1202 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1202 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
 | |
| /*
 | |
|  * Linux driver for Disk-On-Chip 2000 and Millennium
 | |
|  * (c) 1999 Machine Vision Holdings, Inc.
 | |
|  * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org>
 | |
|  */
 | |
| 
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/module.h>
 | |
| #include <asm/errno.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/bitops.h>
 | |
| #include <linux/mutex.h>
 | |
| 
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/doc2000.h>
 | |
| 
 | |
| #define DOC_SUPPORT_2000
 | |
| #define DOC_SUPPORT_2000TSOP
 | |
| #define DOC_SUPPORT_MILLENNIUM
 | |
| 
 | |
| #ifdef DOC_SUPPORT_2000
 | |
| #define DoC_is_2000(doc) (doc->ChipID == DOC_ChipID_Doc2k)
 | |
| #else
 | |
| #define DoC_is_2000(doc) (0)
 | |
| #endif
 | |
| 
 | |
| #if defined(DOC_SUPPORT_2000TSOP) || defined(DOC_SUPPORT_MILLENNIUM)
 | |
| #define DoC_is_Millennium(doc) (doc->ChipID == DOC_ChipID_DocMil)
 | |
| #else
 | |
| #define DoC_is_Millennium(doc) (0)
 | |
| #endif
 | |
| 
 | |
| /* #define ECC_DEBUG */
 | |
| 
 | |
| /* I have no idea why some DoC chips can not use memcpy_from|to_io().
 | |
|  * This may be due to the different revisions of the ASIC controller built-in or
 | |
|  * simplily a QA/Bug issue. Who knows ?? If you have trouble, please uncomment
 | |
|  * this:
 | |
|  #undef USE_MEMCPY
 | |
| */
 | |
| 
 | |
| static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
 | |
| 		    size_t *retlen, u_char *buf);
 | |
| static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 		     size_t *retlen, const u_char *buf);
 | |
| static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
 | |
| 			struct mtd_oob_ops *ops);
 | |
| static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
 | |
| 			 struct mtd_oob_ops *ops);
 | |
| static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
 | |
| 			 size_t *retlen, const u_char *buf);
 | |
| static int doc_erase (struct mtd_info *mtd, struct erase_info *instr);
 | |
| 
 | |
| static struct mtd_info *doc2klist = NULL;
 | |
| 
 | |
| /* Perform the required delay cycles by reading from the appropriate register */
 | |
| static void DoC_Delay(struct DiskOnChip *doc, unsigned short cycles)
 | |
| {
 | |
| 	volatile char dummy;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < cycles; i++) {
 | |
| 		if (DoC_is_Millennium(doc))
 | |
| 			dummy = ReadDOC(doc->virtadr, NOP);
 | |
| 		else
 | |
| 			dummy = ReadDOC(doc->virtadr, DOCStatus);
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /* DOC_WaitReady: Wait for RDY line to be asserted by the flash chip */
 | |
| static int _DoC_WaitReady(struct DiskOnChip *doc)
 | |
| {
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 	unsigned long timeo = jiffies + (HZ * 10);
 | |
| 
 | |
| 	DEBUG(MTD_DEBUG_LEVEL3,
 | |
| 	      "_DoC_WaitReady called for out-of-line wait\n");
 | |
| 
 | |
| 	/* Out-of-line routine to wait for chip response */
 | |
| 	while (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B)) {
 | |
| 		/* issue 2 read from NOP register after reading from CDSNControl register
 | |
| 	   	see Software Requirement 11.4 item 2. */
 | |
| 		DoC_Delay(doc, 2);
 | |
| 
 | |
| 		if (time_after(jiffies, timeo)) {
 | |
| 			DEBUG(MTD_DEBUG_LEVEL2, "_DoC_WaitReady timed out.\n");
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		udelay(1);
 | |
| 		cond_resched();
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static inline int DoC_WaitReady(struct DiskOnChip *doc)
 | |
| {
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 
 | |
| 	/* This is inline, to optimise the common case, where it's ready instantly */
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/* 4 read form NOP register should be issued in prior to the read from CDSNControl
 | |
| 	   see Software Requirement 11.4 item 2. */
 | |
| 	DoC_Delay(doc, 4);
 | |
| 
 | |
| 	if (!(ReadDOC(docptr, CDSNControl) & CDSN_CTRL_FR_B))
 | |
| 		/* Call the out-of-line routine to wait */
 | |
| 		ret = _DoC_WaitReady(doc);
 | |
| 
 | |
| 	/* issue 2 read from NOP register after reading from CDSNControl register
 | |
| 	   see Software Requirement 11.4 item 2. */
 | |
| 	DoC_Delay(doc, 2);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* DoC_Command: Send a flash command to the flash chip through the CDSN Slow IO register to
 | |
|    bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
 | |
|    required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
 | |
| 
 | |
| static int DoC_Command(struct DiskOnChip *doc, unsigned char command,
 | |
| 			      unsigned char xtraflags)
 | |
| {
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 
 | |
| 	if (DoC_is_2000(doc))
 | |
| 		xtraflags |= CDSN_CTRL_FLASH_IO;
 | |
| 
 | |
| 	/* Assert the CLE (Command Latch Enable) line to the flash chip */
 | |
| 	WriteDOC(xtraflags | CDSN_CTRL_CLE | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc))
 | |
| 		WriteDOC(command, docptr, CDSNSlowIO);
 | |
| 
 | |
| 	/* Send the command */
 | |
| 	WriteDOC_(command, docptr, doc->ioreg);
 | |
| 	if (DoC_is_Millennium(doc))
 | |
| 		WriteDOC(command, docptr, WritePipeTerm);
 | |
| 
 | |
| 	/* Lower the CLE line */
 | |
| 	WriteDOC(xtraflags | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Wait for the chip to respond - Software requirement 11.4.1 (extended for any command) */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* DoC_Address: Set the current address for the flash chip through the CDSN Slow IO register to
 | |
|    bypass the internal pipeline. Each of 4 delay cycles (read from the NOP register) is
 | |
|    required after writing to CDSN Control register, see Software Requirement 11.4 item 3. */
 | |
| 
 | |
| static int DoC_Address(struct DiskOnChip *doc, int numbytes, unsigned long ofs,
 | |
| 		       unsigned char xtraflags1, unsigned char xtraflags2)
 | |
| {
 | |
| 	int i;
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 
 | |
| 	if (DoC_is_2000(doc))
 | |
| 		xtraflags1 |= CDSN_CTRL_FLASH_IO;
 | |
| 
 | |
| 	/* Assert the ALE (Address Latch Enable) line to the flash chip */
 | |
| 	WriteDOC(xtraflags1 | CDSN_CTRL_ALE | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Send the address */
 | |
| 	/* Devices with 256-byte page are addressed as:
 | |
| 	   Column (bits 0-7), Page (bits 8-15, 16-23, 24-31)
 | |
| 	   * there is no device on the market with page256
 | |
| 	   and more than 24 bits.
