625 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			625 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  drivers/mtd/nand/rtc_from4.c
 | |
|  *
 | |
|  *  Copyright (C) 2004  Red Hat, Inc.
 | |
|  *
 | |
|  *  Derived from drivers/mtd/nand/spia.c
 | |
|  *       Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * Overview:
 | |
|  *   This is a device driver for the AG-AND flash device found on the
 | |
|  *   Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
 | |
|  *   which utilizes the Renesas HN29V1G91T-30 part.
 | |
|  *   This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
 | |
|  */
 | |
| 
 | |
| #include <linux/delay.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/rslib.h>
 | |
| #include <linux/bitrev.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mtd/compatmac.h>
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/nand.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| #include <asm/io.h>
 | |
| 
 | |
| /*
 | |
|  * MTD structure for Renesas board
 | |
|  */
 | |
| static struct mtd_info *rtc_from4_mtd = NULL;
 | |
| 
 | |
| #define RTC_FROM4_MAX_CHIPS	2
 | |
| 
 | |
| /* HS77x9 processor register defines */
 | |
| #define SH77X9_BCR1	((volatile unsigned short *)(0xFFFFFF60))
 | |
| #define SH77X9_BCR2	((volatile unsigned short *)(0xFFFFFF62))
 | |
| #define SH77X9_WCR1	((volatile unsigned short *)(0xFFFFFF64))
 | |
| #define SH77X9_WCR2	((volatile unsigned short *)(0xFFFFFF66))
 | |
| #define SH77X9_MCR	((volatile unsigned short *)(0xFFFFFF68))
 | |
| #define SH77X9_PCR	((volatile unsigned short *)(0xFFFFFF6C))
 | |
| #define SH77X9_FRQCR	((volatile unsigned short *)(0xFFFFFF80))
 | |
| 
 | |
| /*
 | |
|  * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
 | |
|  */
 | |
| /* Address where flash is mapped */
 | |
| #define RTC_FROM4_FIO_BASE	0x14000000
 | |
| 
 | |
| /* CLE and ALE are tied to address lines 5 & 4, respectively */
 | |
| #define RTC_FROM4_CLE		(1 << 5)
 | |
| #define RTC_FROM4_ALE		(1 << 4)
 | |
| 
 | |
| /* address lines A24-A22 used for chip selection */
 | |
| #define RTC_FROM4_NAND_ADDR_SLOT3	(0x00800000)
 | |
| #define RTC_FROM4_NAND_ADDR_SLOT4	(0x00C00000)
 | |
| #define RTC_FROM4_NAND_ADDR_FPGA	(0x01000000)
 | |
| /* mask address lines A24-A22 used for chip selection */
 | |
| #define RTC_FROM4_NAND_ADDR_MASK	(RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
 | |
| 
 | |
| /* FPGA status register for checking device ready (bit zero) */
 | |
| #define RTC_FROM4_FPGA_SR		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
 | |
| #define RTC_FROM4_DEVICE_READY		0x0001
 | |
| 
 | |
| /* FPGA Reed-Solomon ECC Control register */
 | |
| 
 | |
| #define RTC_FROM4_RS_ECC_CTL		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
 | |
| #define RTC_FROM4_RS_ECC_CTL_CLR	(1 << 7)
 | |
| #define RTC_FROM4_RS_ECC_CTL_GEN	(1 << 6)
 | |
| #define RTC_FROM4_RS_ECC_CTL_FD_E	(1 << 5)
 | |
| 
 | |
| /* FPGA Reed-Solomon ECC code base */
 | |
| #define RTC_FROM4_RS_ECC		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
 | |
| #define RTC_FROM4_RS_ECCN		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
 | |
| 
 | |
| /* FPGA Reed-Solomon ECC check register */
 | |
| #define RTC_FROM4_RS_ECC_CHK		(RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
 | |
| #define RTC_FROM4_RS_ECC_CHK_ERROR	(1 << 7)
