2281 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2281 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Device driver for the thermostats & fan controller of  the
 | 
						|
 * Apple G5 "PowerMac7,2" desktop machines.
 | 
						|
 *
 | 
						|
 * (c) Copyright IBM Corp. 2003-2004
 | 
						|
 *
 | 
						|
 * Maintained by: Benjamin Herrenschmidt
 | 
						|
 *                <benh@kernel.crashing.org>
 | 
						|
 * 
 | 
						|
 *
 | 
						|
 * The algorithm used is the PID control algorithm, used the same
 | 
						|
 * way the published Darwin code does, using the same values that
 | 
						|
 * are present in the Darwin 7.0 snapshot property lists.
 | 
						|
 *
 | 
						|
 * As far as the CPUs control loops are concerned, I use the
 | 
						|
 * calibration & PID constants provided by the EEPROM,
 | 
						|
 * I do _not_ embed any value from the property lists, as the ones
 | 
						|
 * provided by Darwin 7.0 seem to always have an older version that
 | 
						|
 * what I've seen on the actual computers.
 | 
						|
 * It would be interesting to verify that though. Darwin has a
 | 
						|
 * version code of 1.0.0d11 for all control loops it seems, while
 | 
						|
 * so far, the machines EEPROMs contain a dataset versioned 1.0.0f
 | 
						|
 *
 | 
						|
 * Darwin doesn't provide source to all parts, some missing
 | 
						|
 * bits like the AppleFCU driver or the actual scale of some
 | 
						|
 * of the values returned by sensors had to be "guessed" some
 | 
						|
 * way... or based on what Open Firmware does.
 | 
						|
 *
 | 
						|
 * I didn't yet figure out how to get the slots power consumption
 | 
						|
 * out of the FCU, so that part has not been implemented yet and
 | 
						|
 * the slots fan is set to a fixed 50% PWM, hoping this value is
 | 
						|
 * safe enough ...
 | 
						|
 *
 | 
						|
 * Note: I have observed strange oscillations of the CPU control
 | 
						|
 * loop on a dual G5 here. When idle, the CPU exhaust fan tend to
 | 
						|
 * oscillates slowly (over several minutes) between the minimum
 | 
						|
 * of 300RPMs and approx. 1000 RPMs. I don't know what is causing
 | 
						|
 * this, it could be some incorrect constant or an error in the
 | 
						|
 * way I ported the algorithm, or it could be just normal. I
 | 
						|
 * don't have full understanding on the way Apple tweaked the PID
 | 
						|
 * algorithm for the CPU control, it is definitely not a standard
 | 
						|
 * implementation...
 | 
						|
 *
 | 
						|
 * TODO:  - Check MPU structure version/signature
 | 
						|
 *        - Add things like /sbin/overtemp for non-critical
 | 
						|
 *          overtemp conditions so userland can take some policy
 | 
						|
 *          decisions, like slewing down CPUs
 | 
						|
 *	  - Deal with fan and i2c failures in a better way
 | 
						|
 *	  - Maybe do a generic PID based on params used for
 | 
						|
 *	    U3 and Drives ? Definitely need to factor code a bit
 | 
						|
 *          bettter... also make sensor detection more robust using
 | 
						|
 *          the device-tree to probe for them
 | 
						|
 *        - Figure out how to get the slots consumption and set the
 | 
						|
 *          slots fan accordingly
 | 
						|
 *
 | 
						|
 * History:
 | 
						|
 *
 | 
						|
 *  Nov. 13, 2003 : 0.5
 | 
						|
 *	- First release
 | 
						|
 *
 | 
						|
 *  Nov. 14, 2003 : 0.6
 | 
						|
 *	- Read fan speed from FCU, low level fan routines now deal
 | 
						|
 *	  with errors & check fan status, though higher level don't
 | 
						|
 *	  do much.
