931 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			931 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * MTD SPI driver for ST M25Pxx (and similar) serial flash chips
 | |
|  *
 | |
|  * Author: Mike Lavender, mike@steroidmicros.com
 | |
|  *
 | |
|  * Copyright (c) 2005, Intec Automation Inc.
 | |
|  *
 | |
|  * Some parts are based on lart.c by Abraham Van Der Merwe
 | |
|  *
 | |
|  * Cleaned up and generalized based on mtd_dataflash.c
 | |
|  *
 | |
|  * This code is free software; you can redistribute it and/or modify
 | |
|  * it under the terms of the GNU General Public License version 2 as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/math64.h>
 | |
| #include <linux/sched.h>
 | |
| 
 | |
| #include <linux/mtd/mtd.h>
 | |
| #include <linux/mtd/partitions.h>
 | |
| 
 | |
| #include <linux/spi/spi.h>
 | |
| #include <linux/spi/flash.h>
 | |
| 
 | |
| 
 | |
| #define FLASH_PAGESIZE		256
 | |
| 
 | |
| /* Flash opcodes. */
 | |
| #define	OPCODE_WREN		0x06	/* Write enable */
 | |
| #define	OPCODE_RDSR		0x05	/* Read status register */
 | |
| #define	OPCODE_WRSR		0x01	/* Write status register 1 byte */
 | |
| #define	OPCODE_NORM_READ	0x03	/* Read data bytes (low frequency) */
 | |
| #define	OPCODE_FAST_READ	0x0b	/* Read data bytes (high frequency) */
 | |
| #define	OPCODE_PP		0x02	/* Page program (up to 256 bytes) */
 | |
| #define	OPCODE_BE_4K		0x20	/* Erase 4KiB block */
 | |
| #define	OPCODE_BE_32K		0x52	/* Erase 32KiB block */
 | |
| #define	OPCODE_CHIP_ERASE	0xc7	/* Erase whole flash chip */
 | |
| #define	OPCODE_SE		0xd8	/* Sector erase (usually 64KiB) */
 | |
| #define	OPCODE_RDID		0x9f	/* Read JEDEC ID */
 | |
| 
 | |
| /* Used for SST flashes only. */
 | |
| #define	OPCODE_BP		0x02	/* Byte program */
 | |
| #define	OPCODE_WRDI		0x04	/* Write disable */
 | |
| #define	OPCODE_AAI_WP		0xad	/* Auto address increment word program */
 | |
| 
 | |
| /* Status Register bits. */
 | |
| #define	SR_WIP			1	/* Write in progress */
 | |
| #define	SR_WEL			2	/* Write enable latch */
 | |
| /* meaning of other SR_* bits may differ between vendors */
 | |
| #define	SR_BP0			4	/* Block protect 0 */
 | |
| #define	SR_BP1			8	/* Block protect 1 */
 | |
| #define	SR_BP2			0x10	/* Block protect 2 */
 | |
| #define	SR_SRWD			0x80	/* SR write protect */
 | |
| 
 | |
| /* Define max times to check status register before we give up. */
 | |
| #define	MAX_READY_WAIT_JIFFIES	(40 * HZ)	/* M25P16 specs 40s max chip erase */
 | |
| #define	CMD_SIZE		4
 | |
| 
 | |
| #ifdef CONFIG_M25PXX_USE_FAST_READ
 | |
| #define OPCODE_READ 	OPCODE_FAST_READ
 | |
| #define FAST_READ_DUMMY_BYTE 1
 | |
| #else
 | |
| #define OPCODE_READ 	OPCODE_NORM_READ
 | |
| #define FAST_READ_DUMMY_BYTE 0
 | |
| #endif
 | |
| 
 | |
| /****************************************************************************/
 | |
| 
 | |
| struct m25p {
 | |
| 	struct spi_device	*spi;
 | |
| 	struct mutex		lock;
 | |
| 	struct mtd_info		mtd;
 | |
| 	unsigned		partitioned:1;
 | |
| 	u8			erase_opcode;
 | |
| 	u8			command[CMD_SIZE + FAST_READ_DUMMY_BYTE];
 | |
| };
 | |
| 
 | |
| static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd)
 | |
| {
 | |
| 	return container_of(mtd, struct m25p, mtd);
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * Internal helper functions
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Read the status register, returning its value in the location
 | |
|  * Return the status register value.
