2143 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2143 lines
		
	
	
		
			58 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*****************************************************************************
 | |
|  *                                                                           *
 | |
|  * File: sge.c                                                               *
 | |
|  * $Revision: 1.26 $                                                         *
 | |
|  * $Date: 2005/06/21 18:29:48 $                                              *
 | |
|  * Description:                                                              *
 | |
|  *  DMA engine.                                                              *
 | |
|  *  part of the Chelsio 10Gb Ethernet Driver.                                *
 | |
|  *                                                                           *
 | |
|  * This program is free software; you can redistribute it and/or modify      *
 | |
|  * it under the terms of the GNU General Public License, version 2, as       *
 | |
|  * published by the Free Software Foundation.                                *
 | |
|  *                                                                           *
 | |
|  * You should have received a copy of the GNU General Public License along   *
 | |
|  * with this program; if not, write to the Free Software Foundation, Inc.,   *
 | |
|  * 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.                 *
 | |
|  *                                                                           *
 | |
|  * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED    *
 | |
|  * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF      *
 | |
|  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.                     *
 | |
|  *                                                                           *
 | |
|  * http://www.chelsio.com                                                    *
 | |
|  *                                                                           *
 | |
|  * Copyright (c) 2003 - 2005 Chelsio Communications, Inc.                    *
 | |
|  * All rights reserved.                                                      *
 | |
|  *                                                                           *
 | |
|  * Maintainers: maintainers@chelsio.com                                      *
 | |
|  *                                                                           *
 | |
|  * Authors: Dimitrios Michailidis   <dm@chelsio.com>                         *
 | |
|  *          Tina Yang               <tainay@chelsio.com>                     *
 | |
|  *          Felix Marti             <felix@chelsio.com>                      *
 | |
|  *          Scott Bardone           <sbardone@chelsio.com>                   *
 | |
|  *          Kurt Ottaway            <kottaway@chelsio.com>                   *
 | |
|  *          Frank DiMambro          <frank@chelsio.com>                      *
 | |
|  *                                                                           *
 | |
|  * History:                                                                  *
 | |
|  *                                                                           *
 | |
|  ****************************************************************************/
 | |
| 
 | |
| #include "common.h"
 | |
| 
 | |
| #include <linux/types.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/ktime.h>
 | |
| #include <linux/netdevice.h>
 | |
| #include <linux/etherdevice.h>
 | |
| #include <linux/if_vlan.h>
 | |
| #include <linux/skbuff.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/tcp.h>
 | |
| #include <linux/ip.h>
 | |
| #include <linux/in.h>
 | |
| #include <linux/if_arp.h>
 | |
| 
 | |
| #include "cpl5_cmd.h"
 | |
| #include "sge.h"
 | |
| #include "regs.h"
 | |
| #include "espi.h"
 | |
| 
 | |
| /* This belongs in if_ether.h */
 | |
| #define ETH_P_CPL5 0xf
 | |
| 
 | |
| #define SGE_CMDQ_N		2
 | |
| #define SGE_FREELQ_N		2
 | |
| #define SGE_CMDQ0_E_N		1024
 | |
| #define SGE_CMDQ1_E_N		128
 | |
| #define SGE_FREEL_SIZE		4096
 | |
| #define SGE_JUMBO_FREEL_SIZE	512
 | |
| #define SGE_FREEL_REFILL_THRESH	16
 | |
| #define SGE_RESPQ_E_N		1024
 | |
| #define SGE_INTRTIMER_NRES	1000
 | |
| #define SGE_RX_SM_BUF_SIZE	1536
 | |
| #define SGE_TX_DESC_MAX_PLEN	16384
 | |
| 
 | |
| #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
 | |
| 
 | |
| /*
 | |
|  * Period of the TX buffer reclaim timer.  This timer does not need to run
 | |
|  * frequently as TX buffers are usually reclaimed by new TX packets.
 | |
|  */
 | |
| #define TX_RECLAIM_PERIOD (HZ / 4)
 | |
| 
 | |
| #define M_CMD_LEN       0x7fffffff
 | |
| #define V_CMD_LEN(v)    (v)
 | |
| #define G_CMD_LEN(v)    ((v) & M_CMD_LEN)
 | |
| #define V_CMD_GEN1(v)   ((v) << 31)
 | |
| #define V_CMD_GEN2(v)   (v)
 | |
| #define F_CMD_DATAVALID (1 << 1)
 | |
| #define F_CMD_SOP       (1 << 2)
 | |
| #define V_CMD_EOP(v)    ((v) << 3)
 | |
| 
 | |
| /*
 | |
|  * Command queue, receive buffer list, and response queue descriptors.
 | |
|  */
 | |
| #if defined(__BIG_ENDIAN_BITFIELD)
 | |
| struct cmdQ_e {
 | |
| 	u32 addr_lo;
 | |
| 	u32 len_gen;
 | |
| 	u32 flags;
 | |
| 	u32 addr_hi;
 | |
| };
 | |
| 
 | |
| struct freelQ_e {
 | |
| 	u32 addr_lo;
 | |
| 	u32 len_gen;
 | |
| 	u32 gen2;
 | |
| 	u32 addr_hi;
 | |
| };
 | |
| 
 | |
| struct respQ_e {
 | |
| 	u32 Qsleeping		: 4;
 | |
| 	u32 Cmdq1CreditReturn	: 5;
 | |
| 	u32 Cmdq1DmaComplete	: 5;
 | |
| 	u32 Cmdq0CreditReturn	: 5;
 | |
| 	u32 Cmdq0DmaComplete	: 5;
 | |
| 	u32 FreelistQid		: 2;
 | |
| 	u32 CreditValid		: 1;
 | |
| 	u32 DataValid		: 1;
 | |
| 	u32 Offload		: 1;
 | |
| 	u32 Eop			: 1;
 | |
| 	u32 Sop			: 1;
 | |
| 	u32 GenerationBit	: 1;
 | |
| 	u32 BufferLength;
 | |
| };
 | |
| #elif defined(__LITTLE_ENDIAN_BITFIELD)
 | |
| struct cmdQ_e {
 | |
| 	u32 len_gen;
 | |
| 	u32 addr_lo;
 | |
| 	u32 addr_hi;
 | |
| 	u32 flags;
 | |
| };
 | |
| 
 | |
| struct freelQ_e {
 | |
| 	u32 len_gen;
 | |
| 	u32 addr_lo;
 | |
| 	u32 addr_hi;
 | |
| 	u32 gen2;
 | |
| };
 | |
| 
 | |
| struct respQ_e {
 | |
| 	u32 BufferLength;
 | |
| 	u32 GenerationBit	: 1;
 | |
| 	u32 Sop			: 1;
 | |
| 	u32 Eop			: 1;
 | |
| 	u32 Offload		: 1;
 | |
| 	u32 DataValid		: 1;
 | |
| 	u32 CreditValid		: 1;
 | |
| 	u32 FreelistQid		: 2;
 | |
| 	u32 Cmdq0DmaComplete	: 5;
 | |
| 	u32 Cmdq0CreditReturn	: 5;
 | |
| 	u32 Cmdq1DmaComplete	: 5;
 | |
| 	u32 Cmdq1CreditReturn	: 5;
 | |
| 	u32 Qsleeping		: 4;
 | |
| } ;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * SW Context Command and Freelist Queue Descriptors
 | |
|  */
 | |
| struct cmdQ_ce {
 | |
| 	struct sk_buff *skb;
 | |
| 	DECLARE_PCI_UNMAP_ADDR(dma_addr);
 | |
| 	DECLARE_PCI_UNMAP_LEN(dma_len);
 | |
| };
 | |
| 
 | |
| struct freelQ_ce {
 | |
| 	struct sk_buff *skb;
 | |
| 	DECLARE_PCI_UNMAP_ADDR(dma_addr);
 | |
| 	DECLARE_PCI_UNMAP_LEN(dma_len);
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * SW command, freelist and response rings
 | |
|  */
 | |
| struct cmdQ {
 | |
| 	unsigned long   status;         /* HW DMA fetch status */
 | |
| 	unsigned int    in_use;         /* # of in-use command descriptors */
 | |
| 	unsigned int	size;	        /* # of descriptors */
 | |
| 	unsigned int    processed;      /* total # of descs HW has processed */
 | |
| 	unsigned int    cleaned;        /* total # of descs SW has reclaimed */
 | |
| 	unsigned int    stop_thres;     /* SW TX queue suspend threshold */
 | |
| 	u16		pidx;           /* producer index (SW) */
 | |
| 	u16		cidx;           /* consumer index (HW) */
 | |
| 	u8		genbit;         /* current generation (=valid) bit */
 | |
| 	u8              sop;            /* is next entry start of packet? */
 | |
| 	struct cmdQ_e  *entries;        /* HW command descriptor Q */
 | |
| 	struct cmdQ_ce *centries;       /* SW command context descriptor Q */
 | |
| 	dma_addr_t	dma_addr;       /* DMA addr HW command descriptor Q */
 | |
| 	spinlock_t	lock;           /* Lock to protect cmdQ enqueuing */
 | |
| };
 | |
| 
 | |
| struct freelQ {
 | |
| 	unsigned int	credits;        /* # of available RX buffers */
 | |
| 	unsigned int	size;	        /* free list capacity */
 | |
| 	u16		pidx;           /* producer index (SW) */
 | |
| 	u16		cidx;           /* consumer index (HW) */
 | |
| 	u16		rx_buffer_size; /* Buffer size on this free list */
 | |
| 	u16             dma_offset;     /* DMA offset to align IP headers */
 | |
| 	u16             recycleq_idx;   /* skb recycle q to use */
 | |
| 	u8		genbit;	        /* current generation (=valid) bit */
 | |
| 	struct freelQ_e	*entries;       /* HW freelist descriptor Q */
 | |
| 	struct freelQ_ce *centries;     /* SW freelist context descriptor Q */
 | |
| 	dma_addr_t	dma_addr;       /* DMA addr HW freelist descriptor Q */
 | |
| };
 | |
| 
 | |
| struct respQ {
 | |
| 	unsigned int	credits;        /* credits to be returned to SGE */
 | |
| 	unsigned int	size;	        /* # of response Q descriptors */
 | |
| 	u16		cidx;	        /* consumer index (SW) */
 | |
| 	u8		genbit;	        /* current generation(=valid) bit */
 | |
| 	struct respQ_e *entries;        /* HW response descriptor Q */
 | |
| 	dma_addr_t	dma_addr;       /* DMA addr HW response descriptor Q */
 | |
| };
 | |
| 
 | |
| /* Bit flags for cmdQ.status */
 | |
| enum {
 | |
| 	CMDQ_STAT_RUNNING = 1,          /* fetch engine is running */
 | |
| 	CMDQ_STAT_LAST_PKT_DB = 2       /* last packet rung the doorbell */
 | |
| };
 | |
| 
 | |
| /* T204 TX SW scheduler */
 | |
| 
 | |
| /* Per T204 TX port */
 | |
| struct sched_port {
 | |
| 	unsigned int	avail;		/* available bits - quota */
 | |
| 	unsigned int	drain_bits_per_1024ns; /* drain rate */
 | |
| 	unsigned int	speed;		/* drain rate, mbps */
 | |
| 	unsigned int	mtu;		/* mtu size */
 | |
| 	struct sk_buff_head skbq;	/* pending skbs */
 | |
| };
 | |
| 
 | |
| /* Per T204 device */
 | |
| struct sched {
 | |
| 	ktime_t         last_updated;   /* last time quotas were computed */
 | |
| 	unsigned int	max_avail;	/* max bits to be sent to any port */
 | |
| 	unsigned int	port;		/* port index (round robin ports) */
 | |
| 	unsigned int	num;		/* num skbs in per port queues */
 | |
| 	struct sched_port p[MAX_NPORTS];
 | |
| 	struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
 | |
| };
 | |
| static void restart_sched(unsigned long);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Main SGE data structure
 | |
|  *
 | |
|  * Interrupts are handled by a single CPU and it is likely that on a MP system
 | |
|  * the application is migrated to another CPU. In that scenario, we try to
 | |
|  * seperate the RX(in irq context) and TX state in order to decrease memory
 | |
|  * contention.