 | 
						|
 *	- Move a bunch of definitions to .h file
 | 
						|
 *
 | 
						|
 *  Nov. 18, 2003 : 0.7
 | 
						|
 *	- Fix build on ppc64 kernel
 | 
						|
 *	- Move back statics definitions to .c file
 | 
						|
 *	- Avoid calling schedule_timeout with a negative number
 | 
						|
 *
 | 
						|
 *  Dec. 18, 2003 : 0.8
 | 
						|
 *	- Fix typo when reading back fan speed on 2 CPU machines
 | 
						|
 *
 | 
						|
 *  Mar. 11, 2004 : 0.9
 | 
						|
 *	- Rework code accessing the ADC chips, make it more robust and
 | 
						|
 *	  closer to the chip spec. Also make sure it is configured properly,
 | 
						|
 *        I've seen yet unexplained cases where on startup, I would have stale
 | 
						|
 *        values in the configuration register
 | 
						|
 *	- Switch back to use of target fan speed for PID, thus lowering
 | 
						|
 *        pressure on i2c
 | 
						|
 *
 | 
						|
 *  Oct. 20, 2004 : 1.1
 | 
						|
 *	- Add device-tree lookup for fan IDs, should detect liquid cooling
 | 
						|
 *        pumps when present
 | 
						|
 *	- Enable driver for PowerMac7,3 machines
 | 
						|
 *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does
 | 
						|
 *	- Add new CPU cooling algorithm for machines with liquid cooling
 | 
						|
 *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree
 | 
						|
 *	- Fix a signed/unsigned compare issue in some PID loops
 | 
						|
 *
 | 
						|
 *  Mar. 10, 2005 : 1.2
 | 
						|
 *	- Add basic support for Xserve G5
 | 
						|
 *	- Retreive pumps min/max from EEPROM image in device-tree (broken)
 | 
						|
 *	- Use min/max macros here or there
 | 
						|
 *	- Latest darwin updated U3H min fan speed to 20% PWM
 | 
						|
 *
 | 
						|
 *  July. 06, 2006 : 1.3
 | 
						|
 *	- Fix setting of RPM fans on Xserve G5 (they were going too fast)
 | 
						|
 *      - Add missing slots fan control loop for Xserve G5
 | 
						|
 *	- Lower fixed slots fan speed from 50% to 40% on desktop G5s. We
 | 
						|
 *        still can't properly implement the control loop for these, so let's
 | 
						|
 *        reduce the noise a little bit, it appears that 40% still gives us
 | 
						|
 *        a pretty good air flow
 | 
						|
 *	- Add code to "tickle" the FCU regulary so it doesn't think that
 | 
						|
 *        we are gone while in fact, the machine just didn't need any fan
 | 
						|
 *        speed change lately
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/errno.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/delay.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/slab.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/wait.h>
 | 
						|
#include <linux/reboot.h>
 | 
						|
#include <linux/kmod.h>
 | 
						|
#include <linux/i2c.h>
 | 
						|
#include <linux/kthread.h>
 | 
						|
#include <linux/mutex.h>
 | 
						|
#include <linux/of_device.h>
 | 
						|
#include <linux/of_platform.h>
 | 
						|
#include <asm/prom.h>
 | 
						|
#include <asm/machdep.h>
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/system.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/macio.h>
 | 
						|
 | 
						|
#include "therm_pm72.h"
 | 
						|
 | 
						|
#define VERSION "1.3"
 | 
						|
 | 
						|
#undef DEBUG
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#define DBG(args...)	printk(args)
 | 
						|
#else
 | 
						|
#define DBG(args...)	do { } while(0)
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Driver statics
 | 
						|
 */
 | 
						|
 | 
						|
static struct of_device *		of_dev;
 | 
						|
static struct i2c_adapter *		u3_0;
 | 
						|
static struct i2c_adapter *		u3_1;
 | 
						|
static struct i2c_adapter *		k2;
 | 
						|
static struct i2c_client *		fcu;
 | 
						|
static struct cpu_pid_state		cpu_state[2];
 | 
						|
static struct basckside_pid_params	backside_params;
 | 
						|
static struct backside_pid_state	backside_state;
 | 
						|
static struct drives_pid_state		drives_state;
 | 
						|
static struct dimm_pid_state		dimms_state;
 | 
						|
static struct slots_pid_state		slots_state;
 | 
						|
static int				state;
 | 
						|
static int				cpu_count;
 | 
						|
static int				cpu_pid_type;
 | 
						|
static struct task_struct		*ctrl_task;
 | 
						|
static struct completion		ctrl_complete;
 | 
						|
static int				critical_state;
 | 
						|
static int				rackmac;
 | 
						|
static s32				dimm_output_clamp;
 | 
						|
static int 				fcu_rpm_shift;
 | 
						|
static int				fcu_tickle_ticks;
 | 
						|
static DEFINE_MUTEX(driver_lock);
 | 
						|
 | 
						|
/*
 | 
						|
 * We have 3 types of CPU PID control. One is "split" old style control
 | 
						|
 * for intake & exhaust fans, the other is "combined" control for both
 | 
						|
 * CPUs that also deals with the pumps when present. To be "compatible"
 | 
						|
 * with OS X at this point, we only use "COMBINED" on the machines that
 | 
						|
 * are identified as having the pumps (though that identification is at
 | 
						|
 * least dodgy). Ultimately, we could probably switch completely to this
 | 
						|
 * algorithm provided we hack it to deal with the UP case
 | 
						|
 */
 | 
						|
#define CPU_PID_TYPE_SPLIT	0
 | 
						|
#define CPU_PID_TYPE_COMBINED	1