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static int read_sr(struct m25p *flash)
 | |
| {
 | |
| 	ssize_t retval;
 | |
| 	u8 code = OPCODE_RDSR;
 | |
| 	u8 val;
 | |
| 
 | |
| 	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);
 | |
| 
 | |
| 	if (retval < 0) {
 | |
| 		dev_err(&flash->spi->dev, "error %d reading SR\n",
 | |
| 				(int) retval);
 | |
| 		return retval;
 | |
| 	}
 | |
| 
 | |
| 	return val;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write status register 1 byte
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static int write_sr(struct m25p *flash, u8 val)
 | |
| {
 | |
| 	flash->command[0] = OPCODE_WRSR;
 | |
| 	flash->command[1] = val;
 | |
| 
 | |
| 	return spi_write(flash->spi, flash->command, 2);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set write enable latch with Write Enable command.
 | |
|  * Returns negative if error occurred.
 | |
|  */
 | |
| static inline int write_enable(struct m25p *flash)
 | |
| {
 | |
| 	u8	code = OPCODE_WREN;
 | |
| 
 | |
| 	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Send write disble instruction to the chip.
 | |
|  */
 | |
| static inline int write_disable(struct m25p *flash)
 | |
| {
 | |
| 	u8	code = OPCODE_WRDI;
 | |
| 
 | |
| 	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Service routine to read status register until ready, or timeout occurs.
 | |
|  * Returns non-zero if error.
 | |
|  */
 | |
| static int wait_till_ready(struct m25p *flash)
 | |
| {
 | |
| 	unsigned long deadline;
 | |
| 	int sr;
 | |
| 
 | |
| 	deadline = jiffies + MAX_READY_WAIT_JIFFIES;
 | |
| 
 | |
| 	do {
 | |
| 		if ((sr = read_sr(flash)) < 0)
 | |
| 			break;
 | |
| 		else if (!(sr & SR_WIP))
 | |
| 			return 0;
 | |
| 
 | |
| 		cond_resched();
 | |
| 
 | |
| 	} while (!time_after_eq(jiffies, deadline));
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Erase the whole flash memory
 | |
|  *
 | |
|  * Returns 0 if successful, non-zero otherwise.
 | |
|  */
 | |
| static int erase_chip(struct m25p *flash)
 | |
| {
 | |
| 	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %lldKiB\n",
 | |
| 	      dev_name(&flash->spi->dev), __func__,
 | |
| 	      (long long)(flash->mtd.size >> 10));
 | |
| 
 | |
| 	/* Wait until finished previous write command. */
 | |
| 	if (wait_till_ready(flash))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Send write enable, then erase commands. */
 | |
| 	write_enable(flash);
 | |
| 
 | |
| 	/* Set up command buffer. */
 | |
| 	flash->command[0] = OPCODE_CHIP_ERASE;
 | |
| 
 | |
| 	spi_write(flash->spi, flash->command, 1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Erase one sector of flash memory at offset ``offset'' which is any
 | |
|  * address within the sector which should be erased.
 | |
|  *
 | |
|  * Returns 0 if successful, non-zero otherwise.
 | |
|  */
 | |
| static int erase_sector(struct m25p *flash, u32 offset)
 | |
| {
 | |
| 	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s %dKiB at 0x%08x\n",
 | |
| 			dev_name(&flash->spi->dev), __func__,
 | |
| 			flash->mtd.erasesize / 1024, offset);
 | |
| 
 | |
| 	/* Wait until finished previous write command. */
 | |
| 	if (wait_till_ready(flash))
 | |
| 		return 1;
 | |
| 
 | |
| 	/* Send write enable, then erase commands. */
 | |
| 	write_enable(flash);
 | |
| 
 | |
| 	/* Set up command buffer. */
 | |
| 	flash->command[0] = flash->erase_opcode;
 | |
| 	flash->command[1] = offset >> 16;
 | |
| 	flash->command[2] = offset >> 8;
 | |
| 	flash->command[3] = offset;
 | |
| 
 | |
| 	spi_write(flash->spi, flash->command, CMD_SIZE);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * MTD implementation
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Erase an address range on the flash chip.  The address range may extend
 | |
|  * one or more erase sectors.  Return an error is there is a problem erasing.
 | |
|  */
 | |
| static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr)
 | |
| {
 | |
| 	struct m25p *flash = mtd_to_m25p(mtd);
 | |
| 	u32 addr,len;
 | |
| 	uint32_t rem;
 | |
| 
 | |
| 	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%llx, len %lld\n",
 | |
| 	      dev_name(&flash->spi->dev), __func__, "at",
 | |
| 	      (long long)instr->addr, (long long)instr->len);
 | |
| 
 | |
| 	/* sanity checks */
 | |
| 	if (instr->addr + instr->len > flash->mtd.size)
 | |
| 		return -EINVAL;
 | |
| 	div_u64_rem(instr->len, mtd->erasesize, &rem);
 | |
| 	if (rem)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	addr = instr->addr;
 | |
| 	len = instr->len;
 | |
| 
 | |
| 	mutex_lock(&flash->lock);
 | |
| 
 | |
| 	/* whole-chip erase? */
 | |
| 	if (len == flash->mtd.size) {
 | |
| 		if (erase_chip(flash)) {
 | |
| 			instr->state = MTD_ERASE_FAILED;
 | |
| 			mutex_unlock(&flash->lock);
 | |
| 			return -EIO;
 | |
| 		}
 | |
| 
 | |
| 	/* REVISIT in some cases we could speed up erasing large regions
 | |
| 	 * by using OPCODE_SE instead of OPCODE_BE_4K.  We may have set up
 | |
| 	 * to use "small sector erase", but that's not always optimal.
