value = ixp2000_reg_read(reg);
 | |
| 	} while (ixp2000_reg_read(local_csr_status) & 1);
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_csr_read);
 | |
| 
 | |
| void ixp2000_uengine_csr_write(int uengine, int offset, u32 value)
 | |
| {
 | |
| 	void *uebase;
 | |
| 	u32 *local_csr_status;
 | |
| 	u32 *reg;
 | |
| 
 | |
| 	uebase = ixp2000_uengine_csr_area(uengine);
 | |
| 
 | |
| 	local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS);
 | |
| 	reg = (u32 *)(uebase + offset);
 | |
| 	do {
 | |
| 		ixp2000_reg_write(reg, value);
 | |
| 	} while (ixp2000_reg_read(local_csr_status) & 1);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_csr_write);
 | |
| 
 | |
| void ixp2000_uengine_reset(u32 uengine_mask)
 | |
| {
 | |
| 	u32 value;
 | |
| 
 | |
| 	value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask;
 | |
| 
 | |
| 	uengine_mask &= ixp2000_uengine_mask;
 | |
| 	ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask);
 | |
| 	ixp2000_reg_wrb(IXP_RESET1, value);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_reset);
 | |
| 
 | |
| void ixp2000_uengine_set_mode(int uengine, u32 mode)
 | |
| {
 | |
| 	/*
 | |
| 	 * CTL_STR_PAR_EN: unconditionally enable parity checking on
 | |
| 	 * control store.
 | |
| 	 */
 | |
| 	mode |= 0x10000000;
 | |
| 	ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable updating of condition codes.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise other per-microengine registers.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00);
 | |
| 	ixp2000_uengine_csr_write(uengine, NN_GET, 0x00);
 | |
| 	ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_set_mode);
 | |
| 
 | |
| static int make_even_parity(u32 x)
 | |
| {
 | |
| 	return hweight32(x) & 1;
 | |
| }
 | |
| 
 | |
| static void ustore_write(int uengine, u64 insn)
 | |
| {
 | |
| 	/*
 | |
| 	 * Generate even parity for top and bottom 20 bits.
 | |
| 	 */
 | |
| 	insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41;
 | |
| 	insn |= (u64)make_even_parity(insn & 0x000fffff) << 40;
 | |
| 
 | |
| 	/*
 | |
| 	 * Write to microstore.  The second write auto-increments
 | |
| 	 * the USTORE_ADDRESS index register.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn);
 | |
| 	ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32));
 | |
| }
 | |
| 
 | |
| void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Start writing to microstore at address 0.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000);
 | |
| 	for (i = 0; i < insns; i++) {
 | |
| 		u64 insn;
 | |
| 
 | |
| 		insn = (((u64)ucode[0]) << 32) |
 | |
| 			(((u64)ucode[1]) << 24) |
 | |
| 			(((u64)ucode[2]) << 16) |
 | |
| 			(((u64)ucode[3]) << 8) |
 | |
| 			((u64)ucode[4]);
 | |
| 		ucode += 5;
 | |
| 
 | |
| 		ustore_write(uengine, insn);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
|  	 * Pad with a few NOPs at the end (to avoid the microengine
 | |
| 	 * aborting as it prefetches beyond the last instruction), unless
 | |
| 	 * we run off the end of the instruction store first, at which
 | |
| 	 * point the address register will wrap back to zero.
 | |
| 	 */
 | |
| 	for (i = 0; i < 4; i++) {
 | |
| 		u32 addr;
 | |
| 
 | |
| 		addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS);
 | |
| 		if (addr == 0x80000000)
 | |
| 			break;
 | |
| 		ustore_write(uengine, 0xf0000c0300ULL);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * End programming.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_load_microcode);
 | |
| 
 | |
| void ixp2000_uengine_init_context(int uengine, int context, int pc)
 | |
| {
 | |
| 	/*
 | |
| 	 * Select the right context for indirect access.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context);
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialise signal masks to immediately go to Ready state.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1);
 | |
| 	ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set program counter.
 | |
| 	 */
 | |
| 	ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_init_context);
 | |
| 
 | |
| void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask)
 | |
| {
 | |
| 	u32 mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable the specified context to go to Executing state.
 | |
| 	 */
 | |
| 	mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
 | |
| 	mask |= ctx_mask << 8;
 | |
| 	ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_start_contexts);
 | |
| 
 | |
| void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask)
 | |
| {
 | |
| 	u32 mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Disable the Ready->Executing transition.  Note that this
 | |
| 	 * does not stop the context until it voluntarily yields.