 | |
| 
 | |
| #define ERR_STAT_ECC_AVAILABLE		0x20
 | |
| 
 | |
| /* Undefine for software ECC */
 | |
| #define RTC_FROM4_HWECC	1
 | |
| 
 | |
| /* Define as 1 for no virtual erase blocks (in JFFS2) */
 | |
| #define RTC_FROM4_NO_VIRTBLOCKS	0
 | |
| 
 | |
| /*
 | |
|  * Module stuff
 | |
|  */
 | |
| static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
 | |
| 
 | |
| static const struct mtd_partition partition_info[] = {
 | |
| 	{
 | |
| 	 .name = "Renesas flash partition 1",
 | |
| 	 .offset = 0,
 | |
| 	 .size = MTDPART_SIZ_FULL},
 | |
| };
 | |
| 
 | |
| #define NUM_PARTITIONS 1
 | |
| 
 | |
| /*
 | |
|  *	hardware specific flash bbt decriptors
 | |
|  *	Note: this is to allow debugging by disabling
 | |
|  *		NAND_BBT_CREATE and/or NAND_BBT_WRITE
 | |
|  *
 | |
|  */
 | |
| static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
 | |
| static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
 | |
| 
 | |
| static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 | |
| 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 | |
| 	.offs = 40,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 44,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = bbt_pattern
 | |
| };
 | |
| 
 | |
| static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
 | |
| 	.options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
 | |
| 		| NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
 | |
| 	.offs = 40,
 | |
| 	.len = 4,
 | |
| 	.veroffs = 44,
 | |
| 	.maxblocks = 4,
 | |
| 	.pattern = mirror_pattern
 | |
| };
 | |
| 
 | |
| #ifdef RTC_FROM4_HWECC
 | |
| 
 | |
| /* the Reed Solomon control structure */
 | |
| static struct rs_control *rs_decoder;
 | |
| 
 | |
| /*
 | |
|  *      hardware specific Out Of Band information
 | |
|  */
 | |
| static struct nand_ecclayout rtc_from4_nand_oobinfo = {
 | |
| 	.eccbytes = 32,
 | |
| 	.eccpos = {
 | |
| 		   0, 1, 2, 3, 4, 5, 6, 7,
 | |
| 		   8, 9, 10, 11, 12, 13, 14, 15,
 | |
| 		   16, 17, 18, 19, 20, 21, 22, 23,
 | |
| 		   24, 25, 26, 27, 28, 29, 30, 31},
 | |
| 	.oobfree = {{32, 32}}
 | |
| };
 | |
| 
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * rtc_from4_hwcontrol - hardware specific access to control-lines
 | |
|  * @mtd:	MTD device structure
 | |
|  * @cmd:	hardware control command
 | |
|  *
 | |
|  * Address lines (A5 and A4) are used to control Command and Address Latch
 | |
|  * Enable on this board, so set the read/write address appropriately.
 | |
|  *
 | |
|  * Chip Enable is also controlled by the Chip Select (CS5) and
 | |
|  * Address lines (A24-A22), so no action is required here.
 | |
|  *
 | |
|  */
 | |
| static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
 | |
| 				unsigned int ctrl)
 | |
| {
 | |
| 	struct nand_chip *chip = (mtd->priv);
 | |
| 
 | |
| 	if (cmd == NAND_CMD_NONE)
 | |
| 		return;
 | |
| 
 | |
| 	if (ctrl & NAND_CLE)
 | |
| 		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
 | |
| 	else
 | |
| 		writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rtc_from4_nand_select_chip - hardware specific chip select
 | |
|  * @mtd:	MTD device structure
 | |
|  * @chip:	Chip to select (0 == slot 3, 1 == slot 4)
 | |
|  *
 | |
|  * The chip select is based on address lines A24-A22.
 | |
|  * This driver uses flash slots 3 and 4 (A23-A22).
