501 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			501 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * include/asm-xtensa/uaccess.h
 | |
|  *
 | |
|  * User space memory access functions
 | |
|  *
 | |
|  * These routines provide basic accessing functions to the user memory
 | |
|  * space for the kernel. This header file provides fuctions such as:
 | |
|  *
 | |
|  * This file is subject to the terms and conditions of the GNU General Public
 | |
|  * License.  See the file "COPYING" in the main directory of this archive
 | |
|  * for more details.
 | |
|  *
 | |
|  * Copyright (C) 2001 - 2005 Tensilica Inc.
 | |
|  */
 | |
| 
 | |
| #ifndef _XTENSA_UACCESS_H
 | |
| #define _XTENSA_UACCESS_H
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| 
 | |
| #define VERIFY_READ    0
 | |
| #define VERIFY_WRITE   1
 | |
| 
 | |
| #ifdef __ASSEMBLY__
 | |
| 
 | |
| #include <asm/current.h>
 | |
| #include <asm/asm-offsets.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/types.h>
 | |
| 
 | |
| /*
 | |
|  * These assembly macros mirror the C macros that follow below.  They
 | |
|  * should always have identical functionality.  See
 | |
|  * arch/xtensa/kernel/sys.S for usage.
 | |
|  */
 | |
| 
 | |
| #define KERNEL_DS	0
 | |
| #define USER_DS		1
 | |
| 
 | |
| #define get_ds		(KERNEL_DS)
 | |
| 
 | |
| /*
 | |
|  * get_fs reads current->thread.current_ds into a register.
 | |
|  * On Entry:
 | |
|  * 	<ad>	anything
 | |
|  * 	<sp>	stack
 | |
|  * On Exit:
 | |
|  * 	<ad>	contains current->thread.current_ds
 | |
|  */
 | |
| 	.macro	get_fs	ad, sp
 | |
| 	GET_CURRENT(\ad,\sp)
 | |
| 	l32i	\ad, \ad, THREAD_CURRENT_DS
 | |
| 	.endm
 | |
| 
 | |
| /*
 | |
|  * set_fs sets current->thread.current_ds to some value.
 | |
|  * On Entry:
 | |
|  *	<at>	anything (temp register)
 | |
|  *	<av>	value to write
 | |
|  *	<sp>	stack
 | |
|  * On Exit:
 | |
|  *	<at>	destroyed (actually, current)
 | |
|  *	<av>	preserved, value to write
 | |
|  */
 | |
| 	.macro	set_fs	at, av, sp
 | |
| 	GET_CURRENT(\at,\sp)
 | |
| 	s32i	\av, \at, THREAD_CURRENT_DS
 | |
| 	.endm
 | |
| 
 | |
| /*
 | |
|  * kernel_ok determines whether we should bypass addr/size checking.
 | |
|  * See the equivalent C-macro version below for clarity.
 | |
|  * On success, kernel_ok branches to a label indicated by parameter
 | |
|  * <success>.  This implies that the macro falls through to the next
 | |
|  * insruction on an error.
 | |
|  *
 | |
|  * Note that while this macro can be used independently, we designed
 | |
|  * in for optimal use in the access_ok macro below (i.e., we fall
 | |
|  * through on error).
 | |
|  *
 | |
|  * On Entry:
 | |
|  * 	<at>		anything (temp register)
 | |
|  * 	<success>	label to branch to on success; implies
 | |
|  * 			fall-through macro on error
 | |
|  * 	<sp>		stack pointer
 | |
|  * On Exit:
 | |
|  * 	<at>		destroyed (actually, current->thread.current_ds)
 | |
|  */
 | |
| 
 | |
| #if ((KERNEL_DS != 0) || (USER_DS == 0))
 | |
| # error Assembly macro kernel_ok fails
 | |
| #endif
 | |
| 	.macro	kernel_ok  at, sp, success
 | |
| 	get_fs	\at, \sp
 | |
| 	beqz	\at, \success
 | |
| 	.endm
 | |
| 
 | |
| /*
 | |
|  * user_ok determines whether the access to user-space memory is allowed.
 | |
|  * See the equivalent C-macro version below for clarity.
 | |
|  *
 | |
|  * On error, user_ok branches to a label indicated by parameter
 | |
|  * <error>.  This implies that the macro falls through to the next
 | |
|  * instruction on success.
 | |
|  *
 | |
|  * Note that while this macro can be used independently, we designed
 | |
|  * in for optimal use in the access_ok macro below (i.e., we fall
 | |
|  * through on success).
