617 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			617 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| #ifndef _ASM_IA64_PGTABLE_H
 | |
| #define _ASM_IA64_PGTABLE_H
 | |
| 
 | |
| /*
 | |
|  * This file contains the functions and defines necessary to modify and use
 | |
|  * the IA-64 page table tree.
 | |
|  *
 | |
|  * This hopefully works with any (fixed) IA-64 page-size, as defined
 | |
|  * in <asm/page.h>.
 | |
|  *
 | |
|  * Copyright (C) 1998-2005 Hewlett-Packard Co
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <asm/mman.h>
 | |
| #include <asm/page.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/types.h>
 | |
| 
 | |
| #define IA64_MAX_PHYS_BITS	50	/* max. number of physical address bits (architected) */
 | |
| 
 | |
| /*
 | |
|  * First, define the various bits in a PTE.  Note that the PTE format
 | |
|  * matches the VHPT short format, the firt doubleword of the VHPD long
 | |
|  * format, and the first doubleword of the TLB insertion format.
 | |
|  */
 | |
| #define _PAGE_P_BIT		0
 | |
| #define _PAGE_A_BIT		5
 | |
| #define _PAGE_D_BIT		6
 | |
| 
 | |
| #define _PAGE_P			(1 << _PAGE_P_BIT)	/* page present bit */
 | |
| #define _PAGE_MA_WB		(0x0 <<  2)	/* write back memory attribute */
 | |
| #define _PAGE_MA_UC		(0x4 <<  2)	/* uncacheable memory attribute */
 | |
| #define _PAGE_MA_UCE		(0x5 <<  2)	/* UC exported attribute */
 | |
| #define _PAGE_MA_WC		(0x6 <<  2)	/* write coalescing memory attribute */
 | |
| #define _PAGE_MA_NAT		(0x7 <<  2)	/* not-a-thing attribute */
 | |
| #define _PAGE_MA_MASK		(0x7 <<  2)
 | |
| #define _PAGE_PL_0		(0 <<  7)	/* privilege level 0 (kernel) */
 | |
| #define _PAGE_PL_1		(1 <<  7)	/* privilege level 1 (unused) */
 | |
| #define _PAGE_PL_2		(2 <<  7)	/* privilege level 2 (unused) */
 | |
| #define _PAGE_PL_3		(3 <<  7)	/* privilege level 3 (user) */
 | |
| #define _PAGE_PL_MASK		(3 <<  7)
 | |
| #define _PAGE_AR_R		(0 <<  9)	/* read only */
 | |
| #define _PAGE_AR_RX		(1 <<  9)	/* read & execute */
 | |
| #define _PAGE_AR_RW		(2 <<  9)	/* read & write */
 | |
| #define _PAGE_AR_RWX		(3 <<  9)	/* read, write & execute */
 | |
| #define _PAGE_AR_R_RW		(4 <<  9)	/* read / read & write */
 | |
| #define _PAGE_AR_RX_RWX		(5 <<  9)	/* read & exec / read, write & exec */
 | |
| #define _PAGE_AR_RWX_RW		(6 <<  9)	/* read, write & exec / read & write */
 | |
| #define _PAGE_AR_X_RX		(7 <<  9)	/* exec & promote / read & exec */
 | |
| #define _PAGE_AR_MASK		(7 <<  9)
 | |
| #define _PAGE_AR_SHIFT		9
 | |
| #define _PAGE_A			(1 << _PAGE_A_BIT)	/* page accessed bit */
 | |
| #define _PAGE_D			(1 << _PAGE_D_BIT)	/* page dirty bit */
 | |
| #define _PAGE_PPN_MASK		(((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
 | |
| #define _PAGE_ED		(__IA64_UL(1) << 52)	/* exception deferral */
 | |
| #define _PAGE_PROTNONE		(__IA64_UL(1) << 63)
 | |
| 
 | |
| /* Valid only for a PTE with the present bit cleared: */
 | |