 | |
| 	 */
 | |
| 
 | |
| 	/* "sector"-at-a-time erase */
 | |
| 	} else {
 | |
| 		while (len) {
 | |
| 			if (erase_sector(flash, addr)) {
 | |
| 				instr->state = MTD_ERASE_FAILED;
 | |
| 				mutex_unlock(&flash->lock);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 
 | |
| 			addr += mtd->erasesize;
 | |
| 			len -= mtd->erasesize;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&flash->lock);
 | |
| 
 | |
| 	instr->state = MTD_ERASE_DONE;
 | |
| 	mtd_erase_callback(instr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read an address range from the flash chip.  The address range
 | |
|  * may be any size provided it is within the physical boundaries.
 | |
|  */
 | |
| static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,
 | |
| 	size_t *retlen, u_char *buf)
 | |
| {
 | |
| 	struct m25p *flash = mtd_to_m25p(mtd);
 | |
| 	struct spi_transfer t[2];
 | |
| 	struct spi_message m;
 | |
| 
 | |
| 	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
 | |
| 			dev_name(&flash->spi->dev), __func__, "from",
 | |
| 			(u32)from, len);
 | |
| 
 | |
| 	/* sanity checks */
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (from + len > flash->mtd.size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spi_message_init(&m);
 | |
| 	memset(t, 0, (sizeof t));
 | |
| 
 | |
| 	/* NOTE:
 | |
| 	 * OPCODE_FAST_READ (if available) is faster.
 | |
| 	 * Should add 1 byte DUMMY_BYTE.
 | |
| 	 */
 | |
| 	t[0].tx_buf = flash->command;
 | |
| 	t[0].len = CMD_SIZE + FAST_READ_DUMMY_BYTE;
 | |
| 	spi_message_add_tail(&t[0], &m);
 | |
| 
 | |
| 	t[1].rx_buf = buf;
 | |
| 	t[1].len = len;
 | |
| 	spi_message_add_tail(&t[1], &m);
 | |
| 
 | |
| 	/* Byte count starts at zero. */
 | |
| 	if (retlen)
 | |
| 		*retlen = 0;
 | |
| 
 | |
| 	mutex_lock(&flash->lock);
 | |
| 
 | |
| 	/* Wait till previous write/erase is done. */
 | |
| 	if (wait_till_ready(flash)) {
 | |
| 		/* REVISIT status return?? */
 | |
| 		mutex_unlock(&flash->lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	/* FIXME switch to OPCODE_FAST_READ.  It's required for higher
 | |
| 	 * clocks; and at this writing, every chip this driver handles
 | |
| 	 * supports that opcode.
 | |
| 	 */
 | |
| 
 | |
| 	/* Set up the write data buffer. */
 | |
| 	flash->command[0] = OPCODE_READ;
 | |
| 	flash->command[1] = from >> 16;
 | |
| 	flash->command[2] = from >> 8;
 | |
| 	flash->command[3] = from;
 | |
| 
 | |
| 	spi_sync(flash->spi, &m);
 | |
| 
 | |
| 	*retlen = m.actual_length - CMD_SIZE - FAST_READ_DUMMY_BYTE;
 | |
| 
 | |
| 	mutex_unlock(&flash->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Write an address range to the flash chip.  Data must be written in
 | |
|  * FLASH_PAGESIZE chunks.  The address range may be any size provided
 | |
|  * it is within the physical boundaries.
 | |
|  */
 | |
| static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 	size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct m25p *flash = mtd_to_m25p(mtd);
 | |
| 	u32 page_offset, page_size;
 | |
| 	struct spi_transfer t[2];
 | |
| 	struct spi_message m;
 | |
| 
 | |
| 	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",
 | |
| 			dev_name(&flash->spi->dev), __func__, "to",
 | |
| 			(u32)to, len);
 | |
| 
 | |
| 	if (retlen)
 | |
| 		*retlen = 0;
 | |
| 
 | |
| 	/* sanity checks */
 | |
| 	if (!len)
 | |
| 		return(0);
 | |
| 
 | |
| 	if (to + len > flash->mtd.size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spi_message_init(&m);
 | |
| 	memset(t, 0, (sizeof t));
 | |
| 
 | |