 | |
|  *
 | |
|  * On Entry:
 | |
|  * 	<aa>	register containing memory address
 | |
|  * 	<as>	register containing memory size
 | |
|  * 	<at>	temp register
 | |
|  * 	<error>	label to branch to on error; implies fall-through
 | |
|  * 		macro on success
 | |
|  * On Exit:
 | |
|  * 	<aa>	preserved
 | |
|  * 	<as>	preserved
 | |
|  * 	<at>	destroyed (actually, (TASK_SIZE + 1 - size))
 | |
|  */
 | |
| 	.macro	user_ok	aa, as, at, error
 | |
| 	movi	\at, __XTENSA_UL_CONST(TASK_SIZE)
 | |
| 	bgeu	\as, \at, \error
 | |
| 	sub	\at, \at, \as
 | |
| 	bgeu	\aa, \at, \error
 | |
| 	.endm
 | |
| 
 | |
| /*
 | |
|  * access_ok determines whether a memory access is allowed.  See the
 | |
|  * equivalent C-macro version below for clarity.
 | |
|  *
 | |
|  * On error, access_ok branches to a label indicated by parameter
 | |
|  * <error>.  This implies that the macro falls through to the next
 | |
|  * instruction on success.
 | |
|  *
 | |
|  * Note that we assume success is the common case, and we optimize the
 | |
|  * branch fall-through case on success.
 | |
|  *
 | |
|  * On Entry:
 | |
|  * 	<aa>	register containing memory address
 | |
|  * 	<as>	register containing memory size
 | |
|  * 	<at>	temp register
 | |
|  * 	<sp>
 | |
|  * 	<error>	label to branch to on error; implies fall-through
 | |
|  * 		macro on success
 | |
|  * On Exit:
 | |
|  * 	<aa>	preserved
 | |
|  * 	<as>	preserved
 | |
|  * 	<at>	destroyed
 | |
|  */
 | |
| 	.macro	access_ok  aa, as, at, sp, error
 | |
| 	kernel_ok  \at, \sp, .Laccess_ok_\@
 | |
| 	user_ok    \aa, \as, \at, \error
 | |
| .Laccess_ok_\@:
 | |
| 	.endm
 | |
| 
 | |
| #else /* __ASSEMBLY__ not defined */
 | |
| 
 | |
| #include <linux/sched.h>
 | |
| #include <asm/types.h>
 | |
| 
 | |
| /*
 | |
|  * The fs value determines whether argument validity checking should
 | |
|  * be performed or not.  If get_fs() == USER_DS, checking is
 | |
|  * performed, with get_fs() == KERNEL_DS, checking is bypassed.
 | |
|  *
 | |
|  * For historical reasons (Data Segment Register?), these macros are
 | |
|  * grossly misnamed.
 | |
|  */
 | |
| 
 | |
| #define KERNEL_DS	((mm_segment_t) { 0 })
 | |
| #define USER_DS		((mm_segment_t) { 1 })
 | |
| 
 | |
| #define get_ds()	(KERNEL_DS)
 | |
| #define get_fs()	(current->thread.current_ds)
 | |
| #define set_fs(val)	(current->thread.current_ds = (val))
 | |
| 
 | |
| #define segment_eq(a,b)	((a).seg == (b).seg)
 | |
| 
 | |
| #define __kernel_ok (segment_eq(get_fs(), KERNEL_DS))
 | |
| #define __user_ok(addr,size) (((size) <= TASK_SIZE)&&((addr) <= TASK_SIZE-(size)))
 | |
| #define __access_ok(addr,size) (__kernel_ok || __user_ok((addr),(size)))
 | |
| #define access_ok(type,addr,size) __access_ok((unsigned long)(addr),(size))
 | |
| 
 | |
| /*
 | |
|  * These are the main single-value transfer routines.  They
 | |
|  * automatically use the right size if we just have the right pointer
 | |
|  * type.
 | |
|  *
 | |
|  * This gets kind of ugly. We want to return _two_ values in
 | |
|  * "get_user()" and yet we don't want to do any pointers, because that
 | |
|  * is too much of a performance impact. Thus we have a few rather ugly
 | |
|  * macros here, and hide all the uglyness from the user.