 | |
|  */
 | |
| struct sge {
 | |
| 	struct adapter *adapter;	/* adapter backpointer */
 | |
| 	struct net_device *netdev;      /* netdevice backpointer */
 | |
| 	struct freelQ	freelQ[SGE_FREELQ_N]; /* buffer free lists */
 | |
| 	struct respQ	respQ;		/* response Q */
 | |
| 	unsigned long   stopped_tx_queues; /* bitmap of suspended Tx queues */
 | |
| 	unsigned int	rx_pkt_pad;     /* RX padding for L2 packets */
 | |
| 	unsigned int	jumbo_fl;       /* jumbo freelist Q index */
 | |
| 	unsigned int	intrtimer_nres;	/* no-resource interrupt timer */
 | |
| 	unsigned int    fixed_intrtimer;/* non-adaptive interrupt timer */
 | |
| 	struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
 | |
| 	struct timer_list espibug_timer;
 | |
| 	unsigned long	espibug_timeout;
 | |
| 	struct sk_buff	*espibug_skb[MAX_NPORTS];
 | |
| 	u32		sge_control;	/* shadow value of sge control reg */
 | |
| 	struct sge_intr_counts stats;
 | |
| 	struct sge_port_stats *port_stats[MAX_NPORTS];
 | |
| 	struct sched	*tx_sched;
 | |
| 	struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * stop tasklet and free all pending skb's
 | |
|  */
 | |
| static void tx_sched_stop(struct sge *sge)
 | |
| {
 | |
| 	struct sched *s = sge->tx_sched;
 | |
| 	int i;
 | |
| 
 | |
| 	tasklet_kill(&s->sched_tsk);
 | |
| 
 | |
| 	for (i = 0; i < MAX_NPORTS; i++)
 | |
| 		__skb_queue_purge(&s->p[s->port].skbq);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * t1_sched_update_parms() is called when the MTU or link speed changes. It
 | |
|  * re-computes scheduler parameters to scope with the change.
 | |
|  */
 | |
| unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
 | |
| 				   unsigned int mtu, unsigned int speed)
 | |
| {
 | |
| 	struct sched *s = sge->tx_sched;
 | |
| 	struct sched_port *p = &s->p[port];
 | |
| 	unsigned int max_avail_segs;
 | |
| 
 | |
| 	pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
 | |
| 	if (speed)
 | |
| 		p->speed = speed;
 | |
| 	if (mtu)
 | |
| 		p->mtu = mtu;
 | |
| 
 | |
| 	if (speed || mtu) {
 | |
| 		unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
 | |
| 		do_div(drain, (p->mtu + 50) * 1000);
 | |
| 		p->drain_bits_per_1024ns = (unsigned int) drain;
 | |
| 
 | |
| 		if (p->speed < 1000)
 | |
| 			p->drain_bits_per_1024ns =
 | |
| 				90 * p->drain_bits_per_1024ns / 100;
 | |
| 	}
 | |
| 
 | |
| 	if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
 | |
| 		p->drain_bits_per_1024ns -= 16;
 | |
| 		s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
 | |
| 		max_avail_segs = max(1U, 4096 / (p->mtu - 40));
 | |
| 	} else {
 | |
| 		s->max_avail = 16384;
 | |
| 		max_avail_segs = max(1U, 9000 / (p->mtu - 40));
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
 | |
| 		 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
 | |
| 		 p->speed, s->max_avail, max_avail_segs,
 | |
| 		 p->drain_bits_per_1024ns);
 | |
| 
 | |
| 	return max_avail_segs * (p->mtu - 40);
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| 
 | |
| /*
 | |
|  * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
 | |
|  * data that can be pushed per port.
 | |
|  */
 | |
| void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
 | |
| {
 | |
| 	struct sched *s = sge->tx_sched;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	s->max_avail = val;
 | |
| 	for (i = 0; i < MAX_NPORTS; i++)
 | |
| 		t1_sched_update_parms(sge, i, 0, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
 | |
|  * is draining.
 | |
|  */
 | |
| void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
 | |
| 					 unsigned int val)
 | |
| {
 | |
| 	struct sched *s = sge->tx_sched;
 | |
| 	struct sched_port *p = &s->p[port];
 | |
| 	p->drain_bits_per_1024ns = val * 1024 / 1000;
 | |
| 	t1_sched_update_parms(sge, port, 0, 0);
 | |
| }
 | |
| 
 | |
| #endif  /*  0  */
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * get_clock() implements a ns clock (see ktime_get)
 | |
|  */
 | |
| static inline ktime_t get_clock(void)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 
 | |
| 	ktime_get_ts(&ts);
 | |
| 	return timespec_to_ktime(ts);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * tx_sched_init() allocates resources and does basic initialization.
 | |
|  */
 | |
| static int tx_sched_init(struct sge *sge)
 | |
| {
 | |
| 	struct sched *s;
 | |
| 	int i;
 | |
| 
 | |
| 	s = kzalloc(sizeof (struct sched), GFP_KERNEL);
 | |
| 	if (!s)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	pr_debug("tx_sched_init\n");
 | |
| 	tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
 | |
| 	sge->tx_sched = s;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NPORTS; i++) {
 | |
| 		skb_queue_head_init(&s->p[i].skbq);
 | |
| 		t1_sched_update_parms(sge, i, 1500, 1000);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_update_avail() computes the delta since the last time it was called
 | |
|  * and updates the per port quota (number of bits that can be sent to the any
 | |
|  * port).
 | |
|  */
 | |
| static inline int sched_update_avail(struct sge *sge)
 | |
| {
 | |
| 	struct sched *s = sge->tx_sched;
 | |
| 	ktime_t now = get_clock();
 | |
| 	unsigned int i;
 | |
| 	long long delta_time_ns;
 | |
| 
 | |
| 	delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
 | |
| 
 | |
| 	pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
 | |
| 	if (delta_time_ns < 15000)
 | |
| 		return 0;
 | |
| 
 | |
| 	for (i = 0; i < MAX_NPORTS; i++) {
 | |
| 		struct sched_port *p = &s->p[i];
 | |
| 		unsigned int delta_avail;
 | |
| 
 | |
| 		delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
 | |
| 		p->avail = min(p->avail + delta_avail, s->max_avail);
 | |
| 	}
 | |
| 
 | |
| 	s->last_updated = now;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * sched_skb() is called from two different places. In the tx path, any
 | |
|  * packet generating load on an output port will call sched_skb()
 | |
|  * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
 | |
|  * context (skb == NULL).
 | |
|  * The scheduler only returns a skb (which will then be sent) if the
 | |
|  * length of the skb is <= the current quota of the output port.
 | |
|  */
 | |
| static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
 | |
| 				unsigned int credits)
 | |
| {
 | |
| 	struct sched *s = sge->tx_sched;
 | |
| 	struct sk_buff_head *skbq;
 | |
| 	unsigned int i, len, update = 1;
 | |
| 
 | |
| 	pr_debug("sched_skb %p\n", skb);
 | |
| 	if (!skb) {
 | |
| 		if (!s->num)
 | |
| 			return NULL;
 | |
| 	} else {
 | |
| 		skbq = &s->p[skb->dev->if_port].skbq;
 | |
| 		__skb_queue_tail(skbq, skb);
 | |
| 		s->num++;
 | |
| 		skb = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (credits < MAX_SKB_FRAGS + 1)
 | |
| 		goto out;
 | |
| 
 | |
| again:
 | |
| 	for (i = 0; i < MAX_NPORTS; i++) {
 | |
| 		s->port = ++s->port & (MAX_NPORTS - 1);
 | |
| 		skbq = &s->p[s->port].skbq;
 | |
| 
 | |
| 		skb = skb_peek(skbq);
 | |
| 
 | |
| 		if (!skb)
 | |
| 			continue;
 | |
| 
 | |
| 		len = skb->len;
 | |
| 		if (len <= s->p[s->port].avail) {
 | |
| 			s->p[s->port].avail -= len;
 | |
| 			s->num--;
 | |
| 			__skb_unlink(skb, skbq);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		skb = NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (update-- && sched_update_avail(sge))
 | |
| 		goto again;
 | |
| 
 | |
| out:
 | |
| 	/* If there are more pending skbs, we use the hardware to schedule us
 | |
| 	 * again.
 | |
| 	 */
 | |
| 	if (s->num && !skb) {
 | |
| 		struct cmdQ *q = &sge->cmdQ[0];
 | |
| 		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 | |
| 		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 | |
| 			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 | |
| 			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
 | |
| 		}
 | |
| 	}
 | |
| 	pr_debug("sched_skb ret %p\n", skb);
 | |
| 
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * PIO to indicate that memory mapped Q contains valid descriptor(s).
 | |
|  */
 | |
| static inline void doorbell_pio(struct adapter *adapter, u32 val)
 | |
| {
 | |
| 	wmb();
 | |
| 	writel(val, adapter->regs + A_SG_DOORBELL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Frees all RX buffers on the freelist Q. The caller must make sure that
 | |
|  * the SGE is turned off before calling this function.