| #define _PAGE_FILE		(1 << 1)		/* see swap & file pte remarks below */
 | |
| 
 | |
| #define _PFN_MASK		_PAGE_PPN_MASK
 | |
| /* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
 | |
| #define _PAGE_CHG_MASK	(_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
 | |
| 
 | |
| #define _PAGE_SIZE_4K	12
 | |
| #define _PAGE_SIZE_8K	13
 | |
| #define _PAGE_SIZE_16K	14
 | |
| #define _PAGE_SIZE_64K	16
 | |
| #define _PAGE_SIZE_256K	18
 | |
| #define _PAGE_SIZE_1M	20
 | |
| #define _PAGE_SIZE_4M	22
 | |
| #define _PAGE_SIZE_16M	24
 | |
| #define _PAGE_SIZE_64M	26
 | |
| #define _PAGE_SIZE_256M	28
 | |
| #define _PAGE_SIZE_1G	30
 | |
| #define _PAGE_SIZE_4G	32
 | |
| 
 | |
| #define __ACCESS_BITS		_PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
 | |
| #define __DIRTY_BITS_NO_ED	_PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
 | |
| #define __DIRTY_BITS		_PAGE_ED | __DIRTY_BITS_NO_ED
 | |
| 
 | |
| /*
 | |
|  * How many pointers will a page table level hold expressed in shift
 | |
|  */
 | |
| #define PTRS_PER_PTD_SHIFT	(PAGE_SHIFT-3)
 | |
| 
 | |
| /*
 | |
|  * Definitions for fourth level:
 | |
|  */
 | |
| #define PTRS_PER_PTE	(__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
 | |
| 
 | |
| /*
 | |
|  * Definitions for third level:
 | |
|  *
 | |
|  * PMD_SHIFT determines the size of the area a third-level page table
 | |
|  * can map.
 | |
|  */
 | |
| #define PMD_SHIFT	(PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
 | |
| #define PMD_SIZE	(1UL << PMD_SHIFT)
 | |
| #define PMD_MASK	(~(PMD_SIZE-1))
 | |
| #define PTRS_PER_PMD	(1UL << (PTRS_PER_PTD_SHIFT))
 | |
| 
 | |
| #ifdef CONFIG_PGTABLE_4
 | |
| /*
 | |
|  * Definitions for second level:
 | |
|  *
 | |
|  * PUD_SHIFT determines the size of the area a second-level page table
 | |
|  * can map.
 | |
|  */
 | |
| #define PUD_SHIFT	(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
 | |
| #define PUD_SIZE	(1UL << PUD_SHIFT)
 | |
| #define PUD_MASK	(~(PUD_SIZE-1))
 | |
| #define PTRS_PER_PUD	(1UL << (PTRS_PER_PTD_SHIFT))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Definitions for first level:
 | |
|  *
 | |
|  * PGDIR_SHIFT determines what a first-level page table entry can map.
 | |
|  */
 | |
| #ifdef CONFIG_PGTABLE_4
 | |
| #define PGDIR_SHIFT		(PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
 | |
| #else
 | |
| #define PGDIR_SHIFT		(PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
 | |
| #endif
 | |
| #define PGDIR_SIZE		(__IA64_UL(1) << PGDIR_SHIFT)
 | |
| #define PGDIR_MASK		(~(PGDIR_SIZE-1))
 | |
| #define PTRS_PER_PGD_SHIFT	PTRS_PER_PTD_SHIFT
 | |
| #define PTRS_PER_PGD		(1UL << PTRS_PER_PGD_SHIFT)
 | |
| #define USER_PTRS_PER_PGD	(5*PTRS_PER_PGD/8)	/* regions 0-4 are user regions */
 | |
| #define FIRST_USER_ADDRESS	0
 | |
| 
 | |
| /*
 | |
|  * All the normal masks have the "page accessed" bits on, as any time
 | |
|  * they are used, the page is accessed. They are cleared only by the
 | |
|  * page-out routines.