| 	t[0].tx_buf = flash->command;
 | |
| 	t[0].len = CMD_SIZE;
 | |
| 	spi_message_add_tail(&t[0], &m);
 | |
| 
 | |
| 	t[1].tx_buf = buf;
 | |
| 	spi_message_add_tail(&t[1], &m);
 | |
| 
 | |
| 	mutex_lock(&flash->lock);
 | |
| 
 | |
| 	/* Wait until finished previous write command. */
 | |
| 	if (wait_till_ready(flash)) {
 | |
| 		mutex_unlock(&flash->lock);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	write_enable(flash);
 | |
| 
 | |
| 	/* Set up the opcode in the write buffer. */
 | |
| 	flash->command[0] = OPCODE_PP;
 | |
| 	flash->command[1] = to >> 16;
 | |
| 	flash->command[2] = to >> 8;
 | |
| 	flash->command[3] = to;
 | |
| 
 | |
| 	/* what page do we start with? */
 | |
| 	page_offset = to % FLASH_PAGESIZE;
 | |
| 
 | |
| 	/* do all the bytes fit onto one page? */
 | |
| 	if (page_offset + len <= FLASH_PAGESIZE) {
 | |
| 		t[1].len = len;
 | |
| 
 | |
| 		spi_sync(flash->spi, &m);
 | |
| 
 | |
| 		*retlen = m.actual_length - CMD_SIZE;
 | |
| 	} else {
 | |
| 		u32 i;
 | |
| 
 | |
| 		/* the size of data remaining on the first page */
 | |
| 		page_size = FLASH_PAGESIZE - page_offset;
 | |
| 
 | |
| 		t[1].len = page_size;
 | |
| 		spi_sync(flash->spi, &m);
 | |
| 
 | |
| 		*retlen = m.actual_length - CMD_SIZE;
 | |
| 
 | |
| 		/* write everything in PAGESIZE chunks */
 | |
| 		for (i = page_size; i < len; i += page_size) {
 | |
| 			page_size = len - i;
 | |
| 			if (page_size > FLASH_PAGESIZE)
 | |
| 				page_size = FLASH_PAGESIZE;
 | |
| 
 | |
| 			/* write the next page to flash */
 | |
| 			flash->command[1] = (to + i) >> 16;
 | |
| 			flash->command[2] = (to + i) >> 8;
 | |
| 			flash->command[3] = (to + i);
 | |
| 
 | |
| 			t[1].tx_buf = buf + i;
 | |
| 			t[1].len = page_size;
 | |
| 
 | |
| 			wait_till_ready(flash);
 | |
| 
 | |
| 			write_enable(flash);
 | |
| 
 | |
| 			spi_sync(flash->spi, &m);
 | |
| 
 | |
| 			if (retlen)
 | |
| 				*retlen += m.actual_length - CMD_SIZE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	mutex_unlock(&flash->lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int sst_write(struct mtd_info *mtd, loff_t to, size_t len,
 | |
| 		size_t *retlen, const u_char *buf)
 | |
| {
 | |
| 	struct m25p *flash = mtd_to_m25p(mtd);
 | |
| 	struct spi_transfer t[2];
 | |
| 	struct spi_message m;
 | |
| 	size_t actual;
 | |
| 	int cmd_sz, ret;
 | |
| 
 | |
| 	if (retlen)
 | |
| 		*retlen = 0;
 | |
| 
 | |
| 	/* sanity checks */
 | |
| 	if (!len)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (to + len > flash->mtd.size)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	spi_message_init(&m);
 | |
| 	memset(t, 0, (sizeof t));
 | |
| 
 | |
| 	t[0].tx_buf = flash->command;
 | |
| 	t[0].len = CMD_SIZE;
 | |
| 	spi_message_add_tail(&t[0], &m);
 | |
| 
 | |
| 	t[1].tx_buf = buf;
 | |
| 	spi_message_add_tail(&t[1], &m);
 | |
| 
 | |
| 	mutex_lock(&flash->lock);
 | |
| 
 | |
| 	/* Wait until finished previous write command. */
 | |
| 	ret = wait_till_ready(flash);
 | |
| 	if (ret)
 | |
| 		goto time_out;
 | |
| 
 | |
| 	write_enable(flash);
 | |
| 
 | |
| 	actual = to % 2;
 | |
| 	/* Start write from odd address. */
 | |
| 	if (actual) {
 | |
| 		flash->command[0] = OPCODE_BP;
 | |
| 		flash->command[1] = to >> 16;
 | |
| 		flash->command[2] = to >> 8;
 | |
| 		flash->command[3] = to;
 | |
| 
 | |
| 		/* write one byte. */
 | |
| 		t[1].len = 1;
 | |
| 		spi_sync(flash->spi, &m);
 | |
| 		ret = wait_till_ready(flash);
 | |
| 		if (ret)
 | |
| 			goto time_out;
 | |
| 		*retlen += m.actual_length - CMD_SIZE;
 | |
| 	}
 | |