 | 
						|
#define CPU_PID_TYPE_RACKMAC	2
 | 
						|
 | 
						|
/*
 | 
						|
 * This table describes all fans in the FCU. The "id" and "type" values
 | 
						|
 * are defaults valid for all earlier machines. Newer machines will
 | 
						|
 * eventually override the table content based on the device-tree
 | 
						|
 */
 | 
						|
struct fcu_fan_table
 | 
						|
{
 | 
						|
	char*	loc;	/* location code */
 | 
						|
	int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */
 | 
						|
	int	id;	/* id or -1 */
 | 
						|
};
 | 
						|
 | 
						|
#define FCU_FAN_RPM		0
 | 
						|
#define FCU_FAN_PWM		1
 | 
						|
 | 
						|
#define FCU_FAN_ABSENT_ID	-1
 | 
						|
 | 
						|
#define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans)
 | 
						|
 | 
						|
struct fcu_fan_table	fcu_fans[] = {
 | 
						|
	[BACKSIDE_FAN_PWM_INDEX] = {
 | 
						|
		.loc	= "BACKSIDE,SYS CTRLR FAN",
 | 
						|
		.type	= FCU_FAN_PWM,
 | 
						|
		.id	= BACKSIDE_FAN_PWM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	[DRIVES_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "DRIVE BAY",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= DRIVES_FAN_RPM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	[SLOTS_FAN_PWM_INDEX] = {
 | 
						|
		.loc	= "SLOT,PCI FAN",
 | 
						|
		.type	= FCU_FAN_PWM,
 | 
						|
		.id	= SLOTS_FAN_PWM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	[CPUA_INTAKE_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU A INTAKE",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	[CPUA_EXHAUST_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU A EXHAUST",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	[CPUB_INTAKE_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU B INTAKE",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	[CPUB_EXHAUST_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU B EXHAUST",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID,
 | 
						|
	},
 | 
						|
	/* pumps aren't present by default, have to be looked up in the
 | 
						|
	 * device-tree
 | 
						|
	 */
 | 
						|
	[CPUA_PUMP_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU A PUMP",
 | 
						|
		.type	= FCU_FAN_RPM,		
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	[CPUB_PUMP_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU B PUMP",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	/* Xserve fans */
 | 
						|
	[CPU_A1_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU A 1",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	[CPU_A2_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU A 2",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	[CPU_A3_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU A 3",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	[CPU_B1_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU B 1",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	[CPU_B2_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU B 2",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
	[CPU_B3_FAN_RPM_INDEX] = {
 | 
						|
		.loc	= "CPU B 3",
 | 
						|
		.type	= FCU_FAN_RPM,
 | 
						|
		.id	= FCU_FAN_ABSENT_ID,
 | 
						|
	},
 | 
						|
};
 | 
						|
 | 
						|
static struct i2c_driver therm_pm72_driver;
 | 
						|
 | 
						|
/*
 | 
						|
 * Utility function to create an i2c_client structure and
 | 
						|
 * attach it to one of u3 adapters
 | 
						|
 */
 | 
						|
static struct i2c_client *attach_i2c_chip(int id, const char *name)
 | 
						|
{
 | 
						|
	struct i2c_client *clt;
 | 
						|
	struct i2c_adapter *adap;
 | 
						|
	struct i2c_board_info info;
 | 
						|
 | 
						|
	if (id & 0x200)
 | 
						|
		adap = k2;
 | 
						|
	else if (id & 0x100)
 | 
						|
		adap = u3_1;
 | 
						|
	else
 | 
						|
		adap = u3_0;
 | 
						|
	if (adap == NULL)
 | 
						|
		return NULL;
 | 
						|
 | 
						|
	memset(&info, 0, sizeof(struct i2c_board_info));
 | 
						|
	info.addr = (id >> 1) & 0x7f;
 | 
						|
	strlcpy(info.type, "therm_pm72", I2C_NAME_SIZE);
 | 
						|
	clt = i2c_new_device(adap, &info);
 | 
						|
	if (!clt) {
 | 
						|
		printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id);
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let i2c-core delete that device on driver removal.
 | 
						|
	 * This is safe because i2c-core holds the core_lock mutex for us.
 | 
						|
	 */
 | 
						|
	list_add_tail(&clt->detected, &therm_pm72_driver.clients);
 | 
						|
	return clt;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Here are the i2c chip access wrappers
 | 
						|
 */
 | 
						|
 | 
						|
static void initialize_adc(struct cpu_pid_state *state)
 | 
						|
{
 | 
						|
	int rc;
 | 
						|
	u8 buf[2];
 | 
						|
 | 
						|
	/* Read ADC the configuration register and cache it. We
 | 
						|
	 * also make sure Config2 contains proper values, I've seen
 | 
						|
	 * cases where we got stale grabage in there, thus preventing
 | 
						|
	 * proper reading of conv. values
 | 
						|
	 */
 | 
						|
 | 
						|
	/* Clear Config2 */
 | 
						|
	buf[0] = 5;
 | 
						|
	buf[1] = 0;
 | 
						|
	i2c_master_send(state->monitor, buf, 2);
 | 
						|
 | 
						|
	/* Read & cache Config1 */