 | |
|  */
 | |
| #define PAGE_NONE	__pgprot(_PAGE_PROTNONE | _PAGE_A)
 | |
| #define PAGE_SHARED	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
 | |
| #define PAGE_READONLY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
 | |
| #define PAGE_COPY	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
 | |
| #define PAGE_COPY_EXEC	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
 | |
| #define PAGE_GATE	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
 | |
| #define PAGE_KERNEL	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX)
 | |
| #define PAGE_KERNELRX	__pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
 | |
| #define PAGE_KERNEL_UC	__pgprot(__DIRTY_BITS  | _PAGE_PL_0 | _PAGE_AR_RWX | \
 | |
| 				 _PAGE_MA_UC)
 | |
| 
 | |
| # ifndef __ASSEMBLY__
 | |
| 
 | |
| #include <linux/sched.h>	/* for mm_struct */
 | |
| #include <linux/bitops.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/mmu_context.h>
 | |
| 
 | |
| /*
 | |
|  * Next come the mappings that determine how mmap() protection bits
 | |
|  * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented.  The
 | |
|  * _P version gets used for a private shared memory segment, the _S
 | |
|  * version gets used for a shared memory segment with MAP_SHARED on.
 | |
|  * In a private shared memory segment, we do a copy-on-write if a task
 | |
|  * attempts to write to the page.
 | |
|  */
 | |
| 	/* xwr */
 | |
| #define __P000	PAGE_NONE
 | |
| #define __P001	PAGE_READONLY
 | |
| #define __P010	PAGE_READONLY	/* write to priv pg -> copy & make writable */
 | |
| #define __P011	PAGE_READONLY	/* ditto */
 | |
| #define __P100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
 | |
| #define __P101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
 | |
| #define __P110	PAGE_COPY_EXEC
 | |
| #define __P111	PAGE_COPY_EXEC
 | |
| 
 | |
| #define __S000	PAGE_NONE
 | |
| #define __S001	PAGE_READONLY
 | |
| #define __S010	PAGE_SHARED	/* we don't have (and don't need) write-only */
 | |
| #define __S011	PAGE_SHARED
 | |
| #define __S100	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_X_RX)
 | |
| #define __S101	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
 | |
| #define __S110	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
 | |
| #define __S111	__pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RWX)
 | |
| 
 | |
| #define pgd_ERROR(e)	printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
 | |
| #ifdef CONFIG_PGTABLE_4
 | |
| #define pud_ERROR(e)	printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
 | |
| #endif
 | |
| #define pmd_ERROR(e)	printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
 | |
| #define pte_ERROR(e)	printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Some definitions to translate between mem_map, PTEs, and page addresses:
 | |
|  */
 | |
| 
 | |
| 
 | |
| /* Quick test to see if ADDR is a (potentially) valid physical address. */
 | |
| static inline long
 | |
| ia64_phys_addr_valid (unsigned long addr)
 | |
| {
 | |
| 	return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * kern_addr_valid(ADDR) tests if ADDR is pointing to valid kernel
 | |
|  * memory.  For the return value to be meaningful, ADDR must be >=
 | |
|  * PAGE_OFFSET.  This operation can be relatively expensive (e.g.,
 | |
|  * require a hash-, or multi-level tree-lookup or something of that
 | |
|  * sort) but it guarantees to return TRUE only if accessing the page
 | |
|  * at that address does not cause an error.  Note that there may be
 | |
|  * addresses for which kern_addr_valid() returns FALSE even though an
 | |
|  * access would not cause an error (e.g., this is typically true for
 | |
|  * memory mapped I/O regions.
 | |
|  *
 | |
|  * XXX Need to implement this for IA-64.
 | |
|  */
 | |
| #define kern_addr_valid(addr)	(1)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Now come the defines and routines to manage and access the three-level
 | |
|  * page table.