| 	to += actual;
 | |
| 
 | |
| 	flash->command[0] = OPCODE_AAI_WP;
 | |
| 	flash->command[1] = to >> 16;
 | |
| 	flash->command[2] = to >> 8;
 | |
| 	flash->command[3] = to;
 | |
| 
 | |
| 	/* Write out most of the data here. */
 | |
| 	cmd_sz = CMD_SIZE;
 | |
| 	for (; actual < len - 1; actual += 2) {
 | |
| 		t[0].len = cmd_sz;
 | |
| 		/* write two bytes. */
 | |
| 		t[1].len = 2;
 | |
| 		t[1].tx_buf = buf + actual;
 | |
| 
 | |
| 		spi_sync(flash->spi, &m);
 | |
| 		ret = wait_till_ready(flash);
 | |
| 		if (ret)
 | |
| 			goto time_out;
 | |
| 		*retlen += m.actual_length - cmd_sz;
 | |
| 		cmd_sz = 1;
 | |
| 		to += 2;
 | |
| 	}
 | |
| 	write_disable(flash);
 | |
| 	ret = wait_till_ready(flash);
 | |
| 	if (ret)
 | |
| 		goto time_out;
 | |
| 
 | |
| 	/* Write out trailing byte if it exists. */
 | |
| 	if (actual != len) {
 | |
| 		write_enable(flash);
 | |
| 		flash->command[0] = OPCODE_BP;
 | |
| 		flash->command[1] = to >> 16;
 | |
| 		flash->command[2] = to >> 8;
 | |
| 		flash->command[3] = to;
 | |
| 		t[0].len = CMD_SIZE;
 | |
| 		t[1].len = 1;
 | |
| 		t[1].tx_buf = buf + actual;
 | |
| 
 | |
| 		spi_sync(flash->spi, &m);
 | |
| 		ret = wait_till_ready(flash);
 | |
| 		if (ret)
 | |
| 			goto time_out;
 | |
| 		*retlen += m.actual_length - CMD_SIZE;
 | |
| 		write_disable(flash);
 | |
| 	}
 | |
| 
 | |
| time_out:
 | |
| 	mutex_unlock(&flash->lock);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /****************************************************************************/
 | |
| 
 | |
| /*
 | |
|  * SPI device driver setup and teardown
 | |
|  */
 | |
| 
 | |
| struct flash_info {
 | |
| 	char		*name;
 | |
| 
 | |
| 	/* JEDEC id zero means "no ID" (most older chips); otherwise it has
 | |
| 	 * a high byte of zero plus three data bytes: the manufacturer id,
 | |
| 	 * then a two byte device id.
 | |
| 	 */
 | |
| 	u32		jedec_id;
 | |
| 	u16             ext_id;
 | |
| 
 | |
| 	/* The size listed here is what works with OPCODE_SE, which isn't
 | |
| 	 * necessarily called a "sector" by the vendor.
 | |
| 	 */
 | |
| 	unsigned	sector_size;
 | |
| 	u16		n_sectors;
 | |
| 
 | |
| 	u16		flags;
 | |
| #define	SECT_4K		0x01		/* OPCODE_BE_4K works uniformly */
 | |
| };
 | |
| 
 | |
| 
 | |
| /* NOTE: double check command sets and memory organization when you add
 | |
|  * more flash chips.  This current list focusses on newer chips, which
 | |
|  * have been converging on command sets which including JEDEC ID.
 | |
|  */
 | |
| static struct flash_info __devinitdata m25p_data [] = {
 | |
| 
 | |
| 	/* Atmel -- some are (confusingly) marketed as "DataFlash" */
 | |
| 	{ "at25fs010",  0x1f6601, 0, 32 * 1024, 4, SECT_4K, },
 | |
| 	{ "at25fs040",  0x1f6604, 0, 64 * 1024, 8, SECT_4K, },
 | |
| 
 | |
| 	{ "at25df041a", 0x1f4401, 0, 64 * 1024, 8, SECT_4K, },
 | |
| 	{ "at25df641",  0x1f4800, 0, 64 * 1024, 128, SECT_4K, },
 | |
| 
 | |
| 	{ "at26f004",   0x1f0400, 0, 64 * 1024, 8, SECT_4K, },
 | |
| 	{ "at26df081a", 0x1f4501, 0, 64 * 1024, 16, SECT_4K, },
 | |
| 	{ "at26df161a", 0x1f4601, 0, 64 * 1024, 32, SECT_4K, },
 | |
| 	{ "at26df321",  0x1f4701, 0, 64 * 1024, 64, SECT_4K, },
 | |
| 
 | |
| 	/* Macronix */
 | |
| 	{ "mx25l3205d", 0xc22016, 0, 64 * 1024, 64, },
 | |
| 	{ "mx25l6405d", 0xc22017, 0, 64 * 1024, 128, },
 | |
| 	{ "mx25l12805d", 0xc22018, 0, 64 * 1024, 256, },
 | |
| 	{ "mx25l12855e", 0xc22618, 0, 64 * 1024, 256, },
 | |
| 
 | |
| 	/* Spansion -- single (large) sector size only, at least
 | |
| 	 * for the chips listed here (without boot sectors).