 | |
| 	   Devices with 512-byte page are addressed as:
 | |
| 	   Column (bits 0-7), Page (bits 9-16, 17-24, 25-31)
 | |
| 	   * 25-31 is sent only if the chip support it.
 | |
| 	   * bit 8 changes the read command to be sent
 | |
| 	   (NAND_CMD_READ0 or NAND_CMD_READ1).
 | |
| 	 */
 | |
| 
 | |
| 	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) {
 | |
| 		if (DoC_is_Millennium(doc))
 | |
| 			WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
 | |
| 		WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
 | |
| 	}
 | |
| 
 | |
| 	if (doc->page256) {
 | |
| 		ofs = ofs >> 8;
 | |
| 	} else {
 | |
| 		ofs = ofs >> 9;
 | |
| 	}
 | |
| 
 | |
| 	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) {
 | |
| 		for (i = 0; i < doc->pageadrlen; i++, ofs = ofs >> 8) {
 | |
| 			if (DoC_is_Millennium(doc))
 | |
| 				WriteDOC(ofs & 0xff, docptr, CDSNSlowIO);
 | |
| 			WriteDOC_(ofs & 0xff, docptr, doc->ioreg);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc))
 | |
| 		WriteDOC(ofs & 0xff, docptr, WritePipeTerm);
 | |
| 
 | |
| 	DoC_Delay(doc, 2);	/* Needed for some slow flash chips. mf. */
 | |
| 
 | |
| 	/* FIXME: The SlowIO's for millennium could be replaced by
 | |
| 	   a single WritePipeTerm here. mf. */
 | |
| 
 | |
| 	/* Lower the ALE line */
 | |
| 	WriteDOC(xtraflags1 | xtraflags2 | CDSN_CTRL_CE, docptr,
 | |
| 		 CDSNControl);
 | |
| 
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Wait for the chip to respond - Software requirement 11.4.1 */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* Read a buffer from DoC, taking care of Millennium odditys */
 | |
| static void DoC_ReadBuf(struct DiskOnChip *doc, u_char * buf, int len)
 | |
| {
 | |
| 	volatile int dummy;
 | |
| 	int modulus = 0xffff;
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 	int i;
 | |
| 
 | |
| 	if (len <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		/* Read the data via the internal pipeline through CDSN IO register,
 | |
| 		   see Pipelined Read Operations 11.3 */
 | |
| 		dummy = ReadDOC(docptr, ReadPipeInit);
 | |
| 
 | |
| 		/* Millennium should use the LastDataRead register - Pipeline Reads */
 | |
| 		len--;
 | |
| 
 | |
| 		/* This is needed for correctly ECC calculation */
 | |
| 		modulus = 0xff;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		buf[i] = ReadDOC_(docptr, doc->ioreg + (i & modulus));
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		buf[i] = ReadDOC(docptr, LastDataRead);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Write a buffer to DoC, taking care of Millennium odditys */
 | |
| static void DoC_WriteBuf(struct DiskOnChip *doc, const u_char * buf, int len)
 | |
| {
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 	int i;
 | |
| 
 | |
| 	if (len <= 0)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < len; i++)
 | |
| 		WriteDOC_(buf[i], docptr, doc->ioreg + i);
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		WriteDOC(0x00, docptr, WritePipeTerm);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* DoC_SelectChip: Select a given flash chip within the current floor */
 | |
| 
 | |
| static inline int DoC_SelectChip(struct DiskOnChip *doc, int chip)
 | |
| {
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 
 | |
| 	/* Software requirement 11.4.4 before writing DeviceSelect */
 | |
| 	/* Deassert the CE line to eliminate glitches on the FCE# outputs */
 | |
| 	WriteDOC(CDSN_CTRL_WP, docptr, CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Select the individual flash chip requested */
 | |
| 	WriteDOC(chip, docptr, CDSNDeviceSelect);
 | |
| 	DoC_Delay(doc, 4);
 | |
| 
 | |
| 	/* Reassert the CE line */
 | |
| 	WriteDOC(CDSN_CTRL_CE | CDSN_CTRL_FLASH_IO | CDSN_CTRL_WP, docptr,
 | |
| 		 CDSNControl);
 | |
| 	DoC_Delay(doc, 4);	/* Software requirement 11.4.3 for Millennium */
 | |
| 
 | |
| 	/* Wait for it to be ready */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* DoC_SelectFloor: Select a given floor (bank of flash chips) */
 | |
| 
 | |
| static inline int DoC_SelectFloor(struct DiskOnChip *doc, int floor)
 | |
| {
 | |
| 	void __iomem *docptr = doc->virtadr;
 | |
| 
 | |
| 	/* Select the floor (bank) of chips required */
 | |
| 	WriteDOC(floor, docptr, FloorSelect);
 | |
| 
 | |
| 	/* Wait for the chip to be ready */
 | |
| 	return DoC_WaitReady(doc);
 | |
| }
 | |
| 
 | |
| /* DoC_IdentChip: Identify a given NAND chip given {floor,chip} */
 | |
| 
 | |
| static int DoC_IdentChip(struct DiskOnChip *doc, int floor, int chip)
 | |
| {
 | |
| 	int mfr, id, i, j;
 | |
| 	volatile char dummy;
 | |
| 
 | |
| 	/* Page in the required floor/chip */
 | |
| 	DoC_SelectFloor(doc, floor);
 | |
| 	DoC_SelectChip(doc, chip);
 | |
| 
 | |
| 	/* Reset the chip */
 | |
| 	if (DoC_Command(doc, NAND_CMD_RESET, CDSN_CTRL_WP)) {
 | |
| 		DEBUG(MTD_DEBUG_LEVEL2,
 | |
| 		      "DoC_Command (reset) for %d,%d returned true\n",