 | |
|  */
 | |
| static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
 | |
| {
 | |
| 	unsigned int cidx = q->cidx;
 | |
| 
 | |
| 	while (q->credits--) {
 | |
| 		struct freelQ_ce *ce = &q->centries[cidx];
 | |
| 
 | |
| 		pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
 | |
| 				 pci_unmap_len(ce, dma_len),
 | |
| 				 PCI_DMA_FROMDEVICE);
 | |
| 		dev_kfree_skb(ce->skb);
 | |
| 		ce->skb = NULL;
 | |
| 		if (++cidx == q->size)
 | |
| 			cidx = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free RX free list and response queue resources.
 | |
|  */
 | |
| static void free_rx_resources(struct sge *sge)
 | |
| {
 | |
| 	struct pci_dev *pdev = sge->adapter->pdev;
 | |
| 	unsigned int size, i;
 | |
| 
 | |
| 	if (sge->respQ.entries) {
 | |
| 		size = sizeof(struct respQ_e) * sge->respQ.size;
 | |
| 		pci_free_consistent(pdev, size, sge->respQ.entries,
 | |
| 				    sge->respQ.dma_addr);
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < SGE_FREELQ_N; i++) {
 | |
| 		struct freelQ *q = &sge->freelQ[i];
 | |
| 
 | |
| 		if (q->centries) {
 | |
| 			free_freelQ_buffers(pdev, q);
 | |
| 			kfree(q->centries);
 | |
| 		}
 | |
| 		if (q->entries) {
 | |
| 			size = sizeof(struct freelQ_e) * q->size;
 | |
| 			pci_free_consistent(pdev, size, q->entries,
 | |
| 					    q->dma_addr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
 | |
|  * response queue.
 | |
|  */
 | |
| static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
 | |
| {
 | |
| 	struct pci_dev *pdev = sge->adapter->pdev;
 | |
| 	unsigned int size, i;
 | |
| 
 | |
| 	for (i = 0; i < SGE_FREELQ_N; i++) {
 | |
| 		struct freelQ *q = &sge->freelQ[i];
 | |
| 
 | |
| 		q->genbit = 1;
 | |
| 		q->size = p->freelQ_size[i];
 | |
| 		q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
 | |
| 		size = sizeof(struct freelQ_e) * q->size;
 | |
| 		q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 | |
| 		if (!q->entries)
 | |
| 			goto err_no_mem;
 | |
| 
 | |
| 		size = sizeof(struct freelQ_ce) * q->size;
 | |
| 		q->centries = kzalloc(size, GFP_KERNEL);
 | |
| 		if (!q->centries)
 | |
| 			goto err_no_mem;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the buffer sizes for the two free lists.  FL0 accommodates
 | |
| 	 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
 | |
| 	 * including all the sk_buff overhead.
 | |
| 	 *
 | |
| 	 * Note: For T2 FL0 and FL1 are reversed.
 | |
| 	 */
 | |
| 	sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
 | |
| 		sizeof(struct cpl_rx_data) +
 | |
| 		sge->freelQ[!sge->jumbo_fl].dma_offset;
 | |
| 
 | |
| 		size = (16 * 1024) -
 | |
| 		    SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
 | |
| 
 | |
| 	sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
 | |
| 
 | |
| 	/*
 | |
| 	 * Setup which skb recycle Q should be used when recycling buffers from
 | |
| 	 * each free list.
 | |
| 	 */
 | |
| 	sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
 | |
| 	sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
 | |
| 
 | |
| 	sge->respQ.genbit = 1;
 | |
| 	sge->respQ.size = SGE_RESPQ_E_N;
 | |
| 	sge->respQ.credits = 0;
 | |
| 	size = sizeof(struct respQ_e) * sge->respQ.size;
 | |
| 	sge->respQ.entries =
 | |
| 		pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
 | |
| 	if (!sge->respQ.entries)
 | |
| 		goto err_no_mem;
 | |
| 	return 0;
 | |
| 
 | |
| err_no_mem:
 | |
| 	free_rx_resources(sge);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reclaims n TX descriptors and frees the buffers associated with them.
 | |
|  */
 | |
| static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
 | |
| {
 | |
| 	struct cmdQ_ce *ce;
 | |
| 	struct pci_dev *pdev = sge->adapter->pdev;
 | |
| 	unsigned int cidx = q->cidx;
 | |
| 
 | |
| 	q->in_use -= n;
 | |
| 	ce = &q->centries[cidx];
 | |
| 	while (n--) {
 | |
| 		if (likely(pci_unmap_len(ce, dma_len))) {
 | |
| 			pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
 | |
| 					 pci_unmap_len(ce, dma_len),
 | |
| 					 PCI_DMA_TODEVICE);
 | |
| 			if (q->sop)
 | |
| 				q->sop = 0;
 | |
| 		}
 | |
| 		if (ce->skb) {
 | |
| 			dev_kfree_skb_any(ce->skb);
 | |
| 			q->sop = 1;
 | |
| 		}
 | |
| 		ce++;
 | |
| 		if (++cidx == q->size) {
 | |
| 			cidx = 0;
 | |
| 			ce = q->centries;
 | |
| 		}
 | |
| 	}
 | |
| 	q->cidx = cidx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Free TX resources.
 | |
|  *
 | |
|  * Assumes that SGE is stopped and all interrupts are disabled.
 | |
|  */
 | |
| static void free_tx_resources(struct sge *sge)
 | |
| {
 | |
| 	struct pci_dev *pdev = sge->adapter->pdev;
 | |
| 	unsigned int size, i;
 | |
| 
 | |
| 	for (i = 0; i < SGE_CMDQ_N; i++) {
 | |
| 		struct cmdQ *q = &sge->cmdQ[i];
 | |
| 
 | |
| 		if (q->centries) {
 | |
| 			if (q->in_use)
 | |
| 				free_cmdQ_buffers(sge, q, q->in_use);
 | |
| 			kfree(q->centries);
 | |
| 		}
 | |
| 		if (q->entries) {
 | |
| 			size = sizeof(struct cmdQ_e) * q->size;
 | |
| 			pci_free_consistent(pdev, size, q->entries,
 | |
| 					    q->dma_addr);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates basic TX resources, consisting of memory mapped command Qs.
 | |
|  */
 | |
| static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
 | |
| {
 | |
| 	struct pci_dev *pdev = sge->adapter->pdev;
 | |
| 	unsigned int size, i;
 | |
| 
 | |
| 	for (i = 0; i < SGE_CMDQ_N; i++) {
 | |
| 		struct cmdQ *q = &sge->cmdQ[i];
 | |
| 
 | |
| 		q->genbit = 1;
 | |
| 		q->sop = 1;
 | |
| 		q->size = p->cmdQ_size[i];
 | |
| 		q->in_use = 0;
 | |
| 		q->status = 0;
 | |
| 		q->processed = q->cleaned = 0;
 | |
| 		q->stop_thres = 0;
 | |
| 		spin_lock_init(&q->lock);
 | |
| 		size = sizeof(struct cmdQ_e) * q->size;
 | |
| 		q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
 | |
| 		if (!q->entries)
 | |
| 			goto err_no_mem;
 | |
| 
 | |
| 		size = sizeof(struct cmdQ_ce) * q->size;
 | |
| 		q->centries = kzalloc(size, GFP_KERNEL);
 | |
| 		if (!q->centries)
 | |
| 			goto err_no_mem;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
 | |
| 	 * only.  For queue 0 set the stop threshold so we can handle one more
 | |
| 	 * packet from each port, plus reserve an additional 24 entries for
 | |
| 	 * Ethernet packets only.  Queue 1 never suspends nor do we reserve
 | |
| 	 * space for Ethernet packets.
 | |
| 	 */
 | |
| 	sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
 | |
| 		(MAX_SKB_FRAGS + 1);
 | |
| 	return 0;
 | |
| 
 | |
| err_no_mem:
 | |
| 	free_tx_resources(sge);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| static inline void setup_ring_params(struct adapter *adapter, u64 addr,
 | |
| 				     u32 size, int base_reg_lo,
 | |
| 				     int base_reg_hi, int size_reg)
 | |
| {
 | |
| 	writel((u32)addr, adapter->regs + base_reg_lo);
 | |
| 	writel(addr >> 32, adapter->regs + base_reg_hi);
 | |
| 	writel(size, adapter->regs + size_reg);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable/disable VLAN acceleration.
 | |
|  */
 | |
| void t1_set_vlan_accel(struct adapter *adapter, int on_off)
 | |
| {
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 
 | |
| 	sge->sge_control &= ~F_VLAN_XTRACT;
 | |
| 	if (on_off)
 | |
| 		sge->sge_control |= F_VLAN_XTRACT;
 | |
| 	if (adapter->open_device_map) {
 | |
| 		writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
 | |
| 		readl(adapter->regs + A_SG_CONTROL);   /* flush */
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Programs the various SGE registers. However, the engine is not yet enabled,
 | |
|  * but sge->sge_control is setup and ready to go.
 | |
|  */
 | |
| static void configure_sge(struct sge *sge, struct sge_params *p)
 | |
| {
 | |
| 	struct adapter *ap = sge->adapter;
 | |
| 
 | |
| 	writel(0, ap->regs + A_SG_CONTROL);
 | |
| 	setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
 | |
| 			  A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
 | |
| 	setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
 | |
| 			  A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
 | |
| 	setup_ring_params(ap, sge->freelQ[0].dma_addr,
 | |
| 			  sge->freelQ[0].size, A_SG_FL0BASELWR,
 | |
| 			  A_SG_FL0BASEUPR, A_SG_FL0SIZE);
 | |
| 	setup_ring_params(ap, sge->freelQ[1].dma_addr,
 | |
| 			  sge->freelQ[1].size, A_SG_FL1BASELWR,
 | |
| 			  A_SG_FL1BASEUPR, A_SG_FL1SIZE);
 | |
| 
 | |
| 	/* The threshold comparison uses <. */
 | |
| 	writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
 | |
| 
 | |
| 	setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
 | |
| 			  A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
 | |
| 	writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
 | |
| 
 | |
| 	sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
 | |
| 		F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
 | |
| 		V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
 | |
| 		V_RX_PKT_OFFSET(sge->rx_pkt_pad);
 | |
| 
 | |
| #if defined(__BIG_ENDIAN_BITFIELD)
 | |
| 	sge->sge_control |= F_ENABLE_BIG_ENDIAN;
 | |
| #endif
 | |
| 
 | |
| 	/* Initialize no-resource timer */
 | |
| 	sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
 | |
| 
 | |
| 	t1_sge_set_coalesce_params(sge, p);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the payload capacity of the jumbo free-list buffers.