 | |
|  */
 | |
| 
 | |
| 
 | |
| #define VMALLOC_START		(RGN_BASE(RGN_GATE) + 0x200000000UL)
 | |
| #ifdef CONFIG_VIRTUAL_MEM_MAP
 | |
| # define VMALLOC_END_INIT	(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
 | |
| # define VMALLOC_END		vmalloc_end
 | |
|   extern unsigned long vmalloc_end;
 | |
| #else
 | |
| #if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
 | |
| /* SPARSEMEM_VMEMMAP uses half of vmalloc... */
 | |
| # define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
 | |
| # define vmemmap		((struct page *)VMALLOC_END)
 | |
| #else
 | |
| # define VMALLOC_END		(RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| /* fs/proc/kcore.c */
 | |
| #define	kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
 | |
| #define	kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
 | |
| 
 | |
| #define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
 | |
| #define RGN_MAP_LIMIT	((1UL << RGN_MAP_SHIFT) - PAGE_SIZE)	/* per region addr limit */
 | |
| 
 | |
| /*
 | |
|  * Conversion functions: convert page frame number (pfn) and a protection value to a page
 | |
|  * table entry (pte).
 | |
|  */
 | |
| #define pfn_pte(pfn, pgprot) \
 | |
| ({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
 | |
| 
 | |
| /* Extract pfn from pte.  */
 | |
| #define pte_pfn(_pte)		((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
 | |
| 
 | |
| #define mk_pte(page, pgprot)	pfn_pte(page_to_pfn(page), (pgprot))
 | |
| 
 | |
| /* This takes a physical page address that is used by the remapping functions */
 | |
| #define mk_pte_phys(physpage, pgprot) \
 | |
| ({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
 | |
| 
 | |
| #define pte_modify(_pte, newprot) \
 | |
| 	(__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
 | |
| 
 | |
| #define pte_none(pte) 			(!pte_val(pte))
 | |
| #define pte_present(pte)		(pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
 | |
| #define pte_clear(mm,addr,pte)		(pte_val(*(pte)) = 0UL)
 | |
| /* pte_page() returns the "struct page *" corresponding to the PTE: */
 | |
| #define pte_page(pte)			virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
 | |
| 
 | |
| #define pmd_none(pmd)			(!pmd_val(pmd))
 | |
| #define pmd_bad(pmd)			(!ia64_phys_addr_valid(pmd_val(pmd)))
 | |
| #define pmd_present(pmd)		(pmd_val(pmd) != 0UL)
 | |
| #define pmd_clear(pmdp)			(pmd_val(*(pmdp)) = 0UL)
 | |
| #define pmd_page_vaddr(pmd)		((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
 | |
| #define pmd_page(pmd)			virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
 | |
| 
 | |
| #define pud_none(pud)			(!pud_val(pud))
 | |
| #define pud_bad(pud)			(!ia64_phys_addr_valid(pud_val(pud)))
 | |
| #define pud_present(pud)		(pud_val(pud) != 0UL)
 | |
| #define pud_clear(pudp)			(pud_val(*(pudp)) = 0UL)
 | |
| #define pud_page_vaddr(pud)		((unsigned long) __va(pud_val(pud) & _PFN_MASK))
 | |
| #define pud_page(pud)			virt_to_page((pud_val(pud) + PAGE_OFFSET))
 | |
| 
 | |
| #ifdef CONFIG_PGTABLE_4
 | |
| #define pgd_none(pgd)			(!pgd_val(pgd))
 | |
| #define pgd_bad(pgd)			(!ia64_phys_addr_valid(pgd_val(pgd)))
 | |
| #define pgd_present(pgd)		(pgd_val(pgd) != 0UL)
 | |
| #define pgd_clear(pgdp)			(pgd_val(*(pgdp)) = 0UL)
 | |
| #define pgd_page_vaddr(pgd)		((unsigned long) __va(pgd_val(pgd) & _PFN_MASK))
 | |
| #define pgd_page(pgd)			virt_to_page((pgd_val(pgd) + PAGE_OFFSET))
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * The following have defined behavior only work if pte_present() is true.
