596 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			596 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /**
 | |
|  * @file buffer_sync.c
 | |
|  *
 | |
|  * @remark Copyright 2002-2009 OProfile authors
 | |
|  * @remark Read the file COPYING
 | |
|  *
 | |
|  * @author John Levon <levon@movementarian.org>
 | |
|  * @author Barry Kasindorf
 | |
|  * @author Robert Richter <robert.richter@amd.com>
 | |
|  *
 | |
|  * This is the core of the buffer management. Each
 | |
|  * CPU buffer is processed and entered into the
 | |
|  * global event buffer. Such processing is necessary
 | |
|  * in several circumstances, mentioned below.
 | |
|  *
 | |
|  * The processing does the job of converting the
 | |
|  * transitory EIP value into a persistent dentry/offset
 | |
|  * value that the profiler can record at its leisure.
 | |
|  *
 | |
|  * See fs/dcookies.c for a description of the dentry/offset
 | |
|  * objects.
 | |
|  */
 | |
| 
 | |
| #include <linux/mm.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/dcookies.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/oprofile.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| #include "oprofile_stats.h"
 | |
| #include "event_buffer.h"
 | |
| #include "cpu_buffer.h"
 | |
| #include "buffer_sync.h"
 | |
| 
 | |
| static LIST_HEAD(dying_tasks);
 | |
| static LIST_HEAD(dead_tasks);
 | |
| static cpumask_var_t marked_cpus;
 | |
| static DEFINE_SPINLOCK(task_mortuary);
 | |
| static void process_task_mortuary(void);
 | |
| 
 | |
| /* Take ownership of the task struct and place it on the
 | |
|  * list for processing. Only after two full buffer syncs
 | |
|  * does the task eventually get freed, because by then
 | |
|  * we are sure we will not reference it again.
 | |
|  * Can be invoked from softirq via RCU callback due to
 | |
|  * call_rcu() of the task struct, hence the _irqsave.
 | |
|  */
 | |
| static int
 | |
| task_free_notify(struct notifier_block *self, unsigned long val, void *data)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *task = data;
 | |
| 	spin_lock_irqsave(&task_mortuary, flags);
 | |
| 	list_add(&task->tasks, &dying_tasks);
 | |
| 	spin_unlock_irqrestore(&task_mortuary, flags);
 | |
| 	return NOTIFY_OK;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The task is on its way out. A sync of the buffer means we can catch
 | |
|  * any remaining samples for this task.
 | |
|  */
 | |
| static int
 | |
| task_exit_notify(struct notifier_block *self, unsigned long val, void *data)
 | |
| {
 | |
| 	/* To avoid latency problems, we only process the current CPU,
 | |
| 	 * hoping that most samples for the task are on this CPU
 | |
| 	 */
 | |
| 	sync_buffer(raw_smp_processor_id());
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* The task is about to try a do_munmap(). We peek at what it's going to
 | |
|  * do, and if it's an executable region, process the samples first, so
 | |
|  * we don't lose any. This does not have to be exact, it's a QoI issue
 | |
|  * only.
 | |
|  */
 | |
| static int
 | |
| munmap_notify(struct notifier_block *self, unsigned long val, void *data)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)data;
 | |
| 	struct mm_struct *mm = current->mm;
 | |
| 	struct vm_area_struct *mpnt;
 | |
| 
 | |
| 	down_read(&mm->mmap_sem);
 | |
| 
 | |
| 	mpnt = find_vma(mm, addr);
 | |
| 	if (mpnt && mpnt->vm_file && (mpnt->vm_flags & VM_EXEC)) {
 | |
| 		up_read(&mm->mmap_sem);
 | |
| 		/* To avoid latency problems, we only process the current CPU,
 | |
| 		 * hoping that most samples for the task are on this CPU
 | |
| 		 */
 | |
| 		sync_buffer(raw_smp_processor_id());
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* We need to be told about new modules so we don't attribute to a previously
 | |
|  * loaded module, or drop the samples on the floor.