 | |
|  *
 | |
|  * Careful to not
 | |
|  * (a) re-use the arguments for side effects (sizeof is ok)
 | |
|  * (b) require any knowledge of processes at this stage
 | |
|  */
 | |
| #define put_user(x,ptr)	__put_user_check((x),(ptr),sizeof(*(ptr)))
 | |
| #define get_user(x,ptr) __get_user_check((x),(ptr),sizeof(*(ptr)))
 | |
| 
 | |
| /*
 | |
|  * The "__xxx" versions of the user access functions are versions that
 | |
|  * do not verify the address space, that must have been done previously
 | |
|  * with a separate "access_ok()" call (this is used when we do multiple
 | |
|  * accesses to the same area of user memory).
 | |
|  */
 | |
| #define __put_user(x,ptr) __put_user_nocheck((x),(ptr),sizeof(*(ptr)))
 | |
| #define __get_user(x,ptr) __get_user_nocheck((x),(ptr),sizeof(*(ptr)))
 | |
| 
 | |
| 
 | |
| extern long __put_user_bad(void);
 | |
| 
 | |
| #define __put_user_nocheck(x,ptr,size)			\
 | |
| ({							\
 | |
| 	long __pu_err;					\
 | |
| 	__put_user_size((x),(ptr),(size),__pu_err);	\
 | |
| 	__pu_err;					\
 | |
| })
 | |
| 
 | |
| #define __put_user_check(x,ptr,size)				\
 | |
| ({								\
 | |
| 	long __pu_err = -EFAULT;				\
 | |
| 	__typeof__(*(ptr)) *__pu_addr = (ptr);			\
 | |
| 	if (access_ok(VERIFY_WRITE,__pu_addr,size))		\
 | |
| 		__put_user_size((x),__pu_addr,(size),__pu_err);	\
 | |
| 	__pu_err;						\
 | |
| })
 | |
| 
 | |
| #define __put_user_size(x,ptr,size,retval)				\
 | |
| do {									\
 | |
| 	int __cb;							\
 | |
| 	retval = 0;							\
 | |
| 	switch (size) {							\
 | |
|         case 1: __put_user_asm(x,ptr,retval,1,"s8i",__cb);  break;	\
 | |
|         case 2: __put_user_asm(x,ptr,retval,2,"s16i",__cb); break;	\
 | |
|         case 4: __put_user_asm(x,ptr,retval,4,"s32i",__cb); break;	\
 | |
|         case 8: {							\
 | |
| 		     __typeof__(*ptr) __v64 = x;			\
 | |
| 		     retval = __copy_to_user(ptr,&__v64,8);		\
 | |
| 		     break;						\
 | |
| 	        }							\
 | |
| 	default: __put_user_bad();					\
 | |
| 	}								\
 | |
| } while (0)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Consider a case of a user single load/store would cause both an
 | |
|  * unaligned exception and an MMU-related exception (unaligned
 | |
|  * exceptions happen first):
 | |
|  *
 | |
|  * User code passes a bad variable ptr to a system call.
 | |
|  * Kernel tries to access the variable.
 | |
|  * Unaligned exception occurs.
 | |
|  * Unaligned exception handler tries to make aligned accesses.
 | |
|  * Double exception occurs for MMU-related cause (e.g., page not mapped).
 | |
|  * do_page_fault() thinks the fault address belongs to the kernel, not the
 | |
|  * user, and panics.
 | |
|  *
 | |
|  * The kernel currently prohibits user unaligned accesses.  We use the
 | |
|  * __check_align_* macros to check for unaligned addresses before
 | |
|  * accessing user space so we don't crash the kernel.  Both
 | |
|  * __put_user_asm and __get_user_asm use these alignment macros, so
 | |
|  * macro-specific labels such as 0f, 1f, %0, %2, and %3 must stay in
 | |
|  * sync.
 | |
|  */
 | |
| 
 | |
| #define __check_align_1  ""
 | |
| 
 | |
| #define __check_align_2				\
 | |
| 	"   _bbci.l %3,  0, 1f		\n"	\
 | |
| 	"   movi    %0, %4		\n"	\
 | |
| 	"   _j      2f			\n"
 | |
| 
 | |
| #define __check_align_4				\
 | |
| 	"   _bbsi.l %3,  0, 0f		\n"	\
 | |
| 	"   _bbci.l %3,  1, 1f		\n"	\
 | |
| 	"0: movi    %0, %4		\n"	\
 | |
| 	"   _j      2f			\n"
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * We don't tell gcc that we are accessing memory, but this is OK
 | |
|  * because we do not write to any memory gcc knows about, so there
 | |
|  * are no aliasing issues.
 | |
|  *
 | |
|  * WARNING: If you modify this macro at all, verify that the
 | |
|  * __check_align_* macros still work.