 | |
| 		      floor, chip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* Read the NAND chip ID: 1. Send ReadID command */
 | |
| 	if (DoC_Command(doc, NAND_CMD_READID, CDSN_CTRL_WP)) {
 | |
| 		DEBUG(MTD_DEBUG_LEVEL2,
 | |
| 		      "DoC_Command (ReadID) for %d,%d returned true\n",
 | |
| 		      floor, chip);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the NAND chip ID: 2. Send address byte zero */
 | |
| 	DoC_Address(doc, ADDR_COLUMN, 0, CDSN_CTRL_WP, 0);
 | |
| 
 | |
| 	/* Read the manufacturer and device id codes from the device */
 | |
| 
 | |
| 	if (DoC_is_Millennium(doc)) {
 | |
| 		DoC_Delay(doc, 2);
 | |
| 		dummy = ReadDOC(doc->virtadr, ReadPipeInit);
 | |
| 		mfr = ReadDOC(doc->virtadr, LastDataRead);
 | |
| 
 | |
| 		DoC_Delay(doc, 2);
 | |
| 		dummy = ReadDOC(doc->virtadr, ReadPipeInit);
 | |
| 		id = ReadDOC(doc->virtadr, LastDataRead);
 | |
| 	} else {
 | |
| 		/* CDSN Slow IO register see Software Req 11.4 item 5. */
 | |
| 		dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
 | |
| 		DoC_Delay(doc, 2);
 | |
| 		mfr = ReadDOC_(doc->virtadr, doc->ioreg);
 | |
| 
 | |
| 		/* CDSN Slow IO register see Software Req 11.4 item 5. */
 | |
| 		dummy = ReadDOC(doc->virtadr, CDSNSlowIO);
 | |
| 		DoC_Delay(doc, 2);
 | |
| 		id = ReadDOC_(doc->virtadr, doc->ioreg);
 | |
| 	}
 | |
| 
 | |
| 	/* No response - return failure */
 | |
| 	if (mfr == 0xff || mfr == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* Check it's the same as the first chip we identified.
 | |
| 	 * M-Systems say that any given DiskOnChip device should only
 | |
| 	 * contain _one_ type of flash part, although that's not a
 | |
| 	 * hardware restriction. */
 | |
| 	if (doc->mfr) {
 | |
| 		if (doc->mfr == mfr && doc->id == id)
 | |
| 			return 1;	/* This is the same as the first */
 | |
| 		else
 | |
| 			printk(KERN_WARNING
 | |
| 			       "Flash chip at floor %d, chip %d is different:\n",
 | |
| 			       floor, chip);
 | |
| 	}
 | |
| 
 | |
| 	/* Print and store the manufacturer and ID codes. */
 | |
| 	for (i = 0; nand_flash_ids[i].name != NULL; i++) {
 | |
| 		if (id == nand_flash_ids[i].id) {
 | |
| 			/* Try to identify manufacturer */
 | |
| 			for (j = 0; nand_manuf_ids[j].id != 0x0; j++) {
 | |
| 				if (nand_manuf_ids[j].id == mfr)
 | |
| 					break;
 | |
| 			}
 | |
| 			printk(KERN_INFO
 | |
| 			       "Flash chip found: Manufacturer ID: %2.2X, "
 | |
| 			       "Chip ID: %2.2X (%s:%s)\n", mfr, id,
 | |
| 			       nand_manuf_ids[j].name, nand_flash_ids[i].name);
 | |
| 			if (!doc->mfr) {
 | |
| 				doc->mfr = mfr;
 | |
| 				doc->id = id;
 | |
| 				doc->chipshift =
 | |
| 					ffs((nand_flash_ids[i].chipsize << 20)) - 1;
 | |
| 				doc->page256 = (nand_flash_ids[i].pagesize == 256) ? 1 : 0;
 | |
| 				doc->pageadrlen = doc->chipshift > 25 ? 3 : 2;
 | |
| 				doc->erasesize =
 | |
| 				    nand_flash_ids[i].erasesize;
 | |
| 				return 1;
 | |
| 			}
 | |
| 			return 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/* We haven't fully identified the chip. Print as much as we know. */
 | |
| 	printk(KERN_WARNING "Unknown flash chip found: %2.2X %2.2X\n",
 | |
| 	       id, mfr);
 | |
| 
 | |
| 	printk(KERN_WARNING "Please report to dwmw2@infradead.org\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* DoC_ScanChips: Find all NAND chips present in a DiskOnChip, and identify them */
 | |
| 
 | |
| static void DoC_ScanChips(struct DiskOnChip *this, int maxchips)
 | |
| {
 | |
| 	int floor, chip;
 | |
| 	int numchips[MAX_FLOORS];
 | |
| 	int ret = 1;
 | |
| 
 | |
| 	this->numchips = 0;
 | |
| 	this->mfr = 0;
 | |
| 	this->id = 0;
 | |
| 
 | |
| 	/* For each floor, find the number of valid chips it contains */
 | |
| 	for (floor = 0; floor < MAX_FLOORS; floor++) {
 | |
| 		ret = 1;
 | |
| 		numchips[floor] = 0;
 | |
| 		for (chip = 0; chip < maxchips && ret != 0; chip++) {
 | |
| 
 | |
| 			ret = DoC_IdentChip(this, floor, chip);
 | |
| 			if (ret) {
 | |
| 				numchips[floor]++;
 | |
| 				this->numchips++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* If there are none at all that we recognise, bail */
 | |
| 	if (!this->numchips) {
 | |
| 		printk(KERN_NOTICE "No flash chips recognised.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* Allocate an array to hold the information for each chip */
 | |
| 	this->chips = kmalloc(sizeof(struct Nand) * this->numchips, GFP_KERNEL);
 | |
| 	if (!this->chips) {
 | |
| 		printk(KERN_NOTICE "No memory for allocating chip info structures\n");
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ret = 0;
 | |
| 
 | |
| 	/* Fill out the chip array with {floor, chipno} for each
 | |
| 	 * detected chip in the device. */
 | |
| 	for (floor = 0; floor < MAX_FLOORS; floor++) {
 | |
| 		for (chip = 0; chip < numchips[floor]; chip++) {
 | |
| 			this->chips[ret].floor = floor;