 | |
|  */
 | |
| static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
 | |
| {
 | |
| 	return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
 | |
| 		sge->freelQ[sge->jumbo_fl].dma_offset -
 | |
| 		sizeof(struct cpl_rx_data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Frees all SGE related resources and the sge structure itself
 | |
|  */
 | |
| void t1_sge_destroy(struct sge *sge)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for_each_port(sge->adapter, i)
 | |
| 		free_percpu(sge->port_stats[i]);
 | |
| 
 | |
| 	kfree(sge->tx_sched);
 | |
| 	free_tx_resources(sge);
 | |
| 	free_rx_resources(sge);
 | |
| 	kfree(sge);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
 | |
|  * context Q) until the Q is full or alloc_skb fails.
 | |
|  *
 | |
|  * It is possible that the generation bits already match, indicating that the
 | |
|  * buffer is already valid and nothing needs to be done. This happens when we
 | |
|  * copied a received buffer into a new sk_buff during the interrupt processing.
 | |
|  *
 | |
|  * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
 | |
|  * we specify a RX_OFFSET in order to make sure that the IP header is 4B
 | |
|  * aligned.
 | |
|  */
 | |
| static void refill_free_list(struct sge *sge, struct freelQ *q)
 | |
| {
 | |
| 	struct pci_dev *pdev = sge->adapter->pdev;
 | |
| 	struct freelQ_ce *ce = &q->centries[q->pidx];
 | |
| 	struct freelQ_e *e = &q->entries[q->pidx];
 | |
| 	unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
 | |
| 
 | |
| 	while (q->credits < q->size) {
 | |
| 		struct sk_buff *skb;
 | |
| 		dma_addr_t mapping;
 | |
| 
 | |
| 		skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
 | |
| 		if (!skb)
 | |
| 			break;
 | |
| 
 | |
| 		skb_reserve(skb, q->dma_offset);
 | |
| 		mapping = pci_map_single(pdev, skb->data, dma_len,
 | |
| 					 PCI_DMA_FROMDEVICE);
 | |
| 		skb_reserve(skb, sge->rx_pkt_pad);
 | |
| 
 | |
| 		ce->skb = skb;
 | |
| 		pci_unmap_addr_set(ce, dma_addr, mapping);
 | |
| 		pci_unmap_len_set(ce, dma_len, dma_len);
 | |
| 		e->addr_lo = (u32)mapping;
 | |
| 		e->addr_hi = (u64)mapping >> 32;
 | |
| 		e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
 | |
| 		wmb();
 | |
| 		e->gen2 = V_CMD_GEN2(q->genbit);
 | |
| 
 | |
| 		e++;
 | |
| 		ce++;
 | |
| 		if (++q->pidx == q->size) {
 | |
| 			q->pidx = 0;
 | |
| 			q->genbit ^= 1;
 | |
| 			ce = q->centries;
 | |
| 			e = q->entries;
 | |
| 		}
 | |
| 		q->credits++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
 | |
|  * of both rings, we go into 'few interrupt mode' in order to give the system
 | |
|  * time to free up resources.
 | |
|  */
 | |
| static void freelQs_empty(struct sge *sge)
 | |
| {
 | |
| 	struct adapter *adapter = sge->adapter;
 | |
| 	u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
 | |
| 	u32 irqholdoff_reg;
 | |
| 
 | |
| 	refill_free_list(sge, &sge->freelQ[0]);
 | |
| 	refill_free_list(sge, &sge->freelQ[1]);
 | |
| 
 | |
| 	if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
 | |
| 	    sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
 | |
| 		irq_reg |= F_FL_EXHAUSTED;
 | |
| 		irqholdoff_reg = sge->fixed_intrtimer;
 | |
| 	} else {
 | |
| 		/* Clear the F_FL_EXHAUSTED interrupts for now */
 | |
| 		irq_reg &= ~F_FL_EXHAUSTED;
 | |
| 		irqholdoff_reg = sge->intrtimer_nres;
 | |
| 	}
 | |
| 	writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
 | |
| 	writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
 | |
| 
 | |
| 	/* We reenable the Qs to force a freelist GTS interrupt later */
 | |
| 	doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
 | |
| }
 | |
| 
 | |
| #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
 | |
| #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 | |
| #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
 | |
| 			F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
 | |
| 
 | |
| /*
 | |
|  * Disable SGE Interrupts
 | |
|  */
 | |
| void t1_sge_intr_disable(struct sge *sge)
 | |
| {
 | |
| 	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 | |
| 
 | |
| 	writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 | |
| 	writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enable SGE interrupts.
 | |
|  */
 | |
| void t1_sge_intr_enable(struct sge *sge)
 | |
| {
 | |
| 	u32 en = SGE_INT_ENABLE;
 | |
| 	u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
 | |
| 
 | |
| 	if (sge->adapter->flags & TSO_CAPABLE)
 | |
| 		en &= ~F_PACKET_TOO_BIG;
 | |
| 	writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
 | |
| 	writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clear SGE interrupts.
 | |
|  */
 | |
| void t1_sge_intr_clear(struct sge *sge)
 | |
| {
 | |
| 	writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
 | |
| 	writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * SGE 'Error' interrupt handler
 | |
|  */
 | |
| int t1_sge_intr_error_handler(struct sge *sge)
 | |
| {
 | |
| 	struct adapter *adapter = sge->adapter;
 | |
| 	u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
 | |
| 
 | |
| 	if (adapter->flags & TSO_CAPABLE)
 | |
| 		cause &= ~F_PACKET_TOO_BIG;
 | |
| 	if (cause & F_RESPQ_EXHAUSTED)
 | |
| 		sge->stats.respQ_empty++;
 | |
| 	if (cause & F_RESPQ_OVERFLOW) {
 | |
| 		sge->stats.respQ_overflow++;
 | |
| 		CH_ALERT("%s: SGE response queue overflow\n",
 | |
| 			 adapter->name);
 | |
| 	}
 | |
| 	if (cause & F_FL_EXHAUSTED) {
 | |
| 		sge->stats.freelistQ_empty++;
 | |
| 		freelQs_empty(sge);
 | |
| 	}
 | |
| 	if (cause & F_PACKET_TOO_BIG) {
 | |
| 		sge->stats.pkt_too_big++;
 | |
| 		CH_ALERT("%s: SGE max packet size exceeded\n",
 | |
| 			 adapter->name);
 | |
| 	}
 | |
| 	if (cause & F_PACKET_MISMATCH) {
 | |
| 		sge->stats.pkt_mismatch++;
 | |
| 		CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
 | |
| 	}
 | |
| 	if (cause & SGE_INT_FATAL)
 | |
| 		t1_fatal_err(adapter);
 | |
| 
 | |
| 	writel(cause, adapter->regs + A_SG_INT_CAUSE);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
 | |
| {
 | |
| 	return &sge->stats;
 | |
| }
 | |
| 
 | |
| void t1_sge_get_port_stats(const struct sge *sge, int port,
 | |
| 			   struct sge_port_stats *ss)
 | |
| {
 | |
| 	int cpu;
 | |
| 
 | |
| 	memset(ss, 0, sizeof(*ss));
 | |
| 	for_each_possible_cpu(cpu) {
 | |
| 		struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
 | |
| 
 | |
| 		ss->rx_cso_good += st->rx_cso_good;
 | |
| 		ss->tx_cso += st->tx_cso;
 | |
| 		ss->tx_tso += st->tx_tso;
 | |
| 		ss->tx_need_hdrroom += st->tx_need_hdrroom;
 | |
| 		ss->vlan_xtract += st->vlan_xtract;
 | |
| 		ss->vlan_insert += st->vlan_insert;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	recycle_fl_buf - recycle a free list buffer
 | |
|  *	@fl: the free list
 | |
|  *	@idx: index of buffer to recycle
 | |
|  *
 | |
|  *	Recycles the specified buffer on the given free list by adding it at
 | |
|  *	the next available slot on the list.
 | |
|  */
 | |
| static void recycle_fl_buf(struct freelQ *fl, int idx)
 | |
| {
 | |
| 	struct freelQ_e *from = &fl->entries[idx];
 | |
| 	struct freelQ_e *to = &fl->entries[fl->pidx];
 | |
| 
 | |
| 	fl->centries[fl->pidx] = fl->centries[idx];
 | |
| 	to->addr_lo = from->addr_lo;
 | |
| 	to->addr_hi = from->addr_hi;
 | |
| 	to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
 | |
| 	wmb();
 | |
| 	to->gen2 = V_CMD_GEN2(fl->genbit);
 | |
| 	fl->credits++;
 | |
| 
 | |
| 	if (++fl->pidx == fl->size) {
 | |
| 		fl->pidx = 0;
 | |
| 		fl->genbit ^= 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int copybreak __read_mostly = 256;
 | |
| module_param(copybreak, int, 0);
 | |
| MODULE_PARM_DESC(copybreak, "Receive copy threshold");
 | |
| 
 | |
| /**
 | |
|  *	get_packet - return the next ingress packet buffer
 | |
|  *	@pdev: the PCI device that received the packet
 | |
|  *	@fl: the SGE free list holding the packet
 | |
|  *	@len: the actual packet length, excluding any SGE padding
 | |
|  *
 | |
|  *	Get the next packet from a free list and complete setup of the
 | |
|  *	sk_buff.  If the packet is small we make a copy and recycle the
 | |
|  *	original buffer, otherwise we use the original buffer itself.  If a
 | |
|  *	positive drop threshold is supplied packets are dropped and their
 | |
|  *	buffers recycled if (a) the number of remaining buffers is under the
 | |
|  *	threshold and the packet is too big to copy, or (b) the packet should
 | |
|  *	be copied but there is no memory for the copy.