 | 
						|
	buf[0] = 1;
 | 
						|
	rc = i2c_master_send(state->monitor, buf, 1);
 | 
						|
	if (rc > 0) {
 | 
						|
		rc = i2c_master_recv(state->monitor, buf, 1);
 | 
						|
		if (rc > 0) {
 | 
						|
			state->adc_config = buf[0];
 | 
						|
			DBG("ADC config reg: %02x\n", state->adc_config);
 | 
						|
			/* Disable shutdown mode */
 | 
						|
		       	state->adc_config &= 0xfe;
 | 
						|
			buf[0] = 1;
 | 
						|
			buf[1] = state->adc_config;
 | 
						|
			rc = i2c_master_send(state->monitor, buf, 2);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (rc <= 0)
 | 
						|
		printk(KERN_ERR "therm_pm72: Error reading ADC config"
 | 
						|
		       " register !\n");
 | 
						|
}
 | 
						|
 | 
						|
static int read_smon_adc(struct cpu_pid_state *state, int chan)
 | 
						|
{
 | 
						|
	int rc, data, tries = 0;
 | 
						|
	u8 buf[2];
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		/* Set channel */
 | 
						|
		buf[0] = 1;
 | 
						|
		buf[1] = (state->adc_config & 0x1f) | (chan << 5);
 | 
						|
		rc = i2c_master_send(state->monitor, buf, 2);
 | 
						|
		if (rc <= 0)
 | 
						|
			goto error;
 | 
						|
		/* Wait for convertion */
 | 
						|
		msleep(1);
 | 
						|
		/* Switch to data register */
 | 
						|
		buf[0] = 4;
 | 
						|
		rc = i2c_master_send(state->monitor, buf, 1);
 | 
						|
		if (rc <= 0)
 | 
						|
			goto error;
 | 
						|
		/* Read result */
 | 
						|
		rc = i2c_master_recv(state->monitor, buf, 2);
 | 
						|
		if (rc < 0)
 | 
						|
			goto error;
 | 
						|
		data = ((u16)buf[0]) << 8 | (u16)buf[1];
 | 
						|
		return data >> 6;
 | 
						|
	error:
 | 
						|
		DBG("Error reading ADC, retrying...\n");
 | 
						|
		if (++tries > 10) {
 | 
						|
			printk(KERN_ERR "therm_pm72: Error reading ADC !\n");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		msleep(10);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int read_lm87_reg(struct i2c_client * chip, int reg)
 | 
						|
{
 | 
						|
	int rc, tries = 0;
 | 
						|
	u8 buf;
 | 
						|
 | 
						|
	for (;;) {
 | 
						|
		/* Set address */
 | 
						|
		buf = (u8)reg;
 | 
						|
		rc = i2c_master_send(chip, &buf, 1);
 | 
						|
		if (rc <= 0)
 | 
						|
			goto error;
 | 
						|
		rc = i2c_master_recv(chip, &buf, 1);
 | 
						|
		if (rc <= 0)
 | 
						|
			goto error;
 | 
						|
		return (int)buf;
 | 
						|
	error:
 | 
						|
		DBG("Error reading LM87, retrying...\n");
 | 
						|
		if (++tries > 10) {
 | 
						|
			printk(KERN_ERR "therm_pm72: Error reading LM87 !\n");
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		msleep(10);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int fan_read_reg(int reg, unsigned char *buf, int nb)
 | 
						|
{
 | 
						|
	int tries, nr, nw;
 | 
						|
 | 
						|
	buf[0] = reg;
 | 
						|
	tries = 0;
 | 
						|
	for (;;) {
 | 
						|
		nw = i2c_master_send(fcu, buf, 1);
 | 
						|
		if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100)
 | 
						|
			break;
 | 
						|
		msleep(10);
 | 
						|
		++tries;
 | 
						|
	}
 | 
						|
	if (nw <= 0) {
 | 
						|
		printk(KERN_ERR "Failure writing address to FCU: %d", nw);
 | 
						|
		return -EIO;
 | 
						|
	}
 | 
						|
	tries = 0;
 | 
						|
	for (;;) {
 | 
						|
		nr = i2c_master_recv(fcu, buf, nb);
 | 
						|
		if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100)
 | 
						|
			break;
 | 
						|
		msleep(10);
 | 
						|
		++tries;
 | 
						|
	}
 | 
						|
	if (nr <= 0)
 | 
						|
		printk(KERN_ERR "Failure reading data from FCU: %d", nw);
 | 
						|
	return nr;
 | 
						|
}
 | 
						|
 | 
						|
static int fan_write_reg(int reg, const unsigned char *ptr, int nb)
 | 
						|
{
 | 
						|
	int tries, nw;
 | 
						|
	unsigned char buf[16];
 | 
						|
 | 
						|
	buf[0] = reg;
 | 
						|
	memcpy(buf+1, ptr, nb);
 | 
						|
	++nb;
 | 
						|
	tries = 0;
 | 
						|
	for (;;) {
 | 
						|
		nw = i2c_master_send(fcu, buf, nb);
 | 
						|
		if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100)
 | 
						|
			break;
 | 
						|
		msleep(10);
 | 
						|
		++tries;
 | 
						|
	}
 | 
						|
	if (nw < 0)
 | 
						|
		printk(KERN_ERR "Failure writing to FCU: %d", nw);
 | 
						|
	return nw;
 | 
						|
}
 | 
						|
 | 
						|
static int start_fcu(void)
 | 
						|
{
 | 
						|
	unsigned char buf = 0xff;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	rc = fan_write_reg(0xe, &buf, 1);
 | 
						|
	if (rc < 0)
 | 
						|
		return -EIO;
 | 
						|
	rc = fan_write_reg(0x2e, &buf, 1);
 | 
						|
	if (rc < 0)
 | 
						|
		return -EIO;
 | 
						|
	rc = fan_read_reg(0, &buf, 1);
 | 
						|
	if (rc < 0)
 | 
						|
		return -EIO;
 | 
						|
	fcu_rpm_shift = (buf == 1) ? 2 : 3;
 | 
						|
	printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n",
 | 
						|
	       fcu_rpm_shift);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int set_rpm_fan(int fan_index, int rpm)
 | 
						|
{
 | 
						|
	unsigned char buf[2];
 | 
						|
	int rc, id, min, max;
 | 
						|
 | 
						|
	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 | 
						|
		return -EINVAL;
 | 
						|
	id = fcu_fans[fan_index].id; 
 | 
						|