 | |
| 			this->chips[ret].chip = chip;
 | |
| 			this->chips[ret].curadr = 0;
 | |
| 			this->chips[ret].curmode = 0x50;
 | |
| 			ret++;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Calculate and print the total size of the device */
 | |
| 	this->totlen = this->numchips * (1 << this->chipshift);
 | |
| 
 | |
| 	printk(KERN_INFO "%d flash chips found. Total DiskOnChip size: %ld MiB\n",
 | |
| 	       this->numchips, this->totlen >> 20);
 | |
| }
 | |
| 
 | |
| static int DoC2k_is_alias(struct DiskOnChip *doc1, struct DiskOnChip *doc2)
 | |
| {
 | |
| 	int tmp1, tmp2, retval;
 | |
| 	if (doc1->physadr == doc2->physadr)
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Use the alias resolution register which was set aside for this
 | |
| 	 * purpose. If it's value is the same on both chips, they might
 | |
| 	 * be the same chip, and we write to one and check for a change in
 | |
| 	 * the other. It's unclear if this register is usuable in the
 | |
| 	 * DoC 2000 (it's in the Millennium docs), but it seems to work. */
 | |
| 	tmp1 = ReadDOC(doc1->virtadr, AliasResolution);
 | |
| 	tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
 | |
| 	if (tmp1 != tmp2)
 | |
| 		return 0;
 | |
| 
 | |
| 	WriteDOC((tmp1 + 1) % 0xff, doc1->virtadr, AliasResolution);
 | |
| 	tmp2 = ReadDOC(doc2->virtadr, AliasResolution);
 | |
| 	if (tmp2 == (tmp1 + 1) % 0xff)
 | |
| 		retval = 1;
 | |
| 	else
 | |
| 		retval = 0;
 | |
| 
 | |
| 	/* Restore register contents.  May not be necessary, but do it just to
 | |
| 	 * be safe. */
 | |
| 	WriteDOC(tmp1, doc1->virtadr, AliasResolution);
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| /* This routine is found from the docprobe code by symbol_get(),
 | |
|  * which will bump the use count of this module. */
 | |
| void DoC2k_init(struct mtd_info *mtd)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	struct DiskOnChip *old = NULL;
 | |
| 	int maxchips;
 | |
| 
 | |
| 	/* We must avoid being called twice for the same device. */
 | |
| 
 | |
| 	if (doc2klist)
 | |
| 		old = doc2klist->priv;
 | |
| 
 | |
| 	while (old) {
 | |
| 		if (DoC2k_is_alias(old, this)) {
 | |
| 			printk(KERN_NOTICE
 | |
| 			       "Ignoring DiskOnChip 2000 at 0x%lX - already configured\n",
 | |
| 			       this->physadr);
 | |
| 			iounmap(this->virtadr);
 | |
| 			kfree(mtd);
 | |
| 			return;
 | |
| 		}
 | |
| 		if (old->nextdoc)
 | |
| 			old = old->nextdoc->priv;
 | |
| 		else
 | |
| 			old = NULL;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	switch (this->ChipID) {
 | |
| 	case DOC_ChipID_Doc2kTSOP:
 | |
| 		mtd->name = "DiskOnChip 2000 TSOP";
 | |
| 		this->ioreg = DoC_Mil_CDSN_IO;
 | |
| 		/* Pretend it's a Millennium */
 | |
| 		this->ChipID = DOC_ChipID_DocMil;
 | |
| 		maxchips = MAX_CHIPS;
 | |
| 		break;
 | |
| 	case DOC_ChipID_Doc2k:
 | |
| 		mtd->name = "DiskOnChip 2000";
 | |
| 		this->ioreg = DoC_2k_CDSN_IO;
 | |
| 		maxchips = MAX_CHIPS;
 | |
| 		break;
 | |
| 	case DOC_ChipID_DocMil:
 | |
| 		mtd->name = "DiskOnChip Millennium";
 | |
| 		this->ioreg = DoC_Mil_CDSN_IO;
 | |
| 		maxchips = MAX_CHIPS_MIL;
 | |
| 		break;
 | |
| 	default:
 | |
| 		printk("Unknown ChipID 0x%02x\n", this->ChipID);
 | |
| 		kfree(mtd);
 | |
| 		iounmap(this->virtadr);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_NOTICE "%s found at address 0x%lX\n", mtd->name,
 | |
| 	       this->physadr);
 | |
| 
 | |
| 	mtd->type = MTD_NANDFLASH;
 | |
| 	mtd->flags = MTD_CAP_NANDFLASH;
 | |
| 	mtd->size = 0;
 | |
| 	mtd->erasesize = 0;
 | |
| 	mtd->writesize = 512;
 | |
| 	mtd->oobsize = 16;
 | |
| 	mtd->owner = THIS_MODULE;
 | |
| 	mtd->erase = doc_erase;
 | |
| 	mtd->point = NULL;
 | |
| 	mtd->unpoint = NULL;
 | |
| 	mtd->read = doc_read;
 | |
| 	mtd->write = doc_write;
 | |
| 	mtd->read_oob = doc_read_oob;
 | |
| 	mtd->write_oob = doc_write_oob;
 | |
| 	mtd->sync = NULL;
 | |
| 
 | |
| 	this->totlen = 0;
 | |
| 	this->numchips = 0;
 | |
| 
 | |
| 	this->curfloor = -1;
 | |
| 	this->curchip = -1;
 | |
| 	mutex_init(&this->lock);
 | |
| 
 | |
| 	/* Ident all the chips present. */
 | |
| 	DoC_ScanChips(this, maxchips);
 | |
| 
 | |
| 	if (!this->totlen) {
 | |
| 		kfree(mtd);
 | |
| 		iounmap(this->virtadr);
 | |
| 	} else {
 | |
| 		this->nextdoc = doc2klist;
 | |
| 		doc2klist = mtd;
 | |
| 		mtd->size = this->totlen;
 | |
| 		mtd->erasesize = this->erasesize;
 | |
| 		add_mtd_device(mtd);
 | |
| 		return;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(DoC2k_init);
 | |
| 
 | |
| static int doc_read(struct mtd_info *mtd, loff_t from, size_t len,
 | |
| 		    size_t * retlen, u_char * buf)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	void __iomem *docptr = this->virtadr;
 | |
| 	struct Nand *mychip;
 | |
| 	unsigned char syndrome[6], eccbuf[6];
 | |
| 	volatile char dummy;
 | |
| 	int i, len256 = 0, ret=0;
 | |
| 	size_t left = len;
 | |
| 