 | |
|  */
 | |
| static inline struct sk_buff *get_packet(struct pci_dev *pdev,
 | |
| 					 struct freelQ *fl, unsigned int len)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	const struct freelQ_ce *ce = &fl->centries[fl->cidx];
 | |
| 
 | |
| 	if (len < copybreak) {
 | |
| 		skb = alloc_skb(len + 2, GFP_ATOMIC);
 | |
| 		if (!skb)
 | |
| 			goto use_orig_buf;
 | |
| 
 | |
| 		skb_reserve(skb, 2);	/* align IP header */
 | |
| 		skb_put(skb, len);
 | |
| 		pci_dma_sync_single_for_cpu(pdev,
 | |
| 					    pci_unmap_addr(ce, dma_addr),
 | |
| 					    pci_unmap_len(ce, dma_len),
 | |
| 					    PCI_DMA_FROMDEVICE);
 | |
| 		skb_copy_from_linear_data(ce->skb, skb->data, len);
 | |
| 		pci_dma_sync_single_for_device(pdev,
 | |
| 					       pci_unmap_addr(ce, dma_addr),
 | |
| 					       pci_unmap_len(ce, dma_len),
 | |
| 					       PCI_DMA_FROMDEVICE);
 | |
| 		recycle_fl_buf(fl, fl->cidx);
 | |
| 		return skb;
 | |
| 	}
 | |
| 
 | |
| use_orig_buf:
 | |
| 	if (fl->credits < 2) {
 | |
| 		recycle_fl_buf(fl, fl->cidx);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
 | |
| 			 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
 | |
| 	skb = ce->skb;
 | |
| 	prefetch(skb->data);
 | |
| 
 | |
| 	skb_put(skb, len);
 | |
| 	return skb;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	unexpected_offload - handle an unexpected offload packet
 | |
|  *	@adapter: the adapter
 | |
|  *	@fl: the free list that received the packet
 | |
|  *
 | |
|  *	Called when we receive an unexpected offload packet (e.g., the TOE
 | |
|  *	function is disabled or the card is a NIC).  Prints a message and
 | |
|  *	recycles the buffer.
 | |
|  */
 | |
| static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
 | |
| {
 | |
| 	struct freelQ_ce *ce = &fl->centries[fl->cidx];
 | |
| 	struct sk_buff *skb = ce->skb;
 | |
| 
 | |
| 	pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
 | |
| 			    pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
 | |
| 	CH_ERR("%s: unexpected offload packet, cmd %u\n",
 | |
| 	       adapter->name, *skb->data);
 | |
| 	recycle_fl_buf(fl, fl->cidx);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * T1/T2 SGE limits the maximum DMA size per TX descriptor to
 | |
|  * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
 | |
|  * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
 | |
|  * Note that the *_large_page_tx_descs stuff will be optimized out when
 | |
|  * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
 | |
|  *
 | |
|  * compute_large_page_descs() computes how many additional descriptors are
 | |
|  * required to break down the stack's request.
 | |
|  */
 | |
| static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
 | |
| {
 | |
| 	unsigned int count = 0;
 | |
| 
 | |
| 	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
 | |
| 		unsigned int nfrags = skb_shinfo(skb)->nr_frags;
 | |
| 		unsigned int i, len = skb->len - skb->data_len;
 | |
| 		while (len > SGE_TX_DESC_MAX_PLEN) {
 | |
| 			count++;
 | |
| 			len -= SGE_TX_DESC_MAX_PLEN;
 | |
| 		}
 | |
| 		for (i = 0; nfrags--; i++) {
 | |
| 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 			len = frag->size;
 | |
| 			while (len > SGE_TX_DESC_MAX_PLEN) {
 | |
| 				count++;
 | |
| 				len -= SGE_TX_DESC_MAX_PLEN;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write a cmdQ entry.
 | |
|  *
 | |
|  * Since this function writes the 'flags' field, it must not be used to
 | |
|  * write the first cmdQ entry.
 | |
|  */
 | |
| static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
 | |
| 				 unsigned int len, unsigned int gen,
 | |
| 				 unsigned int eop)
 | |
| {
 | |
| 	BUG_ON(len > SGE_TX_DESC_MAX_PLEN);
 | |
| 
 | |
| 	e->addr_lo = (u32)mapping;
 | |
| 	e->addr_hi = (u64)mapping >> 32;
 | |
| 	e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
 | |
| 	e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * See comment for previous function.
 | |
|  *
 | |
|  * write_tx_descs_large_page() writes additional SGE tx descriptors if
 | |
|  * *desc_len exceeds HW's capability.
 | |
|  */
 | |
| static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
 | |
| 						     struct cmdQ_e **e,
 | |
| 						     struct cmdQ_ce **ce,
 | |
| 						     unsigned int *gen,
 | |
| 						     dma_addr_t *desc_mapping,
 | |
| 						     unsigned int *desc_len,
 | |
| 						     unsigned int nfrags,
 | |
| 						     struct cmdQ *q)
 | |
| {
 | |
| 	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
 | |
| 		struct cmdQ_e *e1 = *e;
 | |
| 		struct cmdQ_ce *ce1 = *ce;
 | |
| 
 | |
| 		while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
 | |
| 			*desc_len -= SGE_TX_DESC_MAX_PLEN;
 | |
| 			write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
 | |
| 				      *gen, nfrags == 0 && *desc_len == 0);
 | |
| 			ce1->skb = NULL;
 | |
| 			pci_unmap_len_set(ce1, dma_len, 0);
 | |
| 			*desc_mapping += SGE_TX_DESC_MAX_PLEN;
 | |
| 			if (*desc_len) {
 | |
| 				ce1++;
 | |
| 				e1++;
 | |
| 				if (++pidx == q->size) {
 | |
| 					pidx = 0;
 | |
| 					*gen ^= 1;
 | |
| 					ce1 = q->centries;
 | |
| 					e1 = q->entries;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		*e = e1;
 | |
| 		*ce = ce1;
 | |
| 	}
 | |
| 	return pidx;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write the command descriptors to transmit the given skb starting at
 | |
|  * descriptor pidx with the given generation.
 | |
|  */
 | |
| static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
 | |
| 				  unsigned int pidx, unsigned int gen,
 | |
| 				  struct cmdQ *q)
 | |
| {
 | |
| 	dma_addr_t mapping, desc_mapping;
 | |
| 	struct cmdQ_e *e, *e1;
 | |
| 	struct cmdQ_ce *ce;
 | |
| 	unsigned int i, flags, first_desc_len, desc_len,
 | |
| 	    nfrags = skb_shinfo(skb)->nr_frags;
 | |
| 
 | |
| 	e = e1 = &q->entries[pidx];
 | |
| 	ce = &q->centries[pidx];
 | |
| 
 | |
| 	mapping = pci_map_single(adapter->pdev, skb->data,
 | |
| 				skb->len - skb->data_len, PCI_DMA_TODEVICE);
 | |
| 
 | |
| 	desc_mapping = mapping;
 | |
| 	desc_len = skb->len - skb->data_len;
 | |
| 
 | |
| 	flags = F_CMD_DATAVALID | F_CMD_SOP |
 | |
| 	    V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
 | |
| 	    V_CMD_GEN2(gen);
 | |
| 	first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
 | |
| 	    desc_len : SGE_TX_DESC_MAX_PLEN;
 | |
| 	e->addr_lo = (u32)desc_mapping;
 | |
| 	e->addr_hi = (u64)desc_mapping >> 32;
 | |
| 	e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
 | |
| 	ce->skb = NULL;
 | |
| 	pci_unmap_len_set(ce, dma_len, 0);
 | |
| 
 | |
| 	if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
 | |
| 	    desc_len > SGE_TX_DESC_MAX_PLEN) {
 | |
| 		desc_mapping += first_desc_len;
 | |
| 		desc_len -= first_desc_len;
 | |
| 		e1++;
 | |
| 		ce++;
 | |
| 		if (++pidx == q->size) {
 | |
| 			pidx = 0;
 | |
| 			gen ^= 1;
 | |
| 			e1 = q->entries;
 | |
| 			ce = q->centries;
 | |
| 		}
 | |
| 		pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
 | |
| 						 &desc_mapping, &desc_len,
 | |
| 						 nfrags, q);
 | |
| 
 | |
| 		if (likely(desc_len))
 | |
| 			write_tx_desc(e1, desc_mapping, desc_len, gen,
 | |
| 				      nfrags == 0);
 | |
| 	}
 | |
| 
 | |
| 	ce->skb = NULL;
 | |
| 	pci_unmap_addr_set(ce, dma_addr, mapping);
 | |
| 	pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
 | |
| 
 | |
| 	for (i = 0; nfrags--; i++) {
 | |
| 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
 | |
| 		e1++;
 | |
| 		ce++;
 | |
| 		if (++pidx == q->size) {
 | |
| 			pidx = 0;
 | |
| 			gen ^= 1;
 | |
| 			e1 = q->entries;
 | |
| 			ce = q->centries;
 | |
| 		}
 | |
| 
 | |
| 		mapping = pci_map_page(adapter->pdev, frag->page,
 | |
| 				       frag->page_offset, frag->size,
 | |
| 				       PCI_DMA_TODEVICE);
 | |
| 		desc_mapping = mapping;
 | |
| 		desc_len = frag->size;
 | |
| 
 | |
| 		pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
 | |
| 						 &desc_mapping, &desc_len,
 | |
| 						 nfrags, q);
 | |
| 		if (likely(desc_len))
 | |
| 			write_tx_desc(e1, desc_mapping, desc_len, gen,
 | |
| 				      nfrags == 0);
 | |
| 		ce->skb = NULL;
 | |
| 		pci_unmap_addr_set(ce, dma_addr, mapping);
 | |
| 		pci_unmap_len_set(ce, dma_len, frag->size);
 | |
| 	}
 | |
| 	ce->skb = skb;
 | |
| 	wmb();
 | |
| 	e->flags = flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Clean up completed Tx buffers.
 | |
|  */
 | |
| static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
 | |
| {
 | |
| 	unsigned int reclaim = q->processed - q->cleaned;
 | |
| 
 | |
| 	if (reclaim) {
 | |
| 		pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
 | |
| 			 q->processed, q->cleaned);
 | |
| 		free_cmdQ_buffers(sge, q, reclaim);
 | |
| 		q->cleaned += reclaim;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called from tasklet. Checks the scheduler for any
 | |
|  * pending skbs that can be sent.