 | |
| 	 */
 | |
| 	{ "s25sl004a", 0x010212, 0, 64 * 1024, 8, },
 | |
| 	{ "s25sl008a", 0x010213, 0, 64 * 1024, 16, },
 | |
| 	{ "s25sl016a", 0x010214, 0, 64 * 1024, 32, },
 | |
| 	{ "s25sl032a", 0x010215, 0, 64 * 1024, 64, },
 | |
| 	{ "s25sl064a", 0x010216, 0, 64 * 1024, 128, },
 | |
| 	{ "s25sl12800", 0x012018, 0x0300, 256 * 1024, 64, },
 | |
| 	{ "s25sl12801", 0x012018, 0x0301, 64 * 1024, 256, },
 | |
| 	{ "s25fl129p0", 0x012018, 0x4d00, 256 * 1024, 64, },
 | |
| 	{ "s25fl129p1", 0x012018, 0x4d01, 64 * 1024, 256, },
 | |
| 
 | |
| 	/* SST -- large erase sizes are "overlays", "sectors" are 4K */
 | |
| 	{ "sst25vf040b", 0xbf258d, 0, 64 * 1024, 8, SECT_4K, },
 | |
| 	{ "sst25vf080b", 0xbf258e, 0, 64 * 1024, 16, SECT_4K, },
 | |
| 	{ "sst25vf016b", 0xbf2541, 0, 64 * 1024, 32, SECT_4K, },
 | |
| 	{ "sst25vf032b", 0xbf254a, 0, 64 * 1024, 64, SECT_4K, },
 | |
| 	{ "sst25wf512",  0xbf2501, 0, 64 * 1024, 1, SECT_4K, },
 | |
| 	{ "sst25wf010",  0xbf2502, 0, 64 * 1024, 2, SECT_4K, },
 | |
| 	{ "sst25wf020",  0xbf2503, 0, 64 * 1024, 4, SECT_4K, },
 | |
| 	{ "sst25wf040",  0xbf2504, 0, 64 * 1024, 8, SECT_4K, },
 | |
| 
 | |
| 	/* ST Microelectronics -- newer production may have feature updates */
 | |
| 	{ "m25p05",  0x202010,  0, 32 * 1024, 2, },
 | |
| 	{ "m25p10",  0x202011,  0, 32 * 1024, 4, },
 | |
| 	{ "m25p20",  0x202012,  0, 64 * 1024, 4, },
 | |
| 	{ "m25p40",  0x202013,  0, 64 * 1024, 8, },
 | |
| 	{ "m25p80",         0,  0, 64 * 1024, 16, },
 | |
| 	{ "m25p16",  0x202015,  0, 64 * 1024, 32, },
 | |
| 	{ "m25p32",  0x202016,  0, 64 * 1024, 64, },
 | |
| 	{ "m25p64",  0x202017,  0, 64 * 1024, 128, },
 | |
| 	{ "m25p128", 0x202018, 0, 256 * 1024, 64, },
 | |
| 
 | |
| 	{ "m45pe10", 0x204011,  0, 64 * 1024, 2, },
 | |
| 	{ "m45pe80", 0x204014,  0, 64 * 1024, 16, },
 | |
| 	{ "m45pe16", 0x204015,  0, 64 * 1024, 32, },
 | |
| 
 | |
| 	{ "m25pe80", 0x208014,  0, 64 * 1024, 16, },
 | |
| 	{ "m25pe16", 0x208015,  0, 64 * 1024, 32, SECT_4K, },
 | |
| 
 | |
| 	/* Winbond -- w25x "blocks" are 64K, "sectors" are 4KiB */
 | |
| 	{ "w25x10", 0xef3011, 0, 64 * 1024, 2, SECT_4K, },
 | |
| 	{ "w25x20", 0xef3012, 0, 64 * 1024, 4, SECT_4K, },
 | |
| 	{ "w25x40", 0xef3013, 0, 64 * 1024, 8, SECT_4K, },
 | |
| 	{ "w25x80", 0xef3014, 0, 64 * 1024, 16, SECT_4K, },
 | |
| 	{ "w25x16", 0xef3015, 0, 64 * 1024, 32, SECT_4K, },
 | |
| 	{ "w25x32", 0xef3016, 0, 64 * 1024, 64, SECT_4K, },
 | |
| 	{ "w25x64", 0xef3017, 0, 64 * 1024, 128, SECT_4K, },
 | |
| };
 | |
| 
 | |
| static struct flash_info *__devinit jedec_probe(struct spi_device *spi)
 | |
| {
 | |
| 	int			tmp;
 | |
| 	u8			code = OPCODE_RDID;
 | |
| 	u8			id[5];
 | |
| 	u32			jedec;
 | |
| 	u16                     ext_jedec;
 | |
| 	struct flash_info	*info;
 | |
| 
 | |
| 	/* JEDEC also defines an optional "extended device information"
 | |
| 	 * string for after vendor-specific data, after the three bytes
 | |
| 	 * we use here.  Supporting some chips might require using it.