 | |
|  */
 | |
| #define pte_write(pte)	((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
 | |
| #define pte_exec(pte)		((pte_val(pte) & _PAGE_AR_RX) != 0)
 | |
| #define pte_dirty(pte)		((pte_val(pte) & _PAGE_D) != 0)
 | |
| #define pte_young(pte)		((pte_val(pte) & _PAGE_A) != 0)
 | |
| #define pte_file(pte)		((pte_val(pte) & _PAGE_FILE) != 0)
 | |
| #define pte_special(pte)	0
 | |
| 
 | |
| /*
 | |
|  * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
 | |
|  * access rights:
 | |
|  */
 | |
| #define pte_wrprotect(pte)	(__pte(pte_val(pte) & ~_PAGE_AR_RW))
 | |
| #define pte_mkwrite(pte)	(__pte(pte_val(pte) | _PAGE_AR_RW))
 | |
| #define pte_mkold(pte)		(__pte(pte_val(pte) & ~_PAGE_A))
 | |
| #define pte_mkyoung(pte)	(__pte(pte_val(pte) | _PAGE_A))
 | |
| #define pte_mkclean(pte)	(__pte(pte_val(pte) & ~_PAGE_D))
 | |
| #define pte_mkdirty(pte)	(__pte(pte_val(pte) | _PAGE_D))
 | |
| #define pte_mkhuge(pte)		(__pte(pte_val(pte)))
 | |
| #define pte_mkspecial(pte)	(pte)
 | |
| 
 | |
| /*
 | |
|  * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
 | |
|  * sync icache and dcache when we insert *new* executable page.
 | |
|  *  __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
 | |
|  * if necessary.
 | |
|  *
 | |
|  *  set_pte() is also called by the kernel, but we can expect that the kernel
 | |
|  *  flushes icache explicitly if necessary.
 | |
|  */
 | |
| #define pte_present_exec_user(pte)\
 | |
| 	((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
 | |
| 		(_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
 | |
| 
 | |
| extern void __ia64_sync_icache_dcache(pte_t pteval);
 | |
| static inline void set_pte(pte_t *ptep, pte_t pteval)
 | |
| {
 | |
| 	/* page is present && page is user  && page is executable
 | |
| 	 * && (page swapin or new page or page migraton
 | |
| 	 *	|| copy_on_write with page copying.)
 | |
| 	 */
 | |
| 	if (pte_present_exec_user(pteval) &&
 | |
| 	    (!pte_present(*ptep) ||
 | |
| 		pte_pfn(*ptep) != pte_pfn(pteval)))
 | |
| 		/* load_module() calles flush_icache_range() explicitly*/
 | |
| 		__ia64_sync_icache_dcache(pteval);
 | |
| 	*ptep = pteval;
 | |
| }
 | |
| 
 | |
| #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
 | |
| 
 | |
| /*
 | |
|  * Make page protection values cacheable, uncacheable, or write-
 | |
|  * combining.  Note that "protection" is really a misnomer here as the
 | |
|  * protection value contains the memory attribute bits, dirty bits, and
 | |
|  * various other bits as well.