 | |
|  */
 | |
| static void restart_sched(unsigned long arg)
 | |
| {
 | |
| 	struct sge *sge = (struct sge *) arg;
 | |
| 	struct adapter *adapter = sge->adapter;
 | |
| 	struct cmdQ *q = &sge->cmdQ[0];
 | |
| 	struct sk_buff *skb;
 | |
| 	unsigned int credits, queued_skb = 0;
 | |
| 
 | |
| 	spin_lock(&q->lock);
 | |
| 	reclaim_completed_tx(sge, q);
 | |
| 
 | |
| 	credits = q->size - q->in_use;
 | |
| 	pr_debug("restart_sched credits=%d\n", credits);
 | |
| 	while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
 | |
| 		unsigned int genbit, pidx, count;
 | |
| 	        count = 1 + skb_shinfo(skb)->nr_frags;
 | |
| 		count += compute_large_page_tx_descs(skb);
 | |
| 		q->in_use += count;
 | |
| 		genbit = q->genbit;
 | |
| 		pidx = q->pidx;
 | |
| 		q->pidx += count;
 | |
| 		if (q->pidx >= q->size) {
 | |
| 			q->pidx -= q->size;
 | |
| 			q->genbit ^= 1;
 | |
| 		}
 | |
| 		write_tx_descs(adapter, skb, pidx, genbit, q);
 | |
| 	        credits = q->size - q->in_use;
 | |
| 		queued_skb = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (queued_skb) {
 | |
| 		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 | |
| 		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 | |
| 			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 | |
| 			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&q->lock);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *	sge_rx - process an ingress ethernet packet
 | |
|  *	@sge: the sge structure
 | |
|  *	@fl: the free list that contains the packet buffer
 | |
|  *	@len: the packet length
 | |
|  *
 | |
|  *	Process an ingress ethernet pakcet and deliver it to the stack.
 | |
|  */
 | |
| static void sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
 | |
| {
 | |
| 	struct sk_buff *skb;
 | |
| 	const struct cpl_rx_pkt *p;
 | |
| 	struct adapter *adapter = sge->adapter;
 | |
| 	struct sge_port_stats *st;
 | |
| 
 | |
| 	skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad);
 | |
| 	if (unlikely(!skb)) {
 | |
| 		sge->stats.rx_drops++;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	p = (const struct cpl_rx_pkt *) skb->data;
 | |
| 	if (p->iff >= adapter->params.nports) {
 | |
| 		kfree_skb(skb);
 | |
| 		return;
 | |
| 	}
 | |
| 	__skb_pull(skb, sizeof(*p));
 | |
| 
 | |
| 	st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
 | |
| 
 | |
| 	skb->protocol = eth_type_trans(skb, adapter->port[p->iff].dev);
 | |
| 	if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
 | |
| 	    skb->protocol == htons(ETH_P_IP) &&
 | |
| 	    (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
 | |
| 		++st->rx_cso_good;
 | |
| 		skb->ip_summed = CHECKSUM_UNNECESSARY;
 | |
| 	} else
 | |
| 		skb->ip_summed = CHECKSUM_NONE;
 | |
| 
 | |
| 	if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
 | |
| 		st->vlan_xtract++;
 | |
| 		vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
 | |
| 					 ntohs(p->vlan));
 | |
| 	} else
 | |
| 		netif_receive_skb(skb);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns true if a command queue has enough available descriptors that
 | |
|  * we can resume Tx operation after temporarily disabling its packet queue.
 | |
|  */
 | |
| static inline int enough_free_Tx_descs(const struct cmdQ *q)
 | |
| {
 | |
| 	unsigned int r = q->processed - q->cleaned;
 | |
| 
 | |
| 	return q->in_use - r < (q->size >> 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called when sufficient space has become available in the SGE command queues
 | |
|  * after the Tx packet schedulers have been suspended to restart the Tx path.
 | |
|  */
 | |
| static void restart_tx_queues(struct sge *sge)
 | |
| {
 | |
| 	struct adapter *adap = sge->adapter;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!enough_free_Tx_descs(&sge->cmdQ[0]))
 | |
| 		return;
 | |
| 
 | |
| 	for_each_port(adap, i) {
 | |
| 		struct net_device *nd = adap->port[i].dev;
 | |
| 
 | |
| 		if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
 | |
| 		    netif_running(nd)) {
 | |
| 			sge->stats.cmdQ_restarted[2]++;
 | |
| 			netif_wake_queue(nd);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
 | |
|  * information.
 | |
|  */
 | |
| static unsigned int update_tx_info(struct adapter *adapter,
 | |
| 					  unsigned int flags,
 | |
| 					  unsigned int pr0)
 | |
| {
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	struct cmdQ *cmdq = &sge->cmdQ[0];
 | |
| 
 | |
| 	cmdq->processed += pr0;
 | |
| 	if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
 | |
| 		freelQs_empty(sge);
 | |
| 		flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
 | |
| 	}
 | |
| 	if (flags & F_CMDQ0_ENABLE) {
 | |
| 		clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
 | |
| 
 | |
| 		if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
 | |
| 		    !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
 | |
| 			set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
 | |
| 			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
 | |
| 		}
 | |
| 		if (sge->tx_sched)
 | |
| 			tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
 | |
| 
 | |
| 		flags &= ~F_CMDQ0_ENABLE;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(sge->stopped_tx_queues != 0))
 | |
| 		restart_tx_queues(sge);
 | |
| 
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Process SGE responses, up to the supplied budget.  Returns the number of
 | |
|  * responses processed.  A negative budget is effectively unlimited.
 | |
|  */
 | |
| static int process_responses(struct adapter *adapter, int budget)
 | |
| {
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	struct respQ *q = &sge->respQ;
 | |
| 	struct respQ_e *e = &q->entries[q->cidx];
 | |
| 	int done = 0;
 | |
| 	unsigned int flags = 0;
 | |
| 	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
 | |
| 
 | |
| 	while (done < budget && e->GenerationBit == q->genbit) {
 | |
| 		flags |= e->Qsleeping;
 | |
| 
 | |
| 		cmdq_processed[0] += e->Cmdq0CreditReturn;
 | |
| 		cmdq_processed[1] += e->Cmdq1CreditReturn;
 | |
| 
 | |
| 		/* We batch updates to the TX side to avoid cacheline
 | |
| 		 * ping-pong of TX state information on MP where the sender
 | |
| 		 * might run on a different CPU than this function...
 | |
| 		 */
 | |
| 		if (unlikely((flags & F_CMDQ0_ENABLE) || cmdq_processed[0] > 64)) {
 | |
| 			flags = update_tx_info(adapter, flags, cmdq_processed[0]);
 | |
| 			cmdq_processed[0] = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (unlikely(cmdq_processed[1] > 16)) {
 | |
| 			sge->cmdQ[1].processed += cmdq_processed[1];
 | |
| 			cmdq_processed[1] = 0;
 | |
| 		}
 | |
| 
 | |
| 		if (likely(e->DataValid)) {
 | |
| 			struct freelQ *fl = &sge->freelQ[e->FreelistQid];
 | |
| 
 | |
| 			BUG_ON(!e->Sop || !e->Eop);
 | |
| 			if (unlikely(e->Offload))
 | |
| 				unexpected_offload(adapter, fl);
 | |
| 			else
 | |
| 				sge_rx(sge, fl, e->BufferLength);
 | |
| 
 | |
| 			++done;
 | |
| 
 | |
| 			/*
 | |
| 			 * Note: this depends on each packet consuming a
 | |
| 			 * single free-list buffer; cf. the BUG above.
 | |
| 			 */
 | |
| 			if (++fl->cidx == fl->size)
 | |
| 				fl->cidx = 0;
 | |
| 			prefetch(fl->centries[fl->cidx].skb);
 | |
| 
 | |
| 			if (unlikely(--fl->credits <
 | |
| 				     fl->size - SGE_FREEL_REFILL_THRESH))
 | |
| 				refill_free_list(sge, fl);
 | |
| 		} else
 | |
| 			sge->stats.pure_rsps++;
 | |
| 
 | |
| 		e++;
 | |
| 		if (unlikely(++q->cidx == q->size)) {
 | |
| 			q->cidx = 0;
 | |
| 			q->genbit ^= 1;
 | |
| 			e = q->entries;
 | |
| 		}
 | |
| 		prefetch(e);
 | |
| 
 | |
| 		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
 | |
| 			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
 | |
| 			q->credits = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	flags = update_tx_info(adapter, flags, cmdq_processed[0]);
 | |
| 	sge->cmdQ[1].processed += cmdq_processed[1];
 | |
| 
 | |
| 	return done;
 | |
| }
 | |
| 
 | |
| static inline int responses_pending(const struct adapter *adapter)
 | |
| {
 | |
| 	const struct respQ *Q = &adapter->sge->respQ;
 | |
| 	const struct respQ_e *e = &Q->entries[Q->cidx];
 | |
| 
 | |
| 	return (e->GenerationBit == Q->genbit);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A simpler version of process_responses() that handles only pure (i.e.,
 | |
|  * non data-carrying) responses.  Such respones are too light-weight to justify
 | |
|  * calling a softirq when using NAPI, so we handle them specially in hard
 | |
|  * interrupt context.  The function is called with a pointer to a response,
 | |
|  * which the caller must ensure is a valid pure response.  Returns 1 if it
 | |
|  * encounters a valid data-carrying response, 0 otherwise.
 | |
|  */
 | |
| static int process_pure_responses(struct adapter *adapter)
 | |
| {
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	struct respQ *q = &sge->respQ;
 | |
| 	struct respQ_e *e = &q->entries[q->cidx];
 | |
| 	const struct freelQ *fl = &sge->freelQ[e->FreelistQid];
 | |
| 	unsigned int flags = 0;
 | |
| 	unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
 | |
| 
 | |
| 	prefetch(fl->centries[fl->cidx].skb);
 | |
| 	if (e->DataValid)
 | |
| 		return 1;
 | |
| 
 | |
| 	do {
 | |
| 		flags |= e->Qsleeping;
 | |
| 
 | |
| 		cmdq_processed[0] += e->Cmdq0CreditReturn;
 | |
| 		cmdq_processed[1] += e->Cmdq1CreditReturn;
 | |
| 
 | |
| 		e++;
 | |
| 		if (unlikely(++q->cidx == q->size)) {
 | |
| 			q->cidx = 0;
 | |
| 			q->genbit ^= 1;
 | |
| 			e = q->entries;
 | |
| 		}
 | |
| 		prefetch(e);
 | |
| 
 | |
| 		if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
 | |
| 			writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
 | |
| 			q->credits = 0;
 | |
| 		}
 | |
| 		sge->stats.pure_rsps++;
 | |
| 	} while (e->GenerationBit == q->genbit && !e->DataValid);
 | |
| 
 | |
| 	flags = update_tx_info(adapter, flags, cmdq_processed[0]);
 | |
| 	sge->cmdQ[1].processed += cmdq_processed[1];
 | |
| 
 | |
| 	return e->GenerationBit == q->genbit;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Handler for new data events when using NAPI.  This does not need any locking
 | |
|  * or protection from interrupts as data interrupts are off at this point and
 | |
|  * other adapter interrupts do not interfere.