 | |
| 	/* Don't allow read past end of device */
 | |
| 	if (from >= this->totlen)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&this->lock);
 | |
| 
 | |
| 	*retlen = 0;
 | |
| 	while (left) {
 | |
| 		len = left;
 | |
| 
 | |
| 		/* Don't allow a single read to cross a 512-byte block boundary */
 | |
| 		if (from + len > ((from | 0x1ff) + 1))
 | |
| 			len = ((from | 0x1ff) + 1) - from;
 | |
| 
 | |
| 		/* The ECC will not be calculated correctly if less than 512 is read */
 | |
| 		if (len != 0x200)
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ECC needs a full sector read (adr: %lx size %lx)\n",
 | |
| 			       (long) from, (long) len);
 | |
| 
 | |
| 		/* printk("DoC_Read (adr: %lx size %lx)\n", (long) from, (long) len); */
 | |
| 
 | |
| 
 | |
| 		/* Find the chip which is to be used and select it */
 | |
| 		mychip = &this->chips[from >> (this->chipshift)];
 | |
| 
 | |
| 		if (this->curfloor != mychip->floor) {
 | |
| 			DoC_SelectFloor(this, mychip->floor);
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		} else if (this->curchip != mychip->chip) {
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		}
 | |
| 
 | |
| 		this->curfloor = mychip->floor;
 | |
| 		this->curchip = mychip->chip;
 | |
| 
 | |
| 		DoC_Command(this,
 | |
| 			    (!this->page256
 | |
| 			     && (from & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
 | |
| 			    CDSN_CTRL_WP);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, from, CDSN_CTRL_WP,
 | |
| 			    CDSN_CTRL_ECC_IO);
 | |
| 
 | |
| 		/* Prime the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 | |
| 		WriteDOC(DOC_ECC_EN, docptr, ECCConf);
 | |
| 
 | |
| 		/* treat crossing 256-byte sector for 2M x 8bits devices */
 | |
| 		if (this->page256 && from + len > (from | 0xff) + 1) {
 | |
| 			len256 = (from | 0xff) + 1 - from;
 | |
| 			DoC_ReadBuf(this, buf, len256);
 | |
| 
 | |
| 			DoC_Command(this, NAND_CMD_READ0, CDSN_CTRL_WP);
 | |
| 			DoC_Address(this, ADDR_COLUMN_PAGE, from + len256,
 | |
| 				    CDSN_CTRL_WP, CDSN_CTRL_ECC_IO);
 | |
| 		}
 | |
| 
 | |
| 		DoC_ReadBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 		/* Let the caller know we completed it */
 | |
| 		*retlen += len;
 | |
| 
 | |
| 		/* Read the ECC data through the DiskOnChip ECC logic */
 | |
| 		/* Note: this will work even with 2M x 8bit devices as   */
 | |
| 		/*       they have 8 bytes of OOB per 256 page. mf.      */
 | |
| 		DoC_ReadBuf(this, eccbuf, 6);
 | |
| 
 | |
| 		/* Flush the pipeline */
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			dummy = ReadDOC(docptr, ECCConf);
 | |
| 			dummy = ReadDOC(docptr, ECCConf);
 | |
| 			i = ReadDOC(docptr, ECCConf);
 | |
| 		} else {
 | |
| 			dummy = ReadDOC(docptr, 2k_ECCStatus);
 | |
| 			dummy = ReadDOC(docptr, 2k_ECCStatus);
 | |
| 			i = ReadDOC(docptr, 2k_ECCStatus);
 | |
| 		}
 | |
| 
 | |
| 		/* Check the ECC Status */
 | |
| 		if (i & 0x80) {
 | |
| 			int nb_errors;
 | |
| 			/* There was an ECC error */
 | |
| #ifdef ECC_DEBUG
 | |
| 			printk(KERN_ERR "DiskOnChip ECC Error: Read at %lx\n", (long)from);
 | |
| #endif
 | |
| 			/* Read the ECC syndrom through the DiskOnChip ECC
 | |
| 			   logic.  These syndrome will be all ZERO when there
 | |
| 			   is no error */
 | |
| 			for (i = 0; i < 6; i++) {
 | |
| 				syndrome[i] =
 | |
| 					ReadDOC(docptr, ECCSyndrome0 + i);
 | |
| 			}
 | |
| 			nb_errors = doc_decode_ecc(buf, syndrome);
 | |
| 
 | |
| #ifdef ECC_DEBUG
 | |
| 			printk(KERN_ERR "Errors corrected: %x\n", nb_errors);
 | |
| #endif
 | |
| 			if (nb_errors < 0) {
 | |
| 				/* We return error, but have actually done the
 | |
| 				   read. Not that this can be told to
 | |
| 				   user-space, via sys_read(), but at least
 | |
| 				   MTD-aware stuff can know about it by
 | |
| 				   checking *retlen */
 | |
| 				ret = -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 		printk(KERN_DEBUG "ECC DATA at %lxB: %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
 | |
| 		       (long)from, eccbuf[0], eccbuf[1], eccbuf[2],
 | |
| 		       eccbuf[3], eccbuf[4], eccbuf[5]);
 | |
| #endif
 | |
| 
 | |
| 		/* disable the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_DIS, docptr , ECCConf);
 | |
| 
 | |
| 		/* according to 11.4.1, we need to wait for the busy line
 | |
| 	         * drop if we read to the end of the page.  */
 | |
| 		if(0 == ((from + len) & 0x1ff))
 | |
| 		{
 | |
| 		    DoC_WaitReady(this);
 | |
| 		}
 | |
| 
 | |
| 		from += len;
 | |
| 		left -= len;
 | |
| 		buf += len;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&this->lock);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int doc_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 		     size_t * retlen, const u_char * buf)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	int di; /* Yes, DI is a hangover from when I was disassembling the binary driver */