 | |
| 	 */
 | |
| 	tmp = spi_write_then_read(spi, &code, 1, id, 5);
 | |
| 	if (tmp < 0) {
 | |
| 		DEBUG(MTD_DEBUG_LEVEL0, "%s: error %d reading JEDEC ID\n",
 | |
| 			dev_name(&spi->dev), tmp);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	jedec = id[0];
 | |
| 	jedec = jedec << 8;
 | |
| 	jedec |= id[1];
 | |
| 	jedec = jedec << 8;
 | |
| 	jedec |= id[2];
 | |
| 
 | |
| 	ext_jedec = id[3] << 8 | id[4];
 | |
| 
 | |
| 	for (tmp = 0, info = m25p_data;
 | |
| 			tmp < ARRAY_SIZE(m25p_data);
 | |
| 			tmp++, info++) {
 | |
| 		if (info->jedec_id == jedec) {
 | |
| 			if (info->ext_id != 0 && info->ext_id != ext_jedec)
 | |
| 				continue;
 | |
| 			return info;
 | |
| 		}
 | |
| 	}
 | |
| 	dev_err(&spi->dev, "unrecognized JEDEC id %06x\n", jedec);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * board specific setup should have ensured the SPI clock used here
 | |
|  * matches what the READ command supports, at least until this driver
 | |
|  * understands FAST_READ (for clocks over 25 MHz).
 | |
|  */
 | |
| static int __devinit m25p_probe(struct spi_device *spi)
 | |
| {
 | |
| 	struct flash_platform_data	*data;
 | |
| 	struct m25p			*flash;
 | |
| 	struct flash_info		*info;
 | |
| 	unsigned			i;
 | |
| 
 | |
| 	/* Platform data helps sort out which chip type we have, as
 | |
| 	 * well as how this board partitions it.  If we don't have
 | |
| 	 * a chip ID, try the JEDEC id commands; they'll work for most
 | |
| 	 * newer chips, even if we don't recognize the particular chip.
 | |
| 	 */
 | |
| 	data = spi->dev.platform_data;
 | |
| 	if (data && data->type) {
 | |
| 		for (i = 0, info = m25p_data;
 | |
| 				i < ARRAY_SIZE(m25p_data);
 | |
| 				i++, info++) {
 | |
| 			if (strcmp(data->type, info->name) == 0)
 | |
| 				break;
 | |
| 		}
 | |
| 
 | |
| 		/* unrecognized chip? */
 | |
| 		if (i == ARRAY_SIZE(m25p_data)) {
 | |
| 			DEBUG(MTD_DEBUG_LEVEL0, "%s: unrecognized id %s\n",
 | |
| 					dev_name(&spi->dev), data->type);
 | |
| 			info = NULL;
 | |
| 
 | |
| 		/* recognized; is that chip really what's there? */
 | |
| 		} else if (info->jedec_id) {
 | |
| 			struct flash_info	*chip = jedec_probe(spi);
 | |
| 
 | |
| 			if (!chip || chip != info) {
 | |
| 				dev_warn(&spi->dev, "found %s, expected %s\n",
 | |
| 						chip ? chip->name : "UNKNOWN",
 | |
| 						info->name);
 | |
| 				info = NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	} else
 | |
| 		info = jedec_probe(spi);
 | |
| 
 | |
| 	if (!info)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	flash = kzalloc(sizeof *flash, GFP_KERNEL);
 | |
| 	if (!flash)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	flash->spi = spi;
 | |
| 	mutex_init(&flash->lock);
 | |
| 	dev_set_drvdata(&spi->dev, flash);
 | |
| 
 | |
| 	/*
 | |
| 	 * Atmel serial flash tend to power up
 | |
| 	 * with the software protection bits set
 | |
| 	 */
 | |
| 
 | |
| 	if (info->jedec_id >> 16 == 0x1f) {
 | |
| 		write_enable(flash);
 | |
| 		write_sr(flash, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (data && data->name)
 | |
| 		flash->mtd.name = data->name;
 | |
| 	else
 | |
| 		flash->mtd.name = dev_name(&spi->dev);
 | |
| 
 | |
| 	flash->mtd.type = MTD_NORFLASH;
 | |
| 	flash->mtd.writesize = 1;
 | |
| 	flash->mtd.flags = MTD_CAP_NORFLASH;
 | |
| 	flash->mtd.size = info->sector_size * info->n_sectors;
 | |
| 	flash->mtd.erase = m25p80_erase;
 | |
| 	flash->mtd.read = m25p80_read;
 | |
| 
 | |
| 	/* sst flash chips use AAI word program */
 | |
| 	if (info->jedec_id >> 16 == 0xbf)
 | |
| 		flash->mtd.write = sst_write;
 | |
| 	else
 | |
| 		flash->mtd.write = m25p80_write;
 | |
| 
 | |
| 	/* prefer "small sector" erase if possible */
 | |
| 	if (info->flags & SECT_4K) {
 | |
| 		flash->erase_opcode = OPCODE_BE_4K;
 | |
| 		flash->mtd.erasesize = 4096;
 | |
| 	} else {
 | |
| 		flash->erase_opcode = OPCODE_SE;
 | |