	if (id == FCU_FAN_ABSENT_ID)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	min = 2400 >> fcu_rpm_shift;
 | 
						|
	max = 56000 >> fcu_rpm_shift;
 | 
						|
 | 
						|
	if (rpm < min)
 | 
						|
		rpm = min;
 | 
						|
	else if (rpm > max)
 | 
						|
		rpm = max;
 | 
						|
	buf[0] = rpm >> (8 - fcu_rpm_shift);
 | 
						|
	buf[1] = rpm << fcu_rpm_shift;
 | 
						|
	rc = fan_write_reg(0x10 + (id * 2), buf, 2);
 | 
						|
	if (rc < 0)
 | 
						|
		return -EIO;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int get_rpm_fan(int fan_index, int programmed)
 | 
						|
{
 | 
						|
	unsigned char failure;
 | 
						|
	unsigned char active;
 | 
						|
	unsigned char buf[2];
 | 
						|
	int rc, id, reg_base;
 | 
						|
 | 
						|
	if (fcu_fans[fan_index].type != FCU_FAN_RPM)
 | 
						|
		return -EINVAL;
 | 
						|
	id = fcu_fans[fan_index].id; 
 | 
						|
	if (id == FCU_FAN_ABSENT_ID)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	rc = fan_read_reg(0xb, &failure, 1);
 | 
						|
	if (rc != 1)
 | 
						|
		return -EIO;
 | 
						|
	if ((failure & (1 << id)) != 0)
 | 
						|
		return -EFAULT;
 | 
						|
	rc = fan_read_reg(0xd, &active, 1);
 | 
						|
	if (rc != 1)
 | 
						|
		return -EIO;
 | 
						|
	if ((active & (1 << id)) == 0)
 | 
						|
		return -ENXIO;
 | 
						|
 | 
						|
	/* Programmed value or real current speed */
 | 
						|
	reg_base = programmed ? 0x10 : 0x11;
 | 
						|
	rc = fan_read_reg(reg_base + (id * 2), buf, 2);
 | 
						|
	if (rc != 2)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift;
 | 
						|
}
 | 
						|
 | 
						|
static int set_pwm_fan(int fan_index, int pwm)
 | 
						|
{
 | 
						|
	unsigned char buf[2];
 | 
						|
	int rc, id;
 | 
						|
 | 
						|
	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 | 
						|
		return -EINVAL;
 | 
						|
	id = fcu_fans[fan_index].id; 
 | 
						|
	if (id == FCU_FAN_ABSENT_ID)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	if (pwm < 10)
 | 
						|
		pwm = 10;
 | 
						|
	else if (pwm > 100)
 | 
						|
		pwm = 100;
 | 
						|
	pwm = (pwm * 2559) / 1000;
 | 
						|
	buf[0] = pwm;
 | 
						|
	rc = fan_write_reg(0x30 + (id * 2), buf, 1);
 | 
						|
	if (rc < 0)
 | 
						|
		return rc;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int get_pwm_fan(int fan_index)
 | 
						|
{
 | 
						|
	unsigned char failure;
 | 
						|
	unsigned char active;
 | 
						|
	unsigned char buf[2];
 | 
						|
	int rc, id;
 | 
						|
 | 
						|
	if (fcu_fans[fan_index].type != FCU_FAN_PWM)
 | 
						|
		return -EINVAL;
 | 
						|
	id = fcu_fans[fan_index].id; 
 | 
						|
	if (id == FCU_FAN_ABSENT_ID)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	rc = fan_read_reg(0x2b, &failure, 1);
 | 
						|
	if (rc != 1)
 | 
						|
		return -EIO;
 | 
						|
	if ((failure & (1 << id)) != 0)
 | 
						|
		return -EFAULT;
 | 
						|
	rc = fan_read_reg(0x2d, &active, 1);
 | 
						|
	if (rc != 1)
 | 
						|
		return -EIO;
 | 
						|
	if ((active & (1 << id)) == 0)
 | 
						|
		return -ENXIO;
 | 
						|
 | 
						|
	/* Programmed value or real current speed */
 | 
						|
	rc = fan_read_reg(0x30 + (id * 2), buf, 1);
 | 
						|
	if (rc != 1)
 | 
						|
		return -EIO;
 | 
						|
 | 
						|
	return (buf[0] * 1000) / 2559;
 | 
						|
}
 | 
						|
 | 
						|
static void tickle_fcu(void)
 | 
						|
{
 | 
						|
	int pwm;
 | 
						|
 | 
						|
	pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 | 
						|
 | 
						|
	DBG("FCU Tickle, slots fan is: %d\n", pwm);
 | 
						|
	if (pwm < 0)
 | 
						|
		pwm = 100;
 | 
						|
 | 
						|
	if (!rackmac) {
 | 
						|
		pwm = SLOTS_FAN_DEFAULT_PWM;
 | 
						|
	} else if (pwm < SLOTS_PID_OUTPUT_MIN)
 | 
						|
		pwm = SLOTS_PID_OUTPUT_MIN;
 | 
						|
 | 
						|
	/* That is hopefully enough to make the FCU happy */
 | 
						|
	set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Utility routine to read the CPU calibration EEPROM data
 | 
						|
 * from the device-tree
 | 
						|
 */
 | 
						|
static int read_eeprom(int cpu, struct mpu_data *out)
 | 
						|
{
 | 
						|
	struct device_node *np;
 | 
						|
	char nodename[64];
 | 
						|
	const u8 *data;
 | 
						|
	int len;
 | 
						|
 | 
						|
	/* prom.c routine for finding a node by path is a bit brain dead
 | 
						|
	 * and requires exact @xxx unit numbers. This is a bit ugly but
 | 
						|
	 * will work for these machines
 | 
						|
	 */
 | 
						|
	sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0);
 | 
						|
	np = of_find_node_by_path(nodename);
 | 
						|
	if (np == NULL) {
 | 
						|
		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n");
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
	data = of_get_property(np, "cpuid", &len);
 | 
						|
	if (data == NULL) {
 | 
						|
		printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n");
 | 
						|
		of_node_put(np);
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
	memcpy(out, data, sizeof(struct mpu_data));
 | 
						|
	of_node_put(np);
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void fetch_cpu_pumps_minmax(void)
 | 
						|
{
 | 
						|
	struct cpu_pid_state *state0 = &cpu_state[0];
 | 
						|
	struct cpu_pid_state *state1 = &cpu_state[1];