 | |
| 	void __iomem *docptr = this->virtadr;
 | |
| 	unsigned char eccbuf[6];
 | |
| 	volatile char dummy;
 | |
| 	int len256 = 0;
 | |
| 	struct Nand *mychip;
 | |
| 	size_t left = len;
 | |
| 	int status;
 | |
| 
 | |
| 	/* Don't allow write past end of device */
 | |
| 	if (to >= this->totlen)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	mutex_lock(&this->lock);
 | |
| 
 | |
| 	*retlen = 0;
 | |
| 	while (left) {
 | |
| 		len = left;
 | |
| 
 | |
| 		/* Don't allow a single write to cross a 512-byte block boundary */
 | |
| 		if (to + len > ((to | 0x1ff) + 1))
 | |
| 			len = ((to | 0x1ff) + 1) - to;
 | |
| 
 | |
| 		/* The ECC will not be calculated correctly if less than 512 is written */
 | |
| /* DBB-
 | |
| 		if (len != 0x200 && eccbuf)
 | |
| 			printk(KERN_WARNING
 | |
| 			       "ECC needs a full sector write (adr: %lx size %lx)\n",
 | |
| 			       (long) to, (long) len);
 | |
|    -DBB */
 | |
| 
 | |
| 		/* printk("DoC_Write (adr: %lx size %lx)\n", (long) to, (long) len); */
 | |
| 
 | |
| 		/* Find the chip which is to be used and select it */
 | |
| 		mychip = &this->chips[to >> (this->chipshift)];
 | |
| 
 | |
| 		if (this->curfloor != mychip->floor) {
 | |
| 			DoC_SelectFloor(this, mychip->floor);
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		} else if (this->curchip != mychip->chip) {
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		}
 | |
| 
 | |
| 		this->curfloor = mychip->floor;
 | |
| 		this->curchip = mychip->chip;
 | |
| 
 | |
| 		/* Set device to main plane of flash */
 | |
| 		DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
 | |
| 		DoC_Command(this,
 | |
| 			    (!this->page256
 | |
| 			     && (to & 0x100)) ? NAND_CMD_READ1 : NAND_CMD_READ0,
 | |
| 			    CDSN_CTRL_WP);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, to, 0, CDSN_CTRL_ECC_IO);
 | |
| 
 | |
| 		/* Prime the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_RESET, docptr, ECCConf);
 | |
| 		WriteDOC(DOC_ECC_EN | DOC_ECC_RW, docptr, ECCConf);
 | |
| 
 | |
| 		/* treat crossing 256-byte sector for 2M x 8bits devices */
 | |
| 		if (this->page256 && to + len > (to | 0xff) + 1) {
 | |
| 			len256 = (to | 0xff) + 1 - to;
 | |
| 			DoC_WriteBuf(this, buf, len256);
 | |
| 
 | |
| 			DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 
 | |
| 			DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
 | |
| 			/* There's an implicit DoC_WaitReady() in DoC_Command */
 | |
| 
 | |
| 			dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 			DoC_Delay(this, 2);
 | |
| 
 | |
| 			if (ReadDOC_(docptr, this->ioreg) & 1) {
 | |
| 				printk(KERN_ERR "Error programming flash\n");
 | |
| 				/* Error in programming */
 | |
| 				*retlen = 0;
 | |
| 				mutex_unlock(&this->lock);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 
 | |
| 			DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 			DoC_Address(this, ADDR_COLUMN_PAGE, to + len256, 0,
 | |
| 				    CDSN_CTRL_ECC_IO);
 | |
| 		}
 | |
| 
 | |
| 		DoC_WriteBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_CE, docptr, CDSNControl);
 | |
| 
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			WriteDOC(0, docptr, NOP);
 | |
| 			WriteDOC(0, docptr, NOP);
 | |
| 			WriteDOC(0, docptr, NOP);
 | |
| 		} else {
 | |
| 			WriteDOC_(0, docptr, this->ioreg);
 | |
| 			WriteDOC_(0, docptr, this->ioreg);
 | |
| 			WriteDOC_(0, docptr, this->ioreg);
 | |
| 		}
 | |
| 
 | |
| 		WriteDOC(CDSN_CTRL_ECC_IO | CDSN_CTRL_FLASH_IO | CDSN_CTRL_CE, docptr,
 | |
| 			 CDSNControl);
 | |
| 
 | |
| 		/* Read the ECC data through the DiskOnChip ECC logic */
 | |
| 		for (di = 0; di < 6; di++) {
 | |
| 			eccbuf[di] = ReadDOC(docptr, ECCSyndrome0 + di);
 | |
| 		}
 | |
| 
 | |
| 		/* Reset the ECC engine */
 | |
| 		WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
 | |
| 
 | |
| #ifdef PSYCHO_DEBUG
 | |
| 		printk
 | |
| 			("OOB data at %lx is %2.2X %2.2X %2.2X %2.2X %2.2X %2.2X\n",
 | |
| 			 (long) to, eccbuf[0], eccbuf[1], eccbuf[2], eccbuf[3],
 | |
| 			 eccbuf[4], eccbuf[5]);
 | |
| #endif
 | |
| 		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
 | |
| 		/* There's an implicit DoC_WaitReady() in DoC_Command */
 | |
| 
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			ReadDOC(docptr, ReadPipeInit);
 | |
| 			status = ReadDOC(docptr, LastDataRead);
 | |
| 		} else {
 | |
| 			dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 			DoC_Delay(this, 2);
 | |
| 			status = ReadDOC_(docptr, this->ioreg);
 | |
| 		}
 | |
| 
 | |
| 		if (status & 1) {
 | |
| 			printk(KERN_ERR "Error programming flash\n");
 | |
| 			/* Error in programming */
 | |
| 			*retlen = 0;
 | |
| 			mutex_unlock(&this->lock);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 		/* Let the caller know we completed it */
 | |
| 		*retlen += len;
 | |
| 
 | |
| 		{
 | |