 | |
|  *
 | |
|  */
 | |
| static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 
 | |
| 	this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
 | |
| 	this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
 | |
| 
 | |
| 	switch (chip) {
 | |
| 
 | |
| 	case 0:		/* select slot 3 chip */
 | |
| 		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
 | |
| 		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
 | |
| 		break;
 | |
| 	case 1:		/* select slot 4 chip */
 | |
| 		this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
 | |
| 		this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
 | |
| 		break;
 | |
| 
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rtc_from4_nand_device_ready - hardware specific ready/busy check
 | |
|  * @mtd:	MTD device structure
 | |
|  *
 | |
|  * This board provides the Ready/Busy state in the status register
 | |
|  * of the FPGA.  Bit zero indicates the RDY(1)/BSY(0) signal.
 | |
|  *
 | |
|  */
 | |
| static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
 | |
| {
 | |
| 	unsigned short status;
 | |
| 
 | |
| 	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
 | |
| 
 | |
| 	return (status & RTC_FROM4_DEVICE_READY);
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * deplete - code to perform device recovery in case there was a power loss
 | |
|  * @mtd:	MTD device structure
 | |
|  * @chip:	Chip to select (0 == slot 3, 1 == slot 4)
 | |
|  *
 | |
|  * If there was a sudden loss of power during an erase operation, a
 | |
|  * "device recovery" operation must be performed when power is restored
 | |
|  * to ensure correct operation.  This routine performs the required steps
 | |
|  * for the requested chip.
 | |
|  *
 | |
|  * See page 86 of the data sheet for details.
 | |
|  *
 | |
|  */
 | |
| static void deplete(struct mtd_info *mtd, int chip)
 | |
| {
 | |
| 	struct nand_chip *this = mtd->priv;
 | |
| 
 | |
| 	/* wait until device is ready */
 | |
| 	while (!this->dev_ready(mtd)) ;
 | |
| 
 | |
| 	this->select_chip(mtd, chip);
 | |
| 
 | |
| 	/* Send the commands for device recovery, phase 1 */
 | |
| 	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
 | |
| 	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
 | |
| 
 | |
| 	/* Send the commands for device recovery, phase 2 */
 | |
| 	this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
 | |
| 	this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
 | |
| 
 | |
| }
 | |
| 
 | |
| #ifdef RTC_FROM4_HWECC
 | |
| /*
 | |
|  * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
 | |
|  * @mtd:	MTD device structure
 | |
|  * @mode:	I/O mode; read or write
 | |
|  *
 | |
|  * enable hardware ECC for data read or write
 | |
|  *
 | |
|  */
 | |
| static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
 | |
| {
 | |
| 	volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
 | |
| 	unsigned short status;
 | |
| 
 | |
| 	switch (mode) {
 | |
| 	case NAND_ECC_READ:
 | |
| 		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
 | |
| 
 | |
| 		*rs_ecc_ctl = status;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_ECC_READSYN:
 | |
| 		status = 0x00;
 | |
| 
 | |
| 		*rs_ecc_ctl = status;
 | |
| 		break;
 | |
| 
 | |
| 	case NAND_ECC_WRITE:
 | |
| 		status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
 | |
| 
 | |
| 		*rs_ecc_ctl = status;
 | |
| 		break;
 | |
| 
 | |
| 	default:
 | |
| 		BUG();
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rtc_from4_calculate_ecc - hardware specific code to read ECC code
 | |
|  * @mtd:	MTD device structure
 | |
|  * @dat:	buffer containing the data to generate ECC codes
 | |
|  * @ecc_code	ECC codes calculated
 | |
|  *
 | |
|  * The ECC code is calculated by the FPGA.  All we have to do is read the values
 | |
|  * from the FPGA registers.