 | 
						|
	u16 pump_min = 0, pump_max = 0xffff;
 | 
						|
	u16 tmp[4];
 | 
						|
 | 
						|
	/* Try to fetch pumps min/max infos from eeprom */
 | 
						|
 | 
						|
	memcpy(&tmp, &state0->mpu.processor_part_num, 8);
 | 
						|
	if (tmp[0] != 0xffff && tmp[1] != 0xffff) {
 | 
						|
		pump_min = max(pump_min, tmp[0]);
 | 
						|
		pump_max = min(pump_max, tmp[1]);
 | 
						|
	}
 | 
						|
	if (tmp[2] != 0xffff && tmp[3] != 0xffff) {
 | 
						|
		pump_min = max(pump_min, tmp[2]);
 | 
						|
		pump_max = min(pump_max, tmp[3]);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Double check the values, this _IS_ needed as the EEPROM on
 | 
						|
	 * some dual 2.5Ghz G5s seem, at least, to have both min & max
 | 
						|
	 * same to the same value ... (grrrr)
 | 
						|
	 */
 | 
						|
	if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) {
 | 
						|
		pump_min = CPU_PUMP_OUTPUT_MIN;
 | 
						|
		pump_max = CPU_PUMP_OUTPUT_MAX;
 | 
						|
	}
 | 
						|
 | 
						|
	state0->pump_min = state1->pump_min = pump_min;
 | 
						|
	state0->pump_max = state1->pump_max = pump_max;
 | 
						|
}
 | 
						|
 | 
						|
/* 
 | 
						|
 * Now, unfortunately, sysfs doesn't give us a nice void * we could
 | 
						|
 * pass around to the attribute functions, so we don't really have
 | 
						|
 * choice but implement a bunch of them...
 | 
						|
 *
 | 
						|
 * That sucks a bit, we take the lock because FIX32TOPRINT evaluates
 | 
						|
 * the input twice... I accept patches :)
 | 
						|
 */
 | 
						|
#define BUILD_SHOW_FUNC_FIX(name, data)				\
 | 
						|
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
 | 
						|
{								\
 | 
						|
	ssize_t r;						\
 | 
						|
	mutex_lock(&driver_lock);					\
 | 
						|
	r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\
 | 
						|
	mutex_unlock(&driver_lock);					\
 | 
						|
	return r;						\
 | 
						|
}
 | 
						|
#define BUILD_SHOW_FUNC_INT(name, data)				\
 | 
						|
static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\
 | 
						|
{								\
 | 
						|
	return sprintf(buf, "%d", data);			\
 | 
						|
}
 | 
						|
 | 
						|
BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp)
 | 
						|
BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage)
 | 
						|
BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a)
 | 
						|
BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm)
 | 
						|
BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm)
 | 
						|
 | 
						|
BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp)
 | 
						|
BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage)
 | 
						|
BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a)
 | 
						|
BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm)
 | 
						|
BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm)
 | 
						|
 | 
						|
BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp)
 | 
						|
BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm)
 | 
						|
 | 
						|
BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp)
 | 
						|
BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm)
 | 
						|
 | 
						|
BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp)
 | 
						|
BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm)
 | 
						|
 | 
						|
BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp)
 | 
						|
 | 
						|
static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL);
 | 
						|
static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL);
 | 
						|
static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL);
 | 
						|
static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL);
 | 
						|
static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL);
 | 
						|
 | 
						|
static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL);
 | 
						|
static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL);
 | 
						|
static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL);
 | 
						|
static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL);
 | 
						|
static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL);
 | 
						|
 | 
						|
static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL);
 | 
						|
static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL);
 | 
						|
 | 
						|
static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL);
 | 
						|
static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL);
 | 
						|
 | 
						|
static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL);
 | 
						|
static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL);
 | 
						|
 | 
						|
static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL);
 | 
						|
 | 
						|
/*
 | 
						|
 * CPUs fans control loop
 | 
						|
 */
 | 
						|
 | 
						|
static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power)
 | 
						|
{
 | 
						|
	s32 ltemp, volts, amps;
 | 
						|
	int index, rc = 0;
 | 
						|
 | 
						|
	/* Default (in case of error) */
 | 
						|
	*temp = state->cur_temp;
 | 
						|
	*power = state->cur_power;
 | 
						|
 | 
						|
	if (cpu_pid_type == CPU_PID_TYPE_RACKMAC)
 | 
						|
		index = (state->index == 0) ?