| 		flash->mtd.erasesize = info->sector_size;
 | |
| 	}
 | |
| 
 | |
| 	flash->mtd.dev.parent = &spi->dev;
 | |
| 
 | |
| 	dev_info(&spi->dev, "%s (%lld Kbytes)\n", info->name,
 | |
| 			(long long)flash->mtd.size >> 10);
 | |
| 
 | |
| 	DEBUG(MTD_DEBUG_LEVEL2,
 | |
| 		"mtd .name = %s, .size = 0x%llx (%lldMiB) "
 | |
| 			".erasesize = 0x%.8x (%uKiB) .numeraseregions = %d\n",
 | |
| 		flash->mtd.name,
 | |
| 		(long long)flash->mtd.size, (long long)(flash->mtd.size >> 20),
 | |
| 		flash->mtd.erasesize, flash->mtd.erasesize / 1024,
 | |
| 		flash->mtd.numeraseregions);
 | |
| 
 | |
| 	if (flash->mtd.numeraseregions)
 | |
| 		for (i = 0; i < flash->mtd.numeraseregions; i++)
 | |
| 			DEBUG(MTD_DEBUG_LEVEL2,
 | |
| 				"mtd.eraseregions[%d] = { .offset = 0x%llx, "
 | |
| 				".erasesize = 0x%.8x (%uKiB), "
 | |
| 				".numblocks = %d }\n",
 | |
| 				i, (long long)flash->mtd.eraseregions[i].offset,
 | |
| 				flash->mtd.eraseregions[i].erasesize,
 | |
| 				flash->mtd.eraseregions[i].erasesize / 1024,
 | |
| 				flash->mtd.eraseregions[i].numblocks);
 | |
| 
 | |
| 
 | |
| 	/* partitions should match sector boundaries; and it may be good to
 | |
| 	 * use readonly partitions for writeprotected sectors (BP2..BP0).
 | |
| 	 */
 | |
| 	if (mtd_has_partitions()) {
 | |
| 		struct mtd_partition	*parts = NULL;
 | |
| 		int			nr_parts = 0;
 | |
| 
 | |
| 		if (mtd_has_cmdlinepart()) {
 | |
| 			static const char *part_probes[]
 | |
| 					= { "cmdlinepart", NULL, };
 | |
| 
 | |
| 			nr_parts = parse_mtd_partitions(&flash->mtd,
 | |
| 					part_probes, &parts, 0);
 | |
| 		}
 | |
| 
 | |
| 		if (nr_parts <= 0 && data && data->parts) {
 | |
| 			parts = data->parts;
 | |
| 			nr_parts = data->nr_parts;
 | |
| 		}
 | |
| 
 | |
| 		if (nr_parts > 0) {
 | |
| 			for (i = 0; i < nr_parts; i++) {
 | |
| 				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "
 | |
| 					"{.name = %s, .offset = 0x%llx, "
 | |
| 						".size = 0x%llx (%lldKiB) }\n",
 | |
| 					i, parts[i].name,
 | |
| 					(long long)parts[i].offset,
 | |
| 					(long long)parts[i].size,
 | |
| 					(long long)(parts[i].size >> 10));
 | |
| 			}
 | |
| 			flash->partitioned = 1;
 | |
| 			return add_mtd_partitions(&flash->mtd, parts, nr_parts);
 | |
| 		}
 | |
| 	} else if (data && data->nr_parts)
 | |
| 		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",
 | |
| 				data->nr_parts, data->name);
 | |
| 
 | |
| 	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __devexit m25p_remove(struct spi_device *spi)
 | |
| {
 | |
| 	struct m25p	*flash = dev_get_drvdata(&spi->dev);
 | |
| 	int		status;
 | |
| 
 | |
| 	/* Clean up MTD stuff. */
 | |
| 	if (mtd_has_partitions() && flash->partitioned)
 | |
| 		status = del_mtd_partitions(&flash->mtd);
 | |
| 	else
 | |
| 		status = del_mtd_device(&flash->mtd);
 | |
| 	if (status == 0)
 | |
| 		kfree(flash);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static struct spi_driver m25p80_driver = {
 | |
| 	.driver = {
 | |
| 		.name	= "m25p80",
 | |
| 		.bus	= &spi_bus_type,
 | |
| 		.owner	= THIS_MODULE,
 | |
| 	},
 | |
| 	.probe	= m25p_probe,
 | |
| 	.remove	= __devexit_p(m25p_remove),
 | |
| 
 | |
| 	/* REVISIT: many of these chips have deep power-down modes, which
 | |
| 	 * should clearly be entered on suspend() to minimize power use.
 | |
| 	 * And also when they're otherwise idle...
 | |
| 	 */
 | |
| };
 | |
| 
 | |
| 
 | |
| static int __init m25p80_init(void)
 | |
| {
 | |
| 	return spi_register_driver(&m25p80_driver);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void __exit m25p80_exit(void)
 | |
| {
 | |
| 	spi_unregister_driver(&m25p80_driver);
 | |
| }
 | |
| 
 | |
| 
 | |
| module_init(m25p80_init);
 | |
| module_exit(m25p80_exit);
 | |
| 
 | |
| MODULE_LICENSE("GPL");
 | |
| MODULE_AUTHOR("Mike Lavender");
 | |
| MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");
 |