 | |
|  */
 | |
| #define __put_user_asm(x, addr, err, align, insn, cb)	\
 | |
|    __asm__ __volatile__(				\
 | |
| 	__check_align_##align				\
 | |
| 	"1: "insn"  %2, %3, 0		\n"		\
 | |
| 	"2:				\n"		\
 | |
| 	"   .section  .fixup,\"ax\"	\n"		\
 | |
| 	"   .align 4			\n"		\
 | |
| 	"4:				\n"		\
 | |
| 	"   .long  2b			\n"		\
 | |
| 	"5:				\n"		\
 | |
| 	"   l32r   %1, 4b		\n"		\
 | |
|         "   movi   %0, %4		\n"		\
 | |
|         "   jx     %1			\n"		\
 | |
| 	"   .previous			\n"		\
 | |
| 	"   .section  __ex_table,\"a\"	\n"		\
 | |
| 	"   .long	1b, 5b		\n"		\
 | |
| 	"   .previous"					\
 | |
| 	:"=r" (err), "=r" (cb)				\
 | |
| 	:"r" ((int)(x)), "r" (addr), "i" (-EFAULT), "0" (err))
 | |
| 
 | |
| #define __get_user_nocheck(x,ptr,size)				\
 | |
| ({								\
 | |
| 	long __gu_err, __gu_val;				\
 | |
| 	__get_user_size(__gu_val,(ptr),(size),__gu_err);	\
 | |
| 	(x) = (__typeof__(*(ptr)))__gu_val;			\
 | |
| 	__gu_err;						\
 | |
| })
 | |
| 
 | |
| #define __get_user_check(x,ptr,size)					\
 | |
| ({									\
 | |
| 	long __gu_err = -EFAULT, __gu_val = 0;				\
 | |
| 	const __typeof__(*(ptr)) *__gu_addr = (ptr);			\
 | |
| 	if (access_ok(VERIFY_READ,__gu_addr,size))			\
 | |
| 		__get_user_size(__gu_val,__gu_addr,(size),__gu_err);	\
 | |
| 	(x) = (__typeof__(*(ptr)))__gu_val;				\
 | |
| 	__gu_err;							\
 | |
| })
 | |
| 
 | |
| extern long __get_user_bad(void);
 | |
| 
 | |
| #define __get_user_size(x,ptr,size,retval)				\
 | |
| do {									\
 | |
| 	int __cb;							\
 | |
| 	retval = 0;							\
 | |
|         switch (size) {							\
 | |
|           case 1: __get_user_asm(x,ptr,retval,1,"l8ui",__cb);  break;	\
 | |
|           case 2: __get_user_asm(x,ptr,retval,2,"l16ui",__cb); break;	\
 | |
|           case 4: __get_user_asm(x,ptr,retval,4,"l32i",__cb);  break;	\
 | |
|           case 8: retval = __copy_from_user(&x,ptr,8);    break;	\
 | |
|           default: (x) = __get_user_bad();				\
 | |
|         }								\
 | |
| } while (0)
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * WARNING: If you modify this macro at all, verify that the
 | |
|  * __check_align_* macros still work.
 | |
|  */
 | |
| #define __get_user_asm(x, addr, err, align, insn, cb) \
 | |
|    __asm__ __volatile__(			\
 | |
| 	__check_align_##align			\
 | |
| 	"1: "insn"  %2, %3, 0		\n"	\
 | |
| 	"2:				\n"	\
 | |
| 	"   .section  .fixup,\"ax\"	\n"	\
 | |
| 	"   .align 4			\n"	\
 | |
| 	"4:				\n"	\
 | |
| 	"   .long  2b			\n"	\
 | |
| 	"5:				\n"	\
 | |
| 	"   l32r   %1, 4b		\n"	\
 | |
| 	"   movi   %2, 0		\n"	\
 | |
|         "   movi   %0, %4		\n"	\
 | |
|         "   jx     %1			\n"	\
 | |
| 	"   .previous			\n"	\
 | |
| 	"   .section  __ex_table,\"a\"	\n"	\
 | |
| 	"   .long	1b, 5b		\n"	\
 | |
| 	"   .previous"				\
 | |
| 	:"=r" (err), "=r" (cb), "=r" (x)	\
 | |
| 	:"r" (addr), "i" (-EFAULT), "0" (err))
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Copy to/from user space
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * We use a generic, arbitrary-sized copy subroutine.  The Xtensa
 | |
|  * architecture would cause heavy code bloat if we tried to inline
 | |
|  * these functions and provide __constant_copy_* equivalents like the
 | |
|  * i386 versions.  __xtensa_copy_user is quite efficient.  See the
 | |
|  * .fixup section of __xtensa_copy_user for a discussion on the
 | |
|  * X_zeroing equivalents for Xtensa.