| 			unsigned char x[8];
 | |
| 			size_t dummy;
 | |
| 			int ret;
 | |
| 
 | |
| 			/* Write the ECC data to flash */
 | |
| 			for (di=0; di<6; di++)
 | |
| 				x[di] = eccbuf[di];
 | |
| 
 | |
| 			x[6]=0x55;
 | |
| 			x[7]=0x55;
 | |
| 
 | |
| 			ret = doc_write_oob_nolock(mtd, to, 8, &dummy, x);
 | |
| 			if (ret) {
 | |
| 				mutex_unlock(&this->lock);
 | |
| 				return ret;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		to += len;
 | |
| 		left -= len;
 | |
| 		buf += len;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&this->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int doc_read_oob(struct mtd_info *mtd, loff_t ofs,
 | |
| 			struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	int len256 = 0, ret;
 | |
| 	struct Nand *mychip;
 | |
| 	uint8_t *buf = ops->oobbuf;
 | |
| 	size_t len = ops->len;
 | |
| 
 | |
| 	BUG_ON(ops->mode != MTD_OOB_PLACE);
 | |
| 
 | |
| 	ofs += ops->ooboffs;
 | |
| 
 | |
| 	mutex_lock(&this->lock);
 | |
| 
 | |
| 	mychip = &this->chips[ofs >> this->chipshift];
 | |
| 
 | |
| 	if (this->curfloor != mychip->floor) {
 | |
| 		DoC_SelectFloor(this, mychip->floor);
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	} else if (this->curchip != mychip->chip) {
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	}
 | |
| 	this->curfloor = mychip->floor;
 | |
| 	this->curchip = mychip->chip;
 | |
| 
 | |
| 	/* update address for 2M x 8bit devices. OOB starts on the second */
 | |
| 	/* page to maintain compatibility with doc_read_ecc. */
 | |
| 	if (this->page256) {
 | |
| 		if (!(ofs & 0x8))
 | |
| 			ofs += 0x100;
 | |
| 		else
 | |
| 			ofs -= 0x8;
 | |
| 	}
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
 | |
| 	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, CDSN_CTRL_WP, 0);
 | |
| 
 | |
| 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
 | |
| 	/* Note: datasheet says it should automaticaly wrap to the */
 | |
| 	/*       next OOB block, but it didn't work here. mf.      */
 | |
| 	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
 | |
| 		len256 = (ofs | 0x7) + 1 - ofs;
 | |
| 		DoC_ReadBuf(this, buf, len256);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff),
 | |
| 			    CDSN_CTRL_WP, 0);
 | |
| 	}
 | |
| 
 | |
| 	DoC_ReadBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 	ops->retlen = len;
 | |
| 	/* Reading the full OOB data drops us off of the end of the page,
 | |
|          * causing the flash device to go into busy mode, so we need
 | |
|          * to wait until ready 11.4.1 and Toshiba TC58256FT docs */
 | |
| 
 | |
| 	ret = DoC_WaitReady(this);
 | |
| 
 | |
| 	mutex_unlock(&this->lock);
 | |
| 	return ret;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int doc_write_oob_nolock(struct mtd_info *mtd, loff_t ofs, size_t len,
 | |
| 				size_t * retlen, const u_char * buf)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	int len256 = 0;
 | |
| 	void __iomem *docptr = this->virtadr;
 | |
| 	struct Nand *mychip = &this->chips[ofs >> this->chipshift];
 | |
| 	volatile int dummy;
 | |
| 	int status;
 | |
| 
 | |
| 	//      printk("doc_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n",(long)ofs, len,
 | |
| 	//   buf[0], buf[1], buf[2], buf[3], buf[8], buf[9], buf[14],buf[15]);
 | |
| 
 | |
| 	/* Find the chip which is to be used and select it */
 | |
| 	if (this->curfloor != mychip->floor) {
 | |
| 		DoC_SelectFloor(this, mychip->floor);
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	} else if (this->curchip != mychip->chip) {
 | |
| 		DoC_SelectChip(this, mychip->chip);
 | |
| 	}
 | |
| 	this->curfloor = mychip->floor;
 | |
| 	this->curchip = mychip->chip;
 | |
| 
 | |
| 	/* disable the ECC engine */
 | |
| 	WriteDOC (DOC_ECC_RESET, docptr, ECCConf);
 | |
| 	WriteDOC (DOC_ECC_DIS, docptr, ECCConf);
 | |
| 
 | |
| 	/* Reset the chip, see Software Requirement 11.4 item 1. */
 | |
| 	DoC_Command(this, NAND_CMD_RESET, CDSN_CTRL_WP);
 | |
| 
 | |
| 	/* issue the Read2 command to set the pointer to the Spare Data Area. */
 | |
| 	DoC_Command(this, NAND_CMD_READOOB, CDSN_CTRL_WP);
 | |
| 
 | |
| 	/* update address for 2M x 8bit devices. OOB starts on the second */
 | |
| 	/* page to maintain compatibility with doc_read_ecc. */
 | |
| 	if (this->page256) {
 | |
| 		if (!(ofs & 0x8))
 | |
| 			ofs += 0x100;
 | |
| 		else
 | |
| 			ofs -= 0x8;
 | |
| 	}
 | |
| 
 | |
| 	/* issue the Serial Data In command to initial the Page Program process */
 | |
| 	DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 	DoC_Address(this, ADDR_COLUMN_PAGE, ofs, 0, 0);
 | |
| 
 | |
| 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */
 | |
| 	/* Note: datasheet says it should automaticaly wrap to the */
 | |
| 	/*       next OOB block, but it didn't work here. mf.      */
 | |
| 	if (this->page256 && ofs + len > (ofs | 0x7) + 1) {
 | |
| 		len256 = (ofs | 0x7) + 1 - ofs;
 | |