 | |
| 	 */
 | |
| 	mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES);
 | |
| 	mask &= ~(ctx_mask << 8);
 | |
| 	ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask);
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_stop_contexts);
 | |
| 
 | |
| static int check_ixp_type(struct ixp2000_uengine_code *c)
 | |
| {
 | |
| 	u32 product_id;
 | |
| 	u32 rev;
 | |
| 
 | |
| 	product_id = ixp2000_reg_read(IXP_PRODUCT_ID);
 | |
| 	if (((product_id >> 16) & 0x1f) != 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	switch ((product_id >> 8) & 0xff) {
 | |
| #ifdef CONFIG_ARCH_IXP2000
 | |
| 	case 0:		/* IXP2800 */
 | |
| 		if (!(c->cpu_model_bitmask & 4))
 | |
| 			return 0;
 | |
| 		break;
 | |
| 
 | |
| 	case 1:		/* IXP2850 */
 | |
| 		if (!(c->cpu_model_bitmask & 8))
 | |
| 			return 0;
 | |
| 		break;
 | |
| 
 | |
| 	case 2:		/* IXP2400 */
 | |
| 		if (!(c->cpu_model_bitmask & 2))
 | |
| 			return 0;
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARCH_IXP23XX
 | |
| 	case 4:		/* IXP23xx */
 | |
| 		if (!(c->cpu_model_bitmask & 0x3f0))
 | |
| 			return 0;
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	rev = product_id & 0xff;
 | |
| 	if (rev < c->cpu_min_revision || rev > c->cpu_max_revision)
 | |
| 		return 0;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b)
 | |
| {
 | |
| 	int offset;
 | |
| 	int i;
 | |
| 
 | |
| 	offset = 0;
 | |
| 
 | |
| 	for (i = 0; i < 128; i++) {
 | |
| 		u8 b3;
 | |
| 		u8 b2;
 | |
| 		u8 b1;
 | |
| 		u8 b0;
 | |
| 
 | |
| 		b3 = (gpr_a[i] >> 24) & 0xff;
 | |
| 		b2 = (gpr_a[i] >> 16) & 0xff;
 | |
| 		b1 = (gpr_a[i] >> 8) & 0xff;
 | |
| 		b0 = gpr_a[i] & 0xff;
 | |
| 
 | |
| 		// immed[@ai, (b1 << 8) | b0]
 | |
| 		// 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII
 | |
| 		ucode[offset++] = 0xf0;
 | |
| 		ucode[offset++] = (b1 >> 4);
 | |
| 		ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6);
 | |
| 		ucode[offset++] = (b0 << 2);
 | |
| 		ucode[offset++] = 0x80 | i;
 | |
| 
 | |
| 		// immed_w1[@ai, (b3 << 8) | b2]
 | |
| 		// 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII
 | |
| 		ucode[offset++] = 0xf4;
 | |
| 		ucode[offset++] = 0x40 | (b3 >> 4);
 | |
| 		ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6);
 | |
| 		ucode[offset++] = (b2 << 2);
 | |
| 		ucode[offset++] = 0x80 | i;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < 128; i++) {
 | |
| 		u8 b3;
 | |
| 		u8 b2;
 | |
| 		u8 b1;
 | |
| 		u8 b0;
 | |
| 
 | |
| 		b3 = (gpr_b[i] >> 24) & 0xff;
 | |
| 		b2 = (gpr_b[i] >> 16) & 0xff;
 | |
| 		b1 = (gpr_b[i] >> 8) & 0xff;
 | |
| 		b0 = gpr_b[i] & 0xff;
 | |
| 
 | |
| 		// immed[@bi, (b1 << 8) | b0]
 | |
| 		// 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV
 | |
| 		ucode[offset++] = 0xf0;
 | |
| 		ucode[offset++] = (b1 >> 4);
 | |
| 		ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6);
 | |
| 		ucode[offset++] = (i << 2) | 0x03;
 | |
| 		ucode[offset++] = b0;
 | |
| 
 | |
| 		// immed_w1[@bi, (b3 << 8) | b2]
 | |
| 		// 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV
 | |
| 		ucode[offset++] = 0xf4;
 | |
| 		ucode[offset++] = 0x40 | (b3 >> 4);
 | |
| 		ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6);
 | |
| 		ucode[offset++] = (i << 2) | 0x03;
 | |
| 		ucode[offset++] = b2;
 | |
| 	}
 | |
| 
 | |
| 	// ctx_arb[kill]
 | |
| 	ucode[offset++] = 0xe0;
 | |
| 	ucode[offset++] = 0x00;
 | |
| 	ucode[offset++] = 0x01;
 | |
| 	ucode[offset++] = 0x00;
 | |
| 	ucode[offset++] = 0x00;
 | |
| }
 | |
| 
 | |
| static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c)
 | |
| {
 | |
| 	int per_ctx_regs;
 | |
| 	u32 *gpr_a;
 | |
| 	u32 *gpr_b;
 | |
| 	u8 *ucode;
 | |
| 	int i;
 | |
| 
 | |
| 	gpr_a = kzalloc(128 * sizeof(u32), GFP_KERNEL);
 | |
| 	gpr_b = kzalloc(128 * sizeof(u32), GFP_KERNEL);