 | |
|  */
 | |
| int t1_poll(struct napi_struct *napi, int budget)
 | |
| {
 | |
| 	struct adapter *adapter = container_of(napi, struct adapter, napi);
 | |
| 	int work_done = process_responses(adapter, budget);
 | |
| 
 | |
| 	if (likely(work_done < budget)) {
 | |
| 		napi_complete(napi);
 | |
| 		writel(adapter->sge->respQ.cidx,
 | |
| 		       adapter->regs + A_SG_SLEEPING);
 | |
| 	}
 | |
| 	return work_done;
 | |
| }
 | |
| 
 | |
| irqreturn_t t1_interrupt(int irq, void *data)
 | |
| {
 | |
| 	struct adapter *adapter = data;
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	int handled;
 | |
| 
 | |
| 	if (likely(responses_pending(adapter))) {
 | |
| 		writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
 | |
| 
 | |
| 		if (napi_schedule_prep(&adapter->napi)) {
 | |
| 			if (process_pure_responses(adapter))
 | |
| 				__napi_schedule(&adapter->napi);
 | |
| 			else {
 | |
| 				/* no data, no NAPI needed */
 | |
| 				writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
 | |
| 				/* undo schedule_prep */
 | |
| 				napi_enable(&adapter->napi);
 | |
| 			}
 | |
| 		}
 | |
| 		return IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&adapter->async_lock);
 | |
| 	handled = t1_slow_intr_handler(adapter);
 | |
| 	spin_unlock(&adapter->async_lock);
 | |
| 
 | |
| 	if (!handled)
 | |
| 		sge->stats.unhandled_irqs++;
 | |
| 
 | |
| 	return IRQ_RETVAL(handled != 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
 | |
|  *
 | |
|  * The code figures out how many entries the sk_buff will require in the
 | |
|  * cmdQ and updates the cmdQ data structure with the state once the enqueue
 | |
|  * has complete. Then, it doesn't access the global structure anymore, but
 | |
|  * uses the corresponding fields on the stack. In conjuction with a spinlock
 | |
|  * around that code, we can make the function reentrant without holding the
 | |
|  * lock when we actually enqueue (which might be expensive, especially on
 | |
|  * architectures with IO MMUs).
 | |
|  *
 | |
|  * This runs with softirqs disabled.
 | |
|  */
 | |
| static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
 | |
| 		     unsigned int qid, struct net_device *dev)
 | |
| {
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	struct cmdQ *q = &sge->cmdQ[qid];
 | |
| 	unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
 | |
| 
 | |
| 	if (!spin_trylock(&q->lock))
 | |
| 		return NETDEV_TX_LOCKED;
 | |
| 
 | |
| 	reclaim_completed_tx(sge, q);
 | |
| 
 | |
| 	pidx = q->pidx;
 | |
| 	credits = q->size - q->in_use;
 | |
| 	count = 1 + skb_shinfo(skb)->nr_frags;
 | |
| 	count += compute_large_page_tx_descs(skb);
 | |
| 
 | |
| 	/* Ethernet packet */
 | |
| 	if (unlikely(credits < count)) {
 | |
| 		if (!netif_queue_stopped(dev)) {
 | |
| 			netif_stop_queue(dev);
 | |
| 			set_bit(dev->if_port, &sge->stopped_tx_queues);
 | |
| 			sge->stats.cmdQ_full[2]++;
 | |
| 			CH_ERR("%s: Tx ring full while queue awake!\n",
 | |
| 			       adapter->name);
 | |
| 		}
 | |
| 		spin_unlock(&q->lock);
 | |
| 		return NETDEV_TX_BUSY;
 | |
| 	}
 | |
| 
 | |
| 	if (unlikely(credits - count < q->stop_thres)) {
 | |
| 		netif_stop_queue(dev);
 | |
| 		set_bit(dev->if_port, &sge->stopped_tx_queues);
 | |
| 		sge->stats.cmdQ_full[2]++;
 | |
| 	}
 | |
| 
 | |
| 	/* T204 cmdQ0 skbs that are destined for a certain port have to go
 | |
| 	 * through the scheduler.
 | |
| 	 */
 | |
| 	if (sge->tx_sched && !qid && skb->dev) {
 | |
| use_sched:
 | |
| 		use_sched_skb = 1;
 | |
| 		/* Note that the scheduler might return a different skb than
 | |
| 		 * the one passed in.
 | |
| 		 */
 | |
| 		skb = sched_skb(sge, skb, credits);
 | |
| 		if (!skb) {
 | |
| 			spin_unlock(&q->lock);
 | |
| 			return NETDEV_TX_OK;
 | |
| 		}
 | |
| 		pidx = q->pidx;
 | |
| 		count = 1 + skb_shinfo(skb)->nr_frags;
 | |
| 		count += compute_large_page_tx_descs(skb);
 | |
| 	}
 | |
| 
 | |
| 	q->in_use += count;
 | |
| 	genbit = q->genbit;
 | |
| 	pidx = q->pidx;
 | |
| 	q->pidx += count;
 | |
| 	if (q->pidx >= q->size) {
 | |
| 		q->pidx -= q->size;
 | |
| 		q->genbit ^= 1;
 | |
| 	}
 | |
| 	spin_unlock(&q->lock);
 | |
| 
 | |
| 	write_tx_descs(adapter, skb, pidx, genbit, q);
 | |
| 
 | |
| 	/*
 | |
| 	 * We always ring the doorbell for cmdQ1.  For cmdQ0, we only ring
 | |
| 	 * the doorbell if the Q is asleep. There is a natural race, where
 | |
| 	 * the hardware is going to sleep just after we checked, however,
 | |
| 	 * then the interrupt handler will detect the outstanding TX packet
 | |
| 	 * and ring the doorbell for us.
 | |
| 	 */
 | |
| 	if (qid)
 | |
| 		doorbell_pio(adapter, F_CMDQ1_ENABLE);
 | |
| 	else {
 | |
| 		clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 | |
| 		if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
 | |
| 			set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
 | |
| 			writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (use_sched_skb) {
 | |
| 		if (spin_trylock(&q->lock)) {
 | |
| 			credits = q->size - q->in_use;
 | |
| 			skb = NULL;
 | |
| 			goto use_sched;
 | |
| 		}
 | |
| 	}
 | |
| 	return NETDEV_TX_OK;
 | |
| }
 | |
| 
 | |
| #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
 | |
| 
 | |
| /*
 | |
|  *	eth_hdr_len - return the length of an Ethernet header
 | |
|  *	@data: pointer to the start of the Ethernet header
 | |
|  *
 | |
|  *	Returns the length of an Ethernet header, including optional VLAN tag.
 | |
|  */
 | |
| static inline int eth_hdr_len(const void *data)
 | |
| {
 | |
| 	const struct ethhdr *e = data;
 | |
| 
 | |
| 	return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
 | |
|  */
 | |
| netdev_tx_t t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
 | |
| {
 | |
| 	struct adapter *adapter = dev->ml_priv;
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port],
 | |
| 						smp_processor_id());
 | |
| 	struct cpl_tx_pkt *cpl;
 | |
| 	struct sk_buff *orig_skb = skb;
 | |
| 	int ret;
 | |
| 
 | |
| 	if (skb->protocol == htons(ETH_P_CPL5))
 | |
| 		goto send;
 | |
| 
 | |
| 	/*
 | |
| 	 * We are using a non-standard hard_header_len.
 | |
| 	 * Allocate more header room in the rare cases it is not big enough.
 | |
| 	 */
 | |
| 	if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
 | |
| 		skb = skb_realloc_headroom(skb, sizeof(struct cpl_tx_pkt_lso));
 | |
| 		++st->tx_need_hdrroom;
 | |
| 		dev_kfree_skb_any(orig_skb);
 | |
| 		if (!skb)
 | |
| 			return NETDEV_TX_OK;
 | |
| 	}
 | |
| 
 | |
| 	if (skb_shinfo(skb)->gso_size) {
 | |
| 		int eth_type;
 | |
| 		struct cpl_tx_pkt_lso *hdr;
 | |
| 
 | |
| 		++st->tx_tso;
 | |
| 
 | |
| 		eth_type = skb_network_offset(skb) == ETH_HLEN ?
 | |
| 			CPL_ETH_II : CPL_ETH_II_VLAN;
 | |
| 
 | |
| 		hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
 | |
| 		hdr->opcode = CPL_TX_PKT_LSO;
 | |
| 		hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
 | |
| 		hdr->ip_hdr_words = ip_hdr(skb)->ihl;
 | |
| 		hdr->tcp_hdr_words = tcp_hdr(skb)->doff;
 | |
| 		hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
 | |
| 							  skb_shinfo(skb)->gso_size));
 | |
| 		hdr->len = htonl(skb->len - sizeof(*hdr));
 | |
| 		cpl = (struct cpl_tx_pkt *)hdr;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Packets shorter than ETH_HLEN can break the MAC, drop them
 | |
| 		 * early.  Also, we may get oversized packets because some
 | |
| 		 * parts of the kernel don't handle our unusual hard_header_len
 | |
| 		 * right, drop those too.
 | |
| 		 */
 | |
| 		if (unlikely(skb->len < ETH_HLEN ||
 | |
| 			     skb->len > dev->mtu + eth_hdr_len(skb->data))) {
 | |
| 			pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
 | |
| 				 skb->len, eth_hdr_len(skb->data), dev->mtu);
 | |
| 			dev_kfree_skb_any(skb);
 | |
| 			return NETDEV_TX_OK;
 | |
| 		}
 | |
| 
 | |
| 		if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
 | |
| 		    skb->ip_summed == CHECKSUM_PARTIAL &&
 | |
| 		    ip_hdr(skb)->protocol == IPPROTO_UDP) {
 | |
| 			if (unlikely(skb_checksum_help(skb))) {
 | |
| 				pr_debug("%s: unable to do udp checksum\n", dev->name);
 | |
| 				dev_kfree_skb_any(skb);
 | |
| 				return NETDEV_TX_OK;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* Hmmm, assuming to catch the gratious arp... and we'll use
 | |
| 		 * it to flush out stuck espi packets...
 | |
| 		 */
 | |
| 		if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
 | |
| 			if (skb->protocol == htons(ETH_P_ARP) &&
 | |
| 			    arp_hdr(skb)->ar_op == htons(ARPOP_REQUEST)) {
 | |
| 				adapter->sge->espibug_skb[dev->if_port] = skb;
 | |
| 				/* We want to re-use this skb later. We
 | |
| 				 * simply bump the reference count and it
 | |
| 				 * will not be freed...