| 		DoC_WriteBuf(this, buf, len256);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 		DoC_Command(this, NAND_CMD_STATUS, 0);
 | |
| 		/* DoC_WaitReady() is implicit in DoC_Command */
 | |
| 
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			ReadDOC(docptr, ReadPipeInit);
 | |
| 			status = ReadDOC(docptr, LastDataRead);
 | |
| 		} else {
 | |
| 			dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 			DoC_Delay(this, 2);
 | |
| 			status = ReadDOC_(docptr, this->ioreg);
 | |
| 		}
 | |
| 
 | |
| 		if (status & 1) {
 | |
| 			printk(KERN_ERR "Error programming oob data\n");
 | |
| 			/* There was an error */
 | |
| 			*retlen = 0;
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 		DoC_Command(this, NAND_CMD_SEQIN, 0);
 | |
| 		DoC_Address(this, ADDR_COLUMN_PAGE, ofs & (~0x1ff), 0, 0);
 | |
| 	}
 | |
| 
 | |
| 	DoC_WriteBuf(this, &buf[len256], len - len256);
 | |
| 
 | |
| 	DoC_Command(this, NAND_CMD_PAGEPROG, 0);
 | |
| 	DoC_Command(this, NAND_CMD_STATUS, 0);
 | |
| 	/* DoC_WaitReady() is implicit in DoC_Command */
 | |
| 
 | |
| 	if (DoC_is_Millennium(this)) {
 | |
| 		ReadDOC(docptr, ReadPipeInit);
 | |
| 		status = ReadDOC(docptr, LastDataRead);
 | |
| 	} else {
 | |
| 		dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 		DoC_Delay(this, 2);
 | |
| 		status = ReadDOC_(docptr, this->ioreg);
 | |
| 	}
 | |
| 
 | |
| 	if (status & 1) {
 | |
| 		printk(KERN_ERR "Error programming oob data\n");
 | |
| 		/* There was an error */
 | |
| 		*retlen = 0;
 | |
| 		return -EIO;
 | |
| 	}
 | |
| 
 | |
| 	*retlen = len;
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| static int doc_write_oob(struct mtd_info *mtd, loff_t ofs,
 | |
| 			 struct mtd_oob_ops *ops)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	int ret;
 | |
| 
 | |
| 	BUG_ON(ops->mode != MTD_OOB_PLACE);
 | |
| 
 | |
| 	mutex_lock(&this->lock);
 | |
| 	ret = doc_write_oob_nolock(mtd, ofs + ops->ooboffs, ops->len,
 | |
| 				   &ops->retlen, ops->oobbuf);
 | |
| 
 | |
| 	mutex_unlock(&this->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int doc_erase(struct mtd_info *mtd, struct erase_info *instr)
 | |
| {
 | |
| 	struct DiskOnChip *this = mtd->priv;
 | |
| 	__u32 ofs = instr->addr;
 | |
| 	__u32 len = instr->len;
 | |
| 	volatile int dummy;
 | |
| 	void __iomem *docptr = this->virtadr;
 | |
| 	struct Nand *mychip;
 | |
| 	int status;
 | |
| 
 | |
|  	mutex_lock(&this->lock);
 | |
| 
 | |
| 	if (ofs & (mtd->erasesize-1) || len & (mtd->erasesize-1)) {
 | |
| 		mutex_unlock(&this->lock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	instr->state = MTD_ERASING;
 | |
| 
 | |
| 	/* FIXME: Do this in the background. Use timers or schedule_task() */
 | |
| 	while(len) {
 | |
| 		mychip = &this->chips[ofs >> this->chipshift];
 | |
| 
 | |
| 		if (this->curfloor != mychip->floor) {
 | |
| 			DoC_SelectFloor(this, mychip->floor);
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		} else if (this->curchip != mychip->chip) {
 | |
| 			DoC_SelectChip(this, mychip->chip);
 | |
| 		}
 | |
| 		this->curfloor = mychip->floor;
 | |
| 		this->curchip = mychip->chip;
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_ERASE1, 0);
 | |
| 		DoC_Address(this, ADDR_PAGE, ofs, 0, 0);
 | |
| 		DoC_Command(this, NAND_CMD_ERASE2, 0);
 | |
| 
 | |
| 		DoC_Command(this, NAND_CMD_STATUS, CDSN_CTRL_WP);
 | |
| 
 | |
| 		if (DoC_is_Millennium(this)) {
 | |
| 			ReadDOC(docptr, ReadPipeInit);
 | |
| 			status = ReadDOC(docptr, LastDataRead);
 | |
| 		} else {
 | |
| 			dummy = ReadDOC(docptr, CDSNSlowIO);
 | |
| 			DoC_Delay(this, 2);
 | |
| 			status = ReadDOC_(docptr, this->ioreg);
 | |
| 		}
 | |
| 
 | |
| 		if (status & 1) {
 | |
| 			printk(KERN_ERR "Error erasing at 0x%x\n", ofs);
 | |
| 			/* There was an error */
 | |
| 			instr->state = MTD_ERASE_FAILED;
 | |
| 			goto callback;
 | |
| 		}
 | |
| 		ofs += mtd->erasesize;
 | |
| 		len -= mtd->erasesize;
 | |
| 	}
 | |
| 	instr->state = MTD_ERASE_DONE;
 | |
| 
 | |
|  callback:
 | |
| 	mtd_erase_callback(instr);
 | |
| 
 | |
| 	mutex_unlock(&this->lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /****************************************************************************
 | |
|  *
 | |
|  * Module stuff
 | |
|  *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| static void __exit cleanup_doc2000(void)
 | |
| {
 | |
| 	struct mtd_info *mtd;
 | |
| 	struct DiskOnChip *this;
 | |
| 
 | |
| 	while ((mtd = doc2klist)) {
 | |
| 		this = mtd->priv;
 | |
| 		doc2klist = this->nextdoc;
 | |
| 
 | |
| 		del_mtd_device(mtd);
 | |
| 
 | |
| 		iounmap(this->virtadr);
 | |
| 		kfree(this->chips);
 | |
| 		kfree(mtd);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| module_exit(cleanup_doc2000);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org> et al.");
 | |
| MODULE_DESCRIPTION("MTD driver for DiskOnChip 2000 and Millennium");
 | |
| 
 |