 | |
|  */
 | |
| static int
 | |
| module_load_notify(struct notifier_block *self, unsigned long val, void *data)
 | |
| {
 | |
| #ifdef CONFIG_MODULES
 | |
| 	if (val != MODULE_STATE_COMING)
 | |
| 		return 0;
 | |
| 
 | |
| 	/* FIXME: should we process all CPU buffers ? */
 | |
| 	mutex_lock(&buffer_mutex);
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(MODULE_LOADED_CODE);
 | |
| 	mutex_unlock(&buffer_mutex);
 | |
| #endif
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct notifier_block task_free_nb = {
 | |
| 	.notifier_call	= task_free_notify,
 | |
| };
 | |
| 
 | |
| static struct notifier_block task_exit_nb = {
 | |
| 	.notifier_call	= task_exit_notify,
 | |
| };
 | |
| 
 | |
| static struct notifier_block munmap_nb = {
 | |
| 	.notifier_call	= munmap_notify,
 | |
| };
 | |
| 
 | |
| static struct notifier_block module_load_nb = {
 | |
| 	.notifier_call = module_load_notify,
 | |
| };
 | |
| 
 | |
| 
 | |
| static void end_sync(void)
 | |
| {
 | |
| 	end_cpu_work();
 | |
| 	/* make sure we don't leak task structs */
 | |
| 	process_task_mortuary();
 | |
| 	process_task_mortuary();
 | |
| }
 | |
| 
 | |
| 
 | |
| int sync_start(void)
 | |
| {
 | |
| 	int err;
 | |
| 
 | |
| 	if (!zalloc_cpumask_var(&marked_cpus, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	start_cpu_work();
 | |
| 
 | |
| 	err = task_handoff_register(&task_free_nb);
 | |
| 	if (err)
 | |
| 		goto out1;
 | |
| 	err = profile_event_register(PROFILE_TASK_EXIT, &task_exit_nb);
 | |
| 	if (err)
 | |
| 		goto out2;
 | |
| 	err = profile_event_register(PROFILE_MUNMAP, &munmap_nb);
 | |
| 	if (err)
 | |
| 		goto out3;
 | |
| 	err = register_module_notifier(&module_load_nb);
 | |
| 	if (err)
 | |
| 		goto out4;
 | |
| 
 | |
| out:
 | |
| 	return err;
 | |
| out4:
 | |
| 	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
 | |
| out3:
 | |
| 	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
 | |
| out2:
 | |
| 	task_handoff_unregister(&task_free_nb);
 | |
| out1:
 | |
| 	end_sync();
 | |
| 	free_cpumask_var(marked_cpus);
 | |
| 	goto out;
 | |
| }
 | |
| 
 | |
| 
 | |
| void sync_stop(void)
 | |
| {
 | |
| 	unregister_module_notifier(&module_load_nb);
 | |
| 	profile_event_unregister(PROFILE_MUNMAP, &munmap_nb);
 | |
| 	profile_event_unregister(PROFILE_TASK_EXIT, &task_exit_nb);
 | |
| 	task_handoff_unregister(&task_free_nb);
 | |
| 	end_sync();
 | |
| 	free_cpumask_var(marked_cpus);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Optimisation. We can manage without taking the dcookie sem
 | |
|  * because we cannot reach this code without at least one
 | |
|  * dcookie user still being registered (namely, the reader
 | |
|  * of the event buffer). */
 | |
| static inline unsigned long fast_get_dcookie(struct path *path)
 | |
| {
 | |
| 	unsigned long cookie;
 | |
| 
 | |
| 	if (path->dentry->d_flags & DCACHE_COOKIE)
 | |
| 		return (unsigned long)path->dentry;
 | |
| 	get_dcookie(path, &cookie);
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
 | |
|  * which corresponds loosely to "application name". This is
 | |
|  * not strictly necessary but allows oprofile to associate
 | |
|  * shared-library samples with particular applications
 | |
|  */
 | |
| static unsigned long get_exec_dcookie(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long cookie = NO_COOKIE;
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	if (!mm)
 | |
| 		goto out;
 | |
| 
 | |
| 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
 | |
| 		if (!vma->vm_file)
 | |
| 			continue;
 | |
| 		if (!(vma->vm_flags & VM_EXECUTABLE))
 | |
| 			continue;
 | |
| 		cookie = fast_get_dcookie(&vma->vm_file->f_path);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Convert the EIP value of a sample into a persistent dentry/offset
 | |
|  * pair that can then be added to the global event buffer. We make
 | |
|  * sure to do this lookup before a mm->mmap modification happens so
 | |
|  * we don't lose track.