 | 
						|
			CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX;
 | 
						|
	else
 | 
						|
		index = (state->index == 0) ?
 | 
						|
			CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX;
 | 
						|
 | 
						|
	/* Read current fan status */
 | 
						|
	rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED);
 | 
						|
	if (rc < 0) {
 | 
						|
		/* XXX What do we do now ? Nothing for now, keep old value, but
 | 
						|
		 * return error upstream
 | 
						|
		 */
 | 
						|
		DBG("  cpu %d, fan reading error !\n", state->index);
 | 
						|
	} else {
 | 
						|
		state->rpm = rc;
 | 
						|
		DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm);
 | 
						|
	}
 | 
						|
 | 
						|
	/* Get some sensor readings and scale it */
 | 
						|
	ltemp = read_smon_adc(state, 1);
 | 
						|
	if (ltemp == -1) {
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
		state->overtemp++;
 | 
						|
		if (rc == 0)
 | 
						|
			rc = -EIO;
 | 
						|
		DBG("  cpu %d, temp reading error !\n", state->index);
 | 
						|
	} else {
 | 
						|
		/* Fixup temperature according to diode calibration
 | 
						|
		 */
 | 
						|
		DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n",
 | 
						|
		    state->index,
 | 
						|
		    ltemp, state->mpu.mdiode, state->mpu.bdiode);
 | 
						|
		*temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2;
 | 
						|
		state->last_temp = *temp;
 | 
						|
		DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp)));
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Read voltage & current and calculate power
 | 
						|
	 */
 | 
						|
	volts = read_smon_adc(state, 3);
 | 
						|
	amps = read_smon_adc(state, 4);
 | 
						|
 | 
						|
	/* Scale voltage and current raw sensor values according to fixed scales
 | 
						|
	 * obtained in Darwin and calculate power from I and V
 | 
						|
	 */
 | 
						|
	volts *= ADC_CPU_VOLTAGE_SCALE;
 | 
						|
	amps *= ADC_CPU_CURRENT_SCALE;
 | 
						|
	*power = (((u64)volts) * ((u64)amps)) >> 16;
 | 
						|
	state->voltage = volts;
 | 
						|
	state->current_a = amps;
 | 
						|
	state->last_power = *power;
 | 
						|
 | 
						|
	DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n",
 | 
						|
	    state->index, FIX32TOPRINT(state->current_a),
 | 
						|
	    FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power));
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power)
 | 
						|
{
 | 
						|
	s32 power_target, integral, derivative, proportional, adj_in_target, sval;
 | 
						|
	s64 integ_p, deriv_p, prop_p, sum; 
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* Calculate power target value (could be done once for all)
 | 
						|
	 * and convert to a 16.16 fp number
 | 
						|
	 */
 | 
						|
	power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16;
 | 
						|
	DBG("  power target: %d.%03d, error: %d.%03d\n",
 | 
						|
	    FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power));
 | 
						|
 | 
						|
	/* Store temperature and power in history array */
 | 
						|
	state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 | 
						|
	state->temp_history[state->cur_temp] = temp;
 | 
						|
	state->cur_power = (state->cur_power + 1) % state->count_power;
 | 
						|
	state->power_history[state->cur_power] = power;
 | 
						|
	state->error_history[state->cur_power] = power_target - power;
 | 
						|
	
 | 
						|
	/* If first loop, fill the history table */
 | 
						|
	if (state->first) {
 | 
						|
		for (i = 0; i < (state->count_power - 1); i++) {
 | 
						|
			state->cur_power = (state->cur_power + 1) % state->count_power;
 | 
						|
			state->power_history[state->cur_power] = power;
 | 
						|
			state->error_history[state->cur_power] = power_target - power;
 | 
						|
		}
 | 
						|
		for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) {
 | 
						|
			state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE;
 | 
						|
			state->temp_history[state->cur_temp] = temp;			
 | 
						|
		}
 | 
						|
		state->first = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the integral term normally based on the "power" values */
 | 
						|
	sum = 0;
 | 
						|
	integral = 0;
 | 
						|
	for (i = 0; i < state->count_power; i++)
 | 
						|
		integral += state->error_history[i];
 | 
						|
	integral *= CPU_PID_INTERVAL;
 | 
						|
	DBG("  integral: %08x\n", integral);
 | 
						|
 | 
						|
	/* Calculate the adjusted input (sense value).