 | |
| 				 */
 | |
| 				skb = skb_get(skb);
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
 | |
| 		cpl->opcode = CPL_TX_PKT;
 | |
| 		cpl->ip_csum_dis = 1;    /* SW calculates IP csum */
 | |
| 		cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
 | |
| 		/* the length field isn't used so don't bother setting it */
 | |
| 
 | |
| 		st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
 | |
| 	}
 | |
| 	cpl->iff = dev->if_port;
 | |
| 
 | |
| #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
 | |
| 	if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
 | |
| 		cpl->vlan_valid = 1;
 | |
| 		cpl->vlan = htons(vlan_tx_tag_get(skb));
 | |
| 		st->vlan_insert++;
 | |
| 	} else
 | |
| #endif
 | |
| 		cpl->vlan_valid = 0;
 | |
| 
 | |
| send:
 | |
| 	ret = t1_sge_tx(skb, adapter, 0, dev);
 | |
| 
 | |
| 	/* If transmit busy, and we reallocated skb's due to headroom limit,
 | |
| 	 * then silently discard to avoid leak.
 | |
| 	 */
 | |
| 	if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
 | |
| 		dev_kfree_skb_any(skb);
 | |
| 		ret = NETDEV_TX_OK;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callback for the Tx buffer reclaim timer.  Runs with softirqs disabled.
 | |
|  */
 | |
| static void sge_tx_reclaim_cb(unsigned long data)
 | |
| {
 | |
| 	int i;
 | |
| 	struct sge *sge = (struct sge *)data;
 | |
| 
 | |
| 	for (i = 0; i < SGE_CMDQ_N; ++i) {
 | |
| 		struct cmdQ *q = &sge->cmdQ[i];
 | |
| 
 | |
| 		if (!spin_trylock(&q->lock))
 | |
| 			continue;
 | |
| 
 | |
| 		reclaim_completed_tx(sge, q);
 | |
| 		if (i == 0 && q->in_use) {    /* flush pending credits */
 | |
| 			writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
 | |
| 		}
 | |
| 		spin_unlock(&q->lock);
 | |
| 	}
 | |
| 	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Propagate changes of the SGE coalescing parameters to the HW.
 | |
|  */
 | |
| int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
 | |
| {
 | |
| 	sge->fixed_intrtimer = p->rx_coalesce_usecs *
 | |
| 		core_ticks_per_usec(sge->adapter);
 | |
| 	writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocates both RX and TX resources and configures the SGE. However,
 | |
|  * the hardware is not enabled yet.
 | |
|  */
 | |
| int t1_sge_configure(struct sge *sge, struct sge_params *p)
 | |
| {
 | |
| 	if (alloc_rx_resources(sge, p))
 | |
| 		return -ENOMEM;
 | |
| 	if (alloc_tx_resources(sge, p)) {
 | |
| 		free_rx_resources(sge);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	configure_sge(sge, p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now that we have sized the free lists calculate the payload
 | |
| 	 * capacity of the large buffers.  Other parts of the driver use
 | |
| 	 * this to set the max offload coalescing size so that RX packets
 | |
| 	 * do not overflow our large buffers.
 | |
| 	 */
 | |
| 	p->large_buf_capacity = jumbo_payload_capacity(sge);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Disables the DMA engine.
 | |
|  */
 | |
| void t1_sge_stop(struct sge *sge)
 | |
| {
 | |
| 	int i;
 | |
| 	writel(0, sge->adapter->regs + A_SG_CONTROL);
 | |
| 	readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
 | |
| 
 | |
| 	if (is_T2(sge->adapter))
 | |
| 		del_timer_sync(&sge->espibug_timer);
 | |
| 
 | |
| 	del_timer_sync(&sge->tx_reclaim_timer);
 | |
| 	if (sge->tx_sched)
 | |
| 		tx_sched_stop(sge);
 | |
| 
 | |
| 	for (i = 0; i < MAX_NPORTS; i++)
 | |
| 		kfree_skb(sge->espibug_skb[i]);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Enables the DMA engine.
 | |
|  */
 | |
| void t1_sge_start(struct sge *sge)
 | |
| {
 | |
| 	refill_free_list(sge, &sge->freelQ[0]);
 | |
| 	refill_free_list(sge, &sge->freelQ[1]);
 | |
| 
 | |
| 	writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
 | |
| 	doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
 | |
| 	readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
 | |
| 
 | |
| 	mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
 | |
| 
 | |
| 	if (is_T2(sge->adapter))
 | |
| 		mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Callback for the T2 ESPI 'stuck packet feature' workaorund
 | |
|  */
 | |
| static void espibug_workaround_t204(unsigned long data)
 | |
| {
 | |
| 	struct adapter *adapter = (struct adapter *)data;
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 	unsigned int nports = adapter->params.nports;
 | |
| 	u32 seop[MAX_NPORTS];
 | |
| 
 | |
| 	if (adapter->open_device_map & PORT_MASK) {
 | |
| 		int i;
 | |
| 
 | |
| 		if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
 | |
| 			return;
 | |
| 
 | |
| 		for (i = 0; i < nports; i++) {
 | |
| 			struct sk_buff *skb = sge->espibug_skb[i];
 | |
| 
 | |
| 			if (!netif_running(adapter->port[i].dev) ||
 | |
| 			    netif_queue_stopped(adapter->port[i].dev) ||
 | |
| 			    !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
 | |
| 				continue;
 | |
| 
 | |
| 			if (!skb->cb[0]) {
 | |
| 				u8 ch_mac_addr[ETH_ALEN] = {
 | |
| 					0x0, 0x7, 0x43, 0x0, 0x0, 0x0
 | |
| 				};
 | |
| 
 | |
| 				skb_copy_to_linear_data_offset(skb,
 | |
| 						    sizeof(struct cpl_tx_pkt),
 | |
| 							       ch_mac_addr,
 | |
| 							       ETH_ALEN);
 | |
| 				skb_copy_to_linear_data_offset(skb,
 | |
| 							       skb->len - 10,
 | |
| 							       ch_mac_addr,
 | |
| 							       ETH_ALEN);
 | |
| 				skb->cb[0] = 0xff;
 | |
| 			}
 | |
| 
 | |
| 			/* bump the reference count to avoid freeing of
 | |
| 			 * the skb once the DMA has completed.
 | |
| 			 */
 | |
| 			skb = skb_get(skb);
 | |
| 			t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
 | |
| 		}
 | |
| 	}
 | |
| 	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
 | |
| }
 | |
| 
 | |
| static void espibug_workaround(unsigned long data)
 | |
| {
 | |
| 	struct adapter *adapter = (struct adapter *)data;
 | |
| 	struct sge *sge = adapter->sge;
 | |
| 
 | |
| 	if (netif_running(adapter->port[0].dev)) {
 | |
| 	        struct sk_buff *skb = sge->espibug_skb[0];
 | |
| 	        u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
 | |
| 
 | |
| 	        if ((seop & 0xfff0fff) == 0xfff && skb) {
 | |
| 	                if (!skb->cb[0]) {
 | |
| 	                        u8 ch_mac_addr[ETH_ALEN] =
 | |
| 	                            {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
 | |
| 	                        skb_copy_to_linear_data_offset(skb,
 | |
| 						     sizeof(struct cpl_tx_pkt),
 | |
| 							       ch_mac_addr,
 | |
| 							       ETH_ALEN);
 | |
| 	                        skb_copy_to_linear_data_offset(skb,
 | |
| 							       skb->len - 10,
 | |
| 							       ch_mac_addr,
 | |
| 							       ETH_ALEN);
 | |
| 	                        skb->cb[0] = 0xff;
 | |
| 	                }
 | |
| 
 | |
| 	                /* bump the reference count to avoid freeing of the
 | |
| 	                 * skb once the DMA has completed.
 | |
| 	                 */
 | |
| 	                skb = skb_get(skb);
 | |
| 	                t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
 | |
| 	        }
 | |
| 	}
 | |
| 	mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Creates a t1_sge structure and returns suggested resource parameters.
 | |
|  */
 | |
| struct sge * __devinit t1_sge_create(struct adapter *adapter,
 | |
| 				     struct sge_params *p)
 | |
| {
 | |
| 	struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sge)
 | |
| 		return NULL;
 | |
| 
 | |
| 	sge->adapter = adapter;
 | |
| 	sge->netdev = adapter->port[0].dev;
 | |
| 	sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
 | |
| 	sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
 | |
| 
 | |
| 	for_each_port(adapter, i) {
 | |
| 		sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
 | |
| 		if (!sge->port_stats[i])
 | |
| 			goto nomem_port;
 | |
| 	}
 | |
| 
 | |
| 	init_timer(&sge->tx_reclaim_timer);
 | |
| 	sge->tx_reclaim_timer.data = (unsigned long)sge;
 | |
| 	sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
 | |
| 
 | |
| 	if (is_T2(sge->adapter)) {
 | |
| 		init_timer(&sge->espibug_timer);
 | |
| 
 | |
| 		if (adapter->params.nports > 1) {
 | |
| 			tx_sched_init(sge);
 | |
| 			sge->espibug_timer.function = espibug_workaround_t204;
 | |
| 		} else
 | |
| 			sge->espibug_timer.function = espibug_workaround;
 | |
| 		sge->espibug_timer.data = (unsigned long)sge->adapter;
 | |
| 
 | |
| 		sge->espibug_timeout = 1;
 | |
| 		/* for T204, every 10ms */
 | |
| 		if (adapter->params.nports > 1)
 | |
| 			sge->espibug_timeout = HZ/100;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	p->cmdQ_size[0] = SGE_CMDQ0_E_N;
 | |
| 	p->cmdQ_size[1] = SGE_CMDQ1_E_N;
 | |
| 	p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
 | |
| 	p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
 | |
| 	if (sge->tx_sched) {
 | |
| 		if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
 | |
| 			p->rx_coalesce_usecs = 15;
 | |
| 		else
 | |
| 			p->rx_coalesce_usecs = 50;
 | |
| 	} else
 | |
| 		p->rx_coalesce_usecs = 50;
 | |
| 
 | |
| 	p->coalesce_enable = 0;
 | |
| 	p->sample_interval_usecs = 0;
 | |
| 
 | |
| 	return sge;
 | |
| nomem_port:
 | |
| 	while (i >= 0) {
 | |
| 		free_percpu(sge->port_stats[i]);
 | |
| 		--i;
 | |
| 	}
 | |
| 	kfree(sge);
 | |
| 	return NULL;
 | |
| 
 | |
| }
 |