 | |
|  */
 | |
| static unsigned long
 | |
| lookup_dcookie(struct mm_struct *mm, unsigned long addr, off_t *offset)
 | |
| {
 | |
| 	unsigned long cookie = NO_COOKIE;
 | |
| 	struct vm_area_struct *vma;
 | |
| 
 | |
| 	for (vma = find_vma(mm, addr); vma; vma = vma->vm_next) {
 | |
| 
 | |
| 		if (addr < vma->vm_start || addr >= vma->vm_end)
 | |
| 			continue;
 | |
| 
 | |
| 		if (vma->vm_file) {
 | |
| 			cookie = fast_get_dcookie(&vma->vm_file->f_path);
 | |
| 			*offset = (vma->vm_pgoff << PAGE_SHIFT) + addr -
 | |
| 				vma->vm_start;
 | |
| 		} else {
 | |
| 			/* must be an anonymous map */
 | |
| 			*offset = addr;
 | |
| 		}
 | |
| 
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	if (!vma)
 | |
| 		cookie = INVALID_COOKIE;
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| 
 | |
| static unsigned long last_cookie = INVALID_COOKIE;
 | |
| 
 | |
| static void add_cpu_switch(int i)
 | |
| {
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(CPU_SWITCH_CODE);
 | |
| 	add_event_entry(i);
 | |
| 	last_cookie = INVALID_COOKIE;
 | |
| }
 | |
| 
 | |
| static void add_kernel_ctx_switch(unsigned int in_kernel)
 | |
| {
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	if (in_kernel)
 | |
| 		add_event_entry(KERNEL_ENTER_SWITCH_CODE);
 | |
| 	else
 | |
| 		add_event_entry(KERNEL_EXIT_SWITCH_CODE);
 | |
| }
 | |
| 
 | |
| static void
 | |
| add_user_ctx_switch(struct task_struct const *task, unsigned long cookie)
 | |
| {
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(CTX_SWITCH_CODE);
 | |
| 	add_event_entry(task->pid);
 | |
| 	add_event_entry(cookie);
 | |
| 	/* Another code for daemon back-compat */
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(CTX_TGID_CODE);
 | |
| 	add_event_entry(task->tgid);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void add_cookie_switch(unsigned long cookie)
 | |
| {
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(COOKIE_SWITCH_CODE);
 | |
| 	add_event_entry(cookie);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void add_trace_begin(void)
 | |
| {
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(TRACE_BEGIN_CODE);
 | |
| }
 | |
| 
 | |
| static void add_data(struct op_entry *entry, struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long code, pc, val;
 | |
| 	unsigned long cookie;
 | |
| 	off_t offset;
 | |
| 
 | |
| 	if (!op_cpu_buffer_get_data(entry, &code))
 | |
| 		return;
 | |
| 	if (!op_cpu_buffer_get_data(entry, &pc))
 | |
| 		return;
 | |
| 	if (!op_cpu_buffer_get_size(entry))
 | |
| 		return;
 | |
| 
 | |
| 	if (mm) {
 | |
| 		cookie = lookup_dcookie(mm, pc, &offset);
 | |
| 
 | |
| 		if (cookie == NO_COOKIE)
 | |
| 			offset = pc;
 | |
| 		if (cookie == INVALID_COOKIE) {
 | |
| 			atomic_inc(&oprofile_stats.sample_lost_no_mapping);
 | |
| 			offset = pc;
 | |
| 		}
 | |
| 		if (cookie != last_cookie) {
 | |
| 			add_cookie_switch(cookie);
 | |
| 			last_cookie = cookie;
 | |
| 		}
 | |
| 	} else
 | |
| 		offset = pc;
 | |
| 
 | |
| 	add_event_entry(ESCAPE_CODE);
 | |
| 	add_event_entry(code);
 | |
| 	add_event_entry(offset);	/* Offset from Dcookie */
 | |
| 
 | |
| 	while (op_cpu_buffer_get_data(entry, &val))
 | |
| 		add_event_entry(val);
 | |
| }
 | |
| 
 | |
| static inline void add_sample_entry(unsigned long offset, unsigned long event)
 | |
| {
 | |
| 	add_event_entry(offset);
 | |
| 	add_event_entry(event);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Add a sample to the global event buffer. If possible the
 | |
|  * sample is converted into a persistent dentry/offset pair
 | |
|  * for later lookup from userspace. Return 0 on failure.