 | |
| 	ucode = kmalloc(513 * 5, GFP_KERNEL);
 | |
| 	if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) {
 | |
| 		kfree(ucode);
 | |
| 		kfree(gpr_b);
 | |
| 		kfree(gpr_a);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	per_ctx_regs = 16;
 | |
| 	if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS)
 | |
| 		per_ctx_regs = 32;
 | |
| 
 | |
| 	for (i = 0; i < 256; i++) {
 | |
| 		struct ixp2000_reg_value *r = c->initial_reg_values + i;
 | |
| 		u32 *bank;
 | |
| 		int inc;
 | |
| 		int j;
 | |
| 
 | |
| 		if (r->reg == -1)
 | |
| 			break;
 | |
| 
 | |
| 		bank = (r->reg & 0x400) ? gpr_b : gpr_a;
 | |
| 		inc = (r->reg & 0x80) ? 128 : per_ctx_regs;
 | |
| 
 | |
| 		j = r->reg & 0x7f;
 | |
| 		while (j < 128) {
 | |
| 			bank[j] = r->value;
 | |
| 			j += inc;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	generate_ucode(ucode, gpr_a, gpr_b);
 | |
| 	ixp2000_uengine_load_microcode(uengine, ucode, 513);
 | |
| 	ixp2000_uengine_init_context(uengine, 0, 0);
 | |
| 	ixp2000_uengine_start_contexts(uengine, 0x01);
 | |
| 	for (i = 0; i < 100; i++) {
 | |
| 		u32 status;
 | |
| 
 | |
| 		status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS);
 | |
| 		if (!(status & 0x80000000))
 | |
| 			break;
 | |
| 	}
 | |
| 	ixp2000_uengine_stop_contexts(uengine, 0x01);
 | |
| 
 | |
| 	kfree(ucode);
 | |
| 	kfree(gpr_b);
 | |
| 	kfree(gpr_a);
 | |
| 
 | |
| 	return !!(i == 100);
 | |
| }
 | |
| 
 | |
| int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c)
 | |
| {
 | |
| 	int ctx;
 | |
| 
 | |
| 	if (!check_ixp_type(c))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (!(ixp2000_uengine_mask & (1 << uengine)))
 | |
| 		return 1;
 | |
| 
 | |
| 	ixp2000_uengine_reset(1 << uengine);
 | |
| 	ixp2000_uengine_set_mode(uengine, c->uengine_parameters);
 | |
| 	if (set_initial_registers(uengine, c))
 | |
| 		return 1;
 | |
| 	ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns);
 | |
| 
 | |
| 	for (ctx = 0; ctx < 8; ctx++)
 | |
| 		ixp2000_uengine_init_context(uengine, ctx, 0);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(ixp2000_uengine_load);
 | |
| 
 | |
| 
 | |
| static int __init ixp2000_uengine_init(void)
 | |
| {
 | |
| 	int uengine;
 | |
| 	u32 value;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine number of microengines present.
 | |
| 	 */
 | |
| 	switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) {
 | |
| #ifdef CONFIG_ARCH_IXP2000
 | |
| 	case 0:		/* IXP2800 */
 | |
| 	case 1:		/* IXP2850 */
 | |
| 		ixp2000_uengine_mask = 0x00ff00ff;
 | |
| 		break;
 | |
| 
 | |
| 	case 2:		/* IXP2400 */
 | |
| 		ixp2000_uengine_mask = 0x000f000f;
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_ARCH_IXP23XX
 | |
| 	case 4:		/* IXP23xx */
 | |
| 		ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf;
 | |
| 		break;
 | |
| #endif
 | |
| 
 | |
| 	default:
 | |
| 		printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n",
 | |
| 			(unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID));
 | |
| 		ixp2000_uengine_mask = 0x00000000;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Reset microengines.
 | |
| 	 */
 | |
| 	ixp2000_uengine_reset(ixp2000_uengine_mask);
 | |
| 
 | |
| 	/*
 | |
| 	 * Synchronise timestamp counters across all microengines.
 | |
| 	 */
 | |
| 	value = ixp2000_reg_read(IXP_MISC_CONTROL);
 | |
| 	ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80);
 | |
| 	for (uengine = 0; uengine < 32; uengine++) {
 | |
| 		if (ixp2000_uengine_mask & (1 << uengine)) {
 | |
| 			ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0);
 | |
| 			ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0);
 | |
| 		}
 | |
| 	}
 | |
| 	ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| subsys_initcall(ixp2000_uengine_init);
 |