 | |
|  */
 | |
| #define pgprot_cacheable(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
 | |
| #define pgprot_noncached(prot)		__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
 | |
| #define pgprot_writecombine(prot)	__pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
 | |
| 
 | |
| struct file;
 | |
| extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 | |
| 				     unsigned long size, pgprot_t vma_prot);
 | |
| #define __HAVE_PHYS_MEM_ACCESS_PROT
 | |
| 
 | |
| static inline unsigned long
 | |
| pgd_index (unsigned long address)
 | |
| {
 | |
| 	unsigned long region = address >> 61;
 | |
| 	unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
 | |
| 
 | |
| 	return (region << (PAGE_SHIFT - 6)) | l1index;
 | |
| }
 | |
| 
 | |
| /* The offset in the 1-level directory is given by the 3 region bits
 | |
|    (61..63) and the level-1 bits.  */
 | |
| static inline pgd_t*
 | |
| pgd_offset (const struct mm_struct *mm, unsigned long address)
 | |
| {
 | |
| 	return mm->pgd + pgd_index(address);
 | |
| }
 | |
| 
 | |
| /* In the kernel's mapped region we completely ignore the region number
 | |
|    (since we know it's in region number 5). */
 | |
| #define pgd_offset_k(addr) \
 | |
| 	(init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
 | |
| 
 | |
| /* Look up a pgd entry in the gate area.  On IA-64, the gate-area
 | |
|    resides in the kernel-mapped segment, hence we use pgd_offset_k()
 | |
|    here.  */
 | |
| #define pgd_offset_gate(mm, addr)	pgd_offset_k(addr)
 | |
| 
 | |
| #ifdef CONFIG_PGTABLE_4
 | |
| /* Find an entry in the second-level page table.. */
 | |
| #define pud_offset(dir,addr) \
 | |
| 	((pud_t *) pgd_page_vaddr(*(dir)) + (((addr) >> PUD_SHIFT) & (PTRS_PER_PUD - 1)))
 | |
| #endif
 | |
| 
 | |
| /* Find an entry in the third-level page table.. */
 | |
| #define pmd_offset(dir,addr) \
 | |
| 	((pmd_t *) pud_page_vaddr(*(dir)) + (((addr) >> PMD_SHIFT) & (PTRS_PER_PMD - 1)))
 | |
| 
 | |
| /*
 | |
|  * Find an entry in the third-level page table.  This looks more complicated than it
 | |
|  * should be because some platforms place page tables in high memory.
 | |
|  */
 | |
| #define pte_index(addr)	 	(((addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 | |
| #define pte_offset_kernel(dir,addr)	((pte_t *) pmd_page_vaddr(*(dir)) + pte_index(addr))
 | |
| #define pte_offset_map(dir,addr)	pte_offset_kernel(dir, addr)
 | |
| #define pte_offset_map_nested(dir,addr)	pte_offset_map(dir, addr)
 | |
| #define pte_unmap(pte)			do { } while (0)
 | |
| #define pte_unmap_nested(pte)		do { } while (0)
 | |
| 
 | |
| /* atomic versions of the some PTE manipulations: */
 | |
| 
 | |
| static inline int
 | |
| ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (!pte_young(*ptep))
 | |
| 		return 0;
 | |
| 	return test_and_clear_bit(_PAGE_A_BIT, ptep);
 | |
| #else
 | |
| 	pte_t pte = *ptep;
 | |
| 	if (!pte_young(pte))
 | |
| 		return 0;
 | |
| 	set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
 | |
| 	return 1;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline pte_t
 | |
| ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	return __pte(xchg((long *) ptep, 0));
 | |
| #else
 | |
| 	pte_t pte = *ptep;
 | |
| 	pte_clear(mm, addr, ptep);
 | |
| 	return pte;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	unsigned long new, old;
 | |
| 
 | |
| 	do {
 | |
| 		old = pte_val(*ptep);
 | |
| 		new = pte_val(pte_wrprotect(__pte (old)));
 | |
| 	} while (cmpxchg((unsigned long *) ptep, old, new) != old);
 | |
| #else
 | |
| 	pte_t old_pte = *ptep;
 | |
| 	set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline int
 | |
| pte_same (pte_t a, pte_t b)
 | |
| {
 | |
| 	return pte_val(a) == pte_val(b);
 | |
| }
 | |
| 
 | |
| #define update_mmu_cache(vma, address, pte) do { } while (0)
 | |
| 
 | |
| extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
 | |
| extern void paging_init (void);
 | |
| 
 | |
| /*
 | |
|  * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
 | |
|  *	 bits in the swap-type field of the swap pte.  It would be nice to
 | |
|  *	 enforce that, but we can't easily include <linux/swap.h> here.