 | |
|  */
 | |
| static int
 | |
| add_sample(struct mm_struct *mm, struct op_sample *s, int in_kernel)
 | |
| {
 | |
| 	unsigned long cookie;
 | |
| 	off_t offset;
 | |
| 
 | |
| 	if (in_kernel) {
 | |
| 		add_sample_entry(s->eip, s->event);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* add userspace sample */
 | |
| 
 | |
| 	if (!mm) {
 | |
| 		atomic_inc(&oprofile_stats.sample_lost_no_mm);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	cookie = lookup_dcookie(mm, s->eip, &offset);
 | |
| 
 | |
| 	if (cookie == INVALID_COOKIE) {
 | |
| 		atomic_inc(&oprofile_stats.sample_lost_no_mapping);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (cookie != last_cookie) {
 | |
| 		add_cookie_switch(cookie);
 | |
| 		last_cookie = cookie;
 | |
| 	}
 | |
| 
 | |
| 	add_sample_entry(offset, s->event);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void release_mm(struct mm_struct *mm)
 | |
| {
 | |
| 	if (!mm)
 | |
| 		return;
 | |
| 	up_read(&mm->mmap_sem);
 | |
| 	mmput(mm);
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct mm_struct *take_tasks_mm(struct task_struct *task)
 | |
| {
 | |
| 	struct mm_struct *mm = get_task_mm(task);
 | |
| 	if (mm)
 | |
| 		down_read(&mm->mmap_sem);
 | |
| 	return mm;
 | |
| }
 | |
| 
 | |
| 
 | |
| static inline int is_code(unsigned long val)
 | |
| {
 | |
| 	return val == ESCAPE_CODE;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Move tasks along towards death. Any tasks on dead_tasks
 | |
|  * will definitely have no remaining references in any
 | |
|  * CPU buffers at this point, because we use two lists,
 | |
|  * and to have reached the list, it must have gone through
 | |
|  * one full sync already.
 | |
|  */
 | |
| static void process_task_mortuary(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	LIST_HEAD(local_dead_tasks);
 | |
| 	struct task_struct *task;
 | |
| 	struct task_struct *ttask;
 | |
| 
 | |
| 	spin_lock_irqsave(&task_mortuary, flags);
 | |
| 
 | |
| 	list_splice_init(&dead_tasks, &local_dead_tasks);
 | |
| 	list_splice_init(&dying_tasks, &dead_tasks);
 | |
| 
 | |
| 	spin_unlock_irqrestore(&task_mortuary, flags);
 | |
| 
 | |
| 	list_for_each_entry_safe(task, ttask, &local_dead_tasks, tasks) {
 | |
| 		list_del(&task->tasks);
 | |
| 		free_task(task);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mark_done(int cpu)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	cpumask_set_cpu(cpu, marked_cpus);
 | |
| 
 | |
| 	for_each_online_cpu(i) {
 | |
| 		if (!cpumask_test_cpu(i, marked_cpus))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 	/* All CPUs have been processed at least once,
 | |
| 	 * we can process the mortuary once
 | |
| 	 */
 | |
| 	process_task_mortuary();
 | |
| 
 | |
| 	cpumask_clear(marked_cpus);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* FIXME: this is not sufficient if we implement syscall barrier backtrace
 | |
|  * traversal, the code switch to sb_sample_start at first kernel enter/exit
 | |
|  * switch so we need a fifth state and some special handling in sync_buffer()
 | |
|  */
 | |
| typedef enum {
 | |
| 	sb_bt_ignore = -2,
 | |
| 	sb_buffer_start,
 | |
| 	sb_bt_start,
 | |
| 	sb_sample_start,
 | |
| } sync_buffer_state;
 | |
| 
 | |
| /* Sync one of the CPU's buffers into the global event buffer.