 | |
|  *
 | |
|  * Note: We read from the inverted registers, since data is inverted before
 | |
|  * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
 | |
|  *
 | |
|  */
 | |
| static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
 | |
| {
 | |
| 	volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
 | |
| 	unsigned short value;
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		value = *rs_eccn;
 | |
| 		ecc_code[i] = (unsigned char)value;
 | |
| 		rs_eccn++;
 | |
| 	}
 | |
| 	ecc_code[7] |= 0x0f;	/* set the last four bits (not used) */
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * rtc_from4_correct_data - hardware specific code to correct data using ECC code
 | |
|  * @mtd:	MTD device structure
 | |
|  * @buf:	buffer containing the data to generate ECC codes
 | |
|  * @ecc1	ECC codes read
 | |
|  * @ecc2	ECC codes calculated
 | |
|  *
 | |
|  * The FPGA tells us fast, if there's an error or not. If no, we go back happy
 | |
|  * else we read the ecc results from the fpga and call the rs library to decode
 | |
|  * and hopefully correct the error.
 | |
|  *
 | |
|  */
 | |
| static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
 | |
| {
 | |
| 	int i, j, res;
 | |
| 	unsigned short status;
 | |
| 	uint16_t par[6], syn[6];
 | |
| 	uint8_t ecc[8];
 | |
| 	volatile unsigned short *rs_ecc;
 | |
| 
 | |
| 	status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
 | |
| 
 | |
| 	if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	/* Read the syndrom pattern from the FPGA and correct the bitorder */
 | |
| 	rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		ecc[i] = bitrev8(*rs_ecc);
 | |
| 		rs_ecc++;
 | |
| 	}
 | |
| 
 | |
| 	/* convert into 6 10bit syndrome fields */
 | |
| 	par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
 | |
| 	par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
 | |
| 	par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
 | |
| 	par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
 | |
| 	par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
 | |
| 	par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
 | |
| 
 | |
| 	/* Convert to computable syndrome */
 | |
| 	for (i = 0; i < 6; i++) {
 | |
| 		syn[i] = par[0];
 | |
| 		for (j = 1; j < 6; j++)
 | |
| 			if (par[j] != rs_decoder->nn)
 | |
| 				syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
 | |
| 
 | |
| 		/* Convert to index form */
 | |
| 		syn[i] = rs_decoder->index_of[syn[i]];
 | |
| 	}
 | |
| 
 | |
| 	/* Let the library code do its magic. */
 | |
| 	res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
 | |
| 	if (res > 0) {
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
 | |
| 	}
 | |
| 	return res;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * rtc_from4_errstat - perform additional error status checks
 | |
|  * @mtd:	MTD device structure
 | |
|  * @this:	NAND chip structure
 | |
|  * @state:	state or the operation
 | |
|  * @status:	status code returned from read status
 | |
|  * @page:	startpage inside the chip, must be called with (page & this->pagemask)
 | |
|  *
 | |
|  * Perform additional error status checks on erase and write failures
 | |
|  * to determine if errors are correctable.  For this device, correctable
 | |
|  * 1-bit errors on erase and write are considered acceptable.
 | |
|  *
 | |
|  * note: see pages 34..37 of data sheet for details.