 | |
|  *	 (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
 | |
|  *
 | |
|  * Format of swap pte:
 | |
|  *	bit   0   : present bit (must be zero)
 | |
|  *	bit   1   : _PAGE_FILE (must be zero)
 | |
|  *	bits  2- 8: swap-type
 | |
|  *	bits  9-62: swap offset
 | |
|  *	bit  63   : _PAGE_PROTNONE bit
 | |
|  *
 | |
|  * Format of file pte:
 | |
|  *	bit   0   : present bit (must be zero)
 | |
|  *	bit   1   : _PAGE_FILE (must be one)
 | |
|  *	bits  2-62: file_offset/PAGE_SIZE
 | |
|  *	bit  63   : _PAGE_PROTNONE bit
 | |
|  */
 | |
| #define __swp_type(entry)		(((entry).val >> 2) & 0x7f)
 | |
| #define __swp_offset(entry)		(((entry).val << 1) >> 10)
 | |
| #define __swp_entry(type,offset)	((swp_entry_t) { ((type) << 2) | ((long) (offset) << 9) })
 | |
| #define __pte_to_swp_entry(pte)		((swp_entry_t) { pte_val(pte) })
 | |
| #define __swp_entry_to_pte(x)		((pte_t) { (x).val })
 | |
| 
 | |
| #define PTE_FILE_MAX_BITS		61
 | |
| #define pte_to_pgoff(pte)		((pte_val(pte) << 1) >> 3)
 | |
| #define pgoff_to_pte(off)		((pte_t) { ((off) << 2) | _PAGE_FILE })
 | |
| 
 | |
| #define io_remap_pfn_range(vma, vaddr, pfn, size, prot)		\
 | |
| 		remap_pfn_range(vma, vaddr, pfn, size, prot)
 | |
| 
 | |
| /*
 | |
|  * ZERO_PAGE is a global shared page that is always zero: used
 | |
|  * for zero-mapped memory areas etc..
 | |
|  */
 | |
| extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
 | |
| extern struct page *zero_page_memmap_ptr;
 | |
| #define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
 | |
| 
 | |
| /* We provide our own get_unmapped_area to cope with VA holes for userland */
 | |
| #define HAVE_ARCH_UNMAPPED_AREA
 | |
| 
 | |
| #ifdef CONFIG_HUGETLB_PAGE
 | |
| #define HUGETLB_PGDIR_SHIFT	(HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
 | |
| #define HUGETLB_PGDIR_SIZE	(__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
 | |
| #define HUGETLB_PGDIR_MASK	(~(HUGETLB_PGDIR_SIZE-1))
 | |
| #endif
 | |
| 
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
 | |
| /*
 | |
|  * Update PTEP with ENTRY, which is guaranteed to be a less
 | |
|  * restrictive PTE.  That is, ENTRY may have the ACCESSED, DIRTY, and
 | |
|  * WRITABLE bits turned on, when the value at PTEP did not.  The
 | |
|  * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
 | |
|  *
 | |
|  * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
 | |
|  * having to worry about races.  On SMP machines, there are only two
 | |
|  * cases where this is true:
 | |
|  *
 | |
|  *	(1) *PTEP has the PRESENT bit turned OFF
 | |
|  *	(2) ENTRY has the DIRTY bit turned ON
 | |
|  *
 | |
|  * On ia64, we could implement this routine with a cmpxchg()-loop
 | |
|  * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
 | |
|  * However, like on x86, we can get a more streamlined version by
 | |
|  * observing that it is OK to drop ACCESSED bit updates when
 | |
|  * SAFELY_WRITABLE is FALSE.  Besides being rare, all that would do is
 | |
|  * result in an extra Access-bit fault, which would then turn on the
 | |
|  * ACCESSED bit in the low-level fault handler (iaccess_bit or
 | |
|  * daccess_bit in ivt.S).