 | |
|  * Here we need to go through each batch of samples punctuated
 | |
|  * by context switch notes, taking the task's mmap_sem and doing
 | |
|  * lookup in task->mm->mmap to convert EIP into dcookie/offset
 | |
|  * value.
 | |
|  */
 | |
| void sync_buffer(int cpu)
 | |
| {
 | |
| 	struct mm_struct *mm = NULL;
 | |
| 	struct mm_struct *oldmm;
 | |
| 	unsigned long val;
 | |
| 	struct task_struct *new;
 | |
| 	unsigned long cookie = 0;
 | |
| 	int in_kernel = 1;
 | |
| 	sync_buffer_state state = sb_buffer_start;
 | |
| 	unsigned int i;
 | |
| 	unsigned long available;
 | |
| 	unsigned long flags;
 | |
| 	struct op_entry entry;
 | |
| 	struct op_sample *sample;
 | |
| 
 | |
| 	mutex_lock(&buffer_mutex);
 | |
| 
 | |
| 	add_cpu_switch(cpu);
 | |
| 
 | |
| 	op_cpu_buffer_reset(cpu);
 | |
| 	available = op_cpu_buffer_entries(cpu);
 | |
| 
 | |
| 	for (i = 0; i < available; ++i) {
 | |
| 		sample = op_cpu_buffer_read_entry(&entry, cpu);
 | |
| 		if (!sample)
 | |
| 			break;
 | |
| 
 | |
| 		if (is_code(sample->eip)) {
 | |
| 			flags = sample->event;
 | |
| 			if (flags & TRACE_BEGIN) {
 | |
| 				state = sb_bt_start;
 | |
| 				add_trace_begin();
 | |
| 			}
 | |
| 			if (flags & KERNEL_CTX_SWITCH) {
 | |
| 				/* kernel/userspace switch */
 | |
| 				in_kernel = flags & IS_KERNEL;
 | |
| 				if (state == sb_buffer_start)
 | |
| 					state = sb_sample_start;
 | |
| 				add_kernel_ctx_switch(flags & IS_KERNEL);
 | |
| 			}
 | |
| 			if (flags & USER_CTX_SWITCH
 | |
| 			    && op_cpu_buffer_get_data(&entry, &val)) {
 | |
| 				/* userspace context switch */
 | |
| 				new = (struct task_struct *)val;
 | |
| 				oldmm = mm;
 | |
| 				release_mm(oldmm);
 | |
| 				mm = take_tasks_mm(new);
 | |
| 				if (mm != oldmm)
 | |
| 					cookie = get_exec_dcookie(mm);
 | |
| 				add_user_ctx_switch(new, cookie);
 | |
| 			}
 | |
| 			if (op_cpu_buffer_get_size(&entry))
 | |
| 				add_data(&entry, mm);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (state < sb_bt_start)
 | |
| 			/* ignore sample */
 | |
| 			continue;
 | |
| 
 | |
| 		if (add_sample(mm, sample, in_kernel))
 | |
| 			continue;
 | |
| 
 | |
| 		/* ignore backtraces if failed to add a sample */
 | |
| 		if (state == sb_bt_start) {
 | |
| 			state = sb_bt_ignore;
 | |
| 			atomic_inc(&oprofile_stats.bt_lost_no_mapping);
 | |
| 		}
 | |
| 	}
 | |
| 	release_mm(mm);
 | |
| 
 | |
| 	mark_done(cpu);
 | |
| 
 | |
| 	mutex_unlock(&buffer_mutex);
 | |
| }
 | |
| 
 | |
| /* The function can be used to add a buffer worth of data directly to
 | |
|  * the kernel buffer. The buffer is assumed to be a circular buffer.
 | |
|  * Take the entries from index start and end at index end, wrapping
 | |
|  * at max_entries.
 | |
|  */
 | |
| void oprofile_put_buff(unsigned long *buf, unsigned int start,
 | |
| 		       unsigned int stop, unsigned int max)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	i = start;
 | |
| 
 | |
| 	mutex_lock(&buffer_mutex);
 | |
| 	while (i != stop) {
 | |
| 		add_event_entry(buf[i++]);
 | |
| 
 | |
| 		if (i >= max)
 | |
| 			i = 0;
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&buffer_mutex);
 | |
| }
 | |
| 
 |