 | |
|  *
 | |
|  */
 | |
| static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
 | |
| 			     int state, int status, int page)
 | |
| {
 | |
| 	int er_stat = 0;
 | |
| 	int rtn, retlen;
 | |
| 	size_t len;
 | |
| 	uint8_t *buf;
 | |
| 	int i;
 | |
| 
 | |
| 	this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
 | |
| 
 | |
| 	if (state == FL_ERASING) {
 | |
| 
 | |
| 		for (i = 0; i < 4; i++) {
 | |
| 			if (!(status & 1 << (i + 1)))
 | |
| 				continue;
 | |
| 			this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
 | |
| 				      -1, -1);
 | |
| 			rtn = this->read_byte(mtd);
 | |
| 			this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
 | |
| 
 | |
| 			/* err_ecc_not_avail */
 | |
| 			if (!(rtn & ERR_STAT_ECC_AVAILABLE))
 | |
| 				er_stat |= 1 << (i + 1);
 | |
| 		}
 | |
| 
 | |
| 	} else if (state == FL_WRITING) {
 | |
| 
 | |
| 		unsigned long corrected = mtd->ecc_stats.corrected;
 | |
| 
 | |
| 		/* single bank write logic */
 | |
| 		this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
 | |
| 		rtn = this->read_byte(mtd);
 | |
| 		this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
 | |
| 
 | |
| 		if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
 | |
| 			/* err_ecc_not_avail */
 | |
| 			er_stat |= 1 << 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		len = mtd->writesize;
 | |
| 		buf = kmalloc(len, GFP_KERNEL);
 | |
| 		if (!buf) {
 | |
| 			printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
 | |
| 			er_stat = 1;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		/* recovery read */
 | |
| 		rtn = nand_do_read(mtd, page, len, &retlen, buf);
 | |
| 
 | |
| 		/* if read failed or > 1-bit error corrected */
 | |
| 		if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
 | |
| 			er_stat |= 1 << 1;
 | |
| 		kfree(buf);
 | |
| 	}
 | |
| out:
 | |
| 	rtn = status;
 | |
| 	if (er_stat == 0) {	/* if ECC is available   */
 | |
| 		rtn = (status & ~NAND_STATUS_FAIL);	/*   clear the error bit */
 | |
| 	}
 | |
| 
 | |
| 	return rtn;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Main initialization routine
 | |
|  */
 | |
| static int __init rtc_from4_init(void)
 | |
| {
 | |
| 	struct nand_chip *this;
 | |
| 	unsigned short bcr1, bcr2, wcr2;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 
 | |
| 	/* Allocate memory for MTD device structure and private data */
 | |
| 	rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
 | |
| 	if (!rtc_from4_mtd) {
 | |
| 		printk("Unable to allocate Renesas NAND MTD device structure.\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	/* Get pointer to private data */
 | |
| 	this = (struct nand_chip *)(&rtc_from4_mtd[1]);
 | |
| 
 | |
| 	/* Initialize structures */
 | |
| 	memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
 | |
| 	memset(this, 0, sizeof(struct nand_chip));
 | |
| 
 | |
| 	/* Link the private data with the MTD structure */
 | |
| 	rtc_from4_mtd->priv = this;
 | |
| 	rtc_from4_mtd->owner = THIS_MODULE;
 | |
| 
 | |
| 	/* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
 | |
| 	bcr1 = *SH77X9_BCR1 & ~0x0002;
 | |
| 	bcr1 |= 0x0002;
 | |
| 	*SH77X9_BCR1 = bcr1;
 | |
| 
 | |
| 	/* set */
 | |
| 	bcr2 = *SH77X9_BCR2 & ~0x0c00;
 | |
| 	bcr2 |= 0x0800;
 | |
| 	*SH77X9_BCR2 = bcr2;
 | |
| 
 | |
| 	/* set area 5 wait states */
 | |
| 	wcr2 = *SH77X9_WCR2 & ~0x1c00;
 | |
| 	wcr2 |= 0x1c00;
 | |
| 	*SH77X9_WCR2 = wcr2;
 | |
| 
 | |
| 	/* Set address of NAND IO lines */
 | |
| 	this->IO_ADDR_R = rtc_from4_fio_base;
 | |
| 	this->IO_ADDR_W = rtc_from4_fio_base;
 | |
| 	/* Set address of hardware control function */
 | |
| 	this->cmd_ctrl = rtc_from4_hwcontrol;
 | |
| 	/* Set address of chip select function */
 | |
| 	this->select_chip = rtc_from4_nand_select_chip;
 | |
| 	/* command delay time (in us) */
 | |
| 	this->chip_delay = 100;
 | |
| 	/* return the status of the Ready/Busy line */
 | |
| 	this->dev_ready = rtc_from4_nand_device_ready;
 | |
| 
 | |
| #ifdef RTC_FROM4_HWECC
 | |
| 	printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
 | |
| 
 | |
| 	this->ecc.mode = NAND_ECC_HW_SYNDROME;
 | |
| 	this->ecc.size = 512;
 | |
| 	this->ecc.bytes = 8;
 | |
| 	/* return the status of extra status and ECC checks */
 | |
| 	this->errstat = rtc_from4_errstat;
 | |
| 	/* set the nand_oobinfo to support FPGA H/W error detection */
 | |
| 	this->ecc.layout = &rtc_from4_nand_oobinfo;
 | |
| 	this->ecc.hwctl = rtc_from4_enable_hwecc;
 | |
| 	this->ecc.calculate = rtc_from4_calculate_ecc;
 | |
| 	this->ecc.correct = rtc_from4_correct_data;
 | |
| 
 | |
| 	/* We could create the decoder on demand, if memory is a concern.