 | |
|  */
 | |
| 
 | |
| extern unsigned __xtensa_copy_user(void *to, const void *from, unsigned n);
 | |
| #define __copy_user(to,from,size) __xtensa_copy_user(to,from,size)
 | |
| 
 | |
| 
 | |
| static inline unsigned long
 | |
| __generic_copy_from_user_nocheck(void *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	return __copy_user(to,from,n);
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| __generic_copy_to_user_nocheck(void *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	return __copy_user(to,from,n);
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| __generic_copy_to_user(void *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	prefetch(from);
 | |
| 	if (access_ok(VERIFY_WRITE, to, n))
 | |
| 		return __copy_user(to,from,n);
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| __generic_copy_from_user(void *to, const void *from, unsigned long n)
 | |
| {
 | |
| 	prefetchw(to);
 | |
| 	if (access_ok(VERIFY_READ, from, n))
 | |
| 		return __copy_user(to,from,n);
 | |
| 	else
 | |
| 		memset(to, 0, n);
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| #define copy_to_user(to,from,n) __generic_copy_to_user((to),(from),(n))
 | |
| #define copy_from_user(to,from,n) __generic_copy_from_user((to),(from),(n))
 | |
| #define __copy_to_user(to,from,n) __generic_copy_to_user_nocheck((to),(from),(n))
 | |
| #define __copy_from_user(to,from,n) __generic_copy_from_user_nocheck((to),(from),(n))
 | |
| #define __copy_to_user_inatomic __copy_to_user
 | |
| #define __copy_from_user_inatomic __copy_from_user
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * We need to return the number of bytes not cleared.  Our memset()
 | |
|  * returns zero if a problem occurs while accessing user-space memory.
 | |
|  * In that event, return no memory cleared.  Otherwise, zero for
 | |
|  * success.
 | |
|  */
 | |
| 
 | |
| static inline unsigned long
 | |
| __xtensa_clear_user(void *addr, unsigned long size)
 | |
| {
 | |
| 	if ( ! memset(addr, 0, size) )
 | |
| 		return size;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| clear_user(void *addr, unsigned long size)
 | |
| {
 | |
| 	if (access_ok(VERIFY_WRITE, addr, size))
 | |
| 		return __xtensa_clear_user(addr, size);
 | |
| 	return size ? -EFAULT : 0;
 | |
| }
 | |
| 
 | |
| #define __clear_user  __xtensa_clear_user
 | |
| 
 | |
| 
 | |
| extern long __strncpy_user(char *, const char *, long);
 | |
| #define __strncpy_from_user __strncpy_user
 | |
| 
 | |
| static inline long
 | |
| strncpy_from_user(char *dst, const char *src, long count)
 | |
| {
 | |
| 	if (access_ok(VERIFY_READ, src, 1))
 | |
| 		return __strncpy_from_user(dst, src, count);
 | |
| 	return -EFAULT;
 | |
| }
 | |
| 
 | |
| 
 | |
| #define strlen_user(str) strnlen_user((str), TASK_SIZE - 1)
 | |
| 
 | |
| /*
 | |
|  * Return the size of a string (including the ending 0!)
 | |
|  */
 | |
| extern long __strnlen_user(const char *, long);
 | |
| 
 | |
| static inline long strnlen_user(const char *str, long len)
 | |
| {
 | |
| 	unsigned long top = __kernel_ok ? ~0UL : TASK_SIZE - 1;
 | |
| 
 | |
| 	if ((unsigned long)str > top)
 | |
| 		return 0;
 | |
| 	return __strnlen_user(str, len);
 | |
| }
 | |
| 
 | |
| 
 | |
| struct exception_table_entry
 | |
| {
 | |
| 	unsigned long insn, fixup;
 | |
| };
 | |
| 
 | |
| /* Returns 0 if exception not found and fixup.unit otherwise.  */
 | |
| 
 | |
| extern unsigned long search_exception_table(unsigned long addr);
 | |
| extern void sort_exception_table(void);
 | |
| 
 | |
| /* Returns the new pc */
 | |
| #define fixup_exception(map_reg, fixup_unit, pc)                \
 | |
| ({                                                              \
 | |
| 	fixup_unit;                                             \
 | |
| })
 | |
| 
 | |
| #endif	/* __ASSEMBLY__ */
 | |
| #endif	/* _XTENSA_UACCESS_H */
 |