 | |
|  */
 | |
| #ifdef CONFIG_SMP
 | |
| # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
 | |
| ({									\
 | |
| 	int __changed = !pte_same(*(__ptep), __entry);			\
 | |
| 	if (__changed && __safely_writable) {				\
 | |
| 		set_pte(__ptep, __entry);				\
 | |
| 		flush_tlb_page(__vma, __addr);				\
 | |
| 	}								\
 | |
| 	__changed;							\
 | |
| })
 | |
| #else
 | |
| # define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
 | |
| ({									\
 | |
| 	int __changed = !pte_same(*(__ptep), __entry);			\
 | |
| 	if (__changed) {						\
 | |
| 		set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry);	\
 | |
| 		flush_tlb_page(__vma, __addr);				\
 | |
| 	}								\
 | |
| 	__changed;							\
 | |
| })
 | |
| #endif
 | |
| 
 | |
| #  ifdef CONFIG_VIRTUAL_MEM_MAP
 | |
|   /* arch mem_map init routine is needed due to holes in a virtual mem_map */
 | |
| #   define __HAVE_ARCH_MEMMAP_INIT
 | |
|     extern void memmap_init (unsigned long size, int nid, unsigned long zone,
 | |
| 			     unsigned long start_pfn);
 | |
| #  endif /* CONFIG_VIRTUAL_MEM_MAP */
 | |
| # endif /* !__ASSEMBLY__ */
 | |
| 
 | |
| /*
 | |
|  * Identity-mapped regions use a large page size.  We'll call such large pages
 | |
|  * "granules".  If you can think of a better name that's unambiguous, let me
 | |
|  * know...
 | |
|  */
 | |
| #if defined(CONFIG_IA64_GRANULE_64MB)
 | |
| # define IA64_GRANULE_SHIFT	_PAGE_SIZE_64M
 | |
| #elif defined(CONFIG_IA64_GRANULE_16MB)
 | |
| # define IA64_GRANULE_SHIFT	_PAGE_SIZE_16M
 | |
| #endif
 | |
| #define IA64_GRANULE_SIZE	(1 << IA64_GRANULE_SHIFT)
 | |
| /*
 | |
|  * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
 | |
|  */
 | |
| #define KERNEL_TR_PAGE_SHIFT	_PAGE_SIZE_64M
 | |
| #define KERNEL_TR_PAGE_SIZE	(1 << KERNEL_TR_PAGE_SHIFT)
 | |
| 
 | |
| /*
 | |
|  * No page table caches to initialise
 | |
|  */
 | |
| #define pgtable_cache_init()	do { } while (0)
 | |
| 
 | |
| /* These tell get_user_pages() that the first gate page is accessible from user-level.  */
 | |
| #define FIXADDR_USER_START	GATE_ADDR
 | |
| #ifdef HAVE_BUGGY_SEGREL
 | |
| # define FIXADDR_USER_END	(GATE_ADDR + 2*PAGE_SIZE)
 | |
| #else
 | |
| # define FIXADDR_USER_END	(GATE_ADDR + 2*PERCPU_PAGE_SIZE)
 | |
| #endif
 | |
| 
 | |
| #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 | |
| #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 | |
| #define __HAVE_ARCH_PTEP_SET_WRPROTECT
 | |
| #define __HAVE_ARCH_PTE_SAME
 | |
| #define __HAVE_ARCH_PGD_OFFSET_GATE
 | |
| 
 | |
| 
 | |
| #ifndef CONFIG_PGTABLE_4
 | |
| #include <asm-generic/pgtable-nopud.h>
 | |
| #endif
 | |
| #include <asm-generic/pgtable.h>
 | |
| 
 | |
| #endif /* _ASM_IA64_PGTABLE_H */
 |