 | |
| 	 * This way we have it handy, if an error happens
 | |
| 	 *
 | |
| 	 * Symbolsize is 10 (bits)
 | |
| 	 * Primitve polynomial is x^10+x^3+1
 | |
| 	 * first consecutive root is 0
 | |
| 	 * primitve element to generate roots = 1
 | |
| 	 * generator polinomial degree = 6
 | |
| 	 */
 | |
| 	rs_decoder = init_rs(10, 0x409, 0, 1, 6);
 | |
| 	if (!rs_decoder) {
 | |
| 		printk(KERN_ERR "Could not create a RS decoder\n");
 | |
| 		ret = -ENOMEM;
 | |
| 		goto err_1;
 | |
| 	}
 | |
| #else
 | |
| 	printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
 | |
| 
 | |
| 	this->ecc.mode = NAND_ECC_SOFT;
 | |
| #endif
 | |
| 
 | |
| 	/* set the bad block tables to support debugging */
 | |
| 	this->bbt_td = &rtc_from4_bbt_main_descr;
 | |
| 	this->bbt_md = &rtc_from4_bbt_mirror_descr;
 | |
| 
 | |
| 	/* Scan to find existence of the device */
 | |
| 	if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
 | |
| 		ret = -ENXIO;
 | |
| 		goto err_2;
 | |
| 	}
 | |
| 
 | |
| 	/* Perform 'device recovery' for each chip in case there was a power loss. */
 | |
| 	for (i = 0; i < this->numchips; i++) {
 | |
| 		deplete(rtc_from4_mtd, i);
 | |
| 	}
 | |
| 
 | |
| #if RTC_FROM4_NO_VIRTBLOCKS
 | |
| 	/* use a smaller erase block to minimize wasted space when a block is bad */
 | |
| 	/* note: this uses eight times as much RAM as using the default and makes */
 | |
| 	/*       mounts take four times as long. */
 | |
| 	rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
 | |
| #endif
 | |
| 
 | |
| 	/* Register the partitions */
 | |
| 	ret = add_mtd_partitions(rtc_from4_mtd, partition_info, NUM_PARTITIONS);
 | |
| 	if (ret)
 | |
| 		goto err_3;
 | |
| 
 | |
| 	/* Return happy */
 | |
| 	return 0;
 | |
| err_3:
 | |
| 	nand_release(rtc_from4_mtd);
 | |
| err_2:
 | |
| 	free_rs(rs_decoder);
 | |
| err_1:
 | |
| 	kfree(rtc_from4_mtd);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| module_init(rtc_from4_init);
 | |
| 
 | |
| /*
 | |
|  * Clean up routine
 | |
|  */
 | |
| static void __exit rtc_from4_cleanup(void)
 | |
| {
 | |
| 	/* Release resource, unregister partitions */
 | |
| 	nand_release(rtc_from4_mtd);
 | |
| 
 | |
| 	/* Free the MTD device structure */
 | |
| 	kfree(rtc_from4_mtd);
 | |
| 
 | |
| #ifdef RTC_FROM4_HWECC
 | |
| 	/* Free the reed solomon resources */
 | |
| 	if (rs_decoder) {
 | |
| 		free_rs(rs_decoder);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| module_exit(rtc_from4_cleanup);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
 | |
| MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");
 |