 | 
						|
	 *   G_r is 12.20
 | 
						|
	 *   integ is 16.16
 | 
						|
	 *   so the result is 28.36
 | 
						|
	 *
 | 
						|
	 * input target is mpu.ttarget, input max is mpu.tmax
 | 
						|
	 */
 | 
						|
	integ_p = ((s64)state->mpu.pid_gr) * (s64)integral;
 | 
						|
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 | 
						|
	sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff);
 | 
						|
	adj_in_target = (state->mpu.ttarget << 16);
 | 
						|
	if (adj_in_target > sval)
 | 
						|
		adj_in_target = sval;
 | 
						|
	DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target),
 | 
						|
	    state->mpu.ttarget);
 | 
						|
 | 
						|
	/* Calculate the derivative term */
 | 
						|
	derivative = state->temp_history[state->cur_temp] -
 | 
						|
		state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1)
 | 
						|
				    % CPU_TEMP_HISTORY_SIZE];
 | 
						|
	derivative /= CPU_PID_INTERVAL;
 | 
						|
	deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative;
 | 
						|
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 | 
						|
	sum += deriv_p;
 | 
						|
 | 
						|
	/* Calculate the proportional term */
 | 
						|
	proportional = temp - adj_in_target;
 | 
						|
	prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional;
 | 
						|
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 | 
						|
	sum += prop_p;
 | 
						|
 | 
						|
	/* Scale sum */
 | 
						|
	sum >>= 36;
 | 
						|
 | 
						|
	DBG("   sum: %d\n", (int)sum);
 | 
						|
	state->rpm += (s32)sum;
 | 
						|
}
 | 
						|
 | 
						|
static void do_monitor_cpu_combined(void)
 | 
						|
{
 | 
						|
	struct cpu_pid_state *state0 = &cpu_state[0];
 | 
						|
	struct cpu_pid_state *state1 = &cpu_state[1];
 | 
						|
	s32 temp0, power0, temp1, power1;
 | 
						|
	s32 temp_combi, power_combi;
 | 
						|
	int rc, intake, pump;
 | 
						|
 | 
						|
	rc = do_read_one_cpu_values(state0, &temp0, &power0);
 | 
						|
	if (rc < 0) {
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	}
 | 
						|
	state1->overtemp = 0;
 | 
						|
	rc = do_read_one_cpu_values(state1, &temp1, &power1);
 | 
						|
	if (rc < 0) {
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	}
 | 
						|
	if (state1->overtemp)
 | 
						|
		state0->overtemp++;
 | 
						|
 | 
						|
	temp_combi = max(temp0, temp1);
 | 
						|
	power_combi = max(power0, power1);
 | 
						|
 | 
						|
	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
 | 
						|
	 * full blown immediately and try to trigger a shutdown
 | 
						|
	 */
 | 
						|
	if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) {
 | 
						|
		printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n",
 | 
						|
		       temp_combi >> 16);
 | 
						|
		state0->overtemp += CPU_MAX_OVERTEMP / 4;
 | 
						|
	} else if (temp_combi > (state0->mpu.tmax << 16))
 | 
						|
		state0->overtemp++;
 | 
						|
	else
 | 
						|
		state0->overtemp = 0;
 | 
						|
	if (state0->overtemp >= CPU_MAX_OVERTEMP)
 | 
						|
		critical_state = 1;
 | 
						|
	if (state0->overtemp > 0) {
 | 
						|
		state0->rpm = state0->mpu.rmaxn_exhaust_fan;
 | 
						|
		state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan;
 | 
						|
		pump = state0->pump_max;
 | 
						|
		goto do_set_fans;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Do the PID */
 | 
						|
	do_cpu_pid(state0, temp_combi, power_combi);
 | 
						|
 | 
						|
	/* Range check */
 | 
						|
	state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan);
 | 
						|
	state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan);
 | 
						|
 | 
						|
	/* Calculate intake fan speed */
 | 
						|
	intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16;
 | 
						|
	intake = max(intake, (int)state0->mpu.rminn_intake_fan);
 | 
						|
	intake = min(intake, (int)state0->mpu.rmaxn_intake_fan);
 | 
						|
	state0->intake_rpm = intake;
 | 
						|
 | 
						|
	/* Calculate pump speed */
 | 
						|
	pump = (state0->rpm * state0->pump_max) /
 | 
						|
		state0->mpu.rmaxn_exhaust_fan;
 | 
						|
	pump = min(pump, state0->pump_max);
 | 
						|
	pump = max(pump, state0->pump_min);
 | 
						|
	
 | 
						|
 do_set_fans:
 | 
						|
	/* We copy values from state 0 to state 1 for /sysfs */
 | 
						|
	state1->rpm = state0->rpm;
 | 
						|
	state1->intake_rpm = state0->intake_rpm;
 | 
						|
 | 
						|
	DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n",
 | 
						|
	    state1->index, (int)state1->rpm, intake, pump, state1->overtemp);
 | 
						|
 | 
						|
	/* We should check for errors, shouldn't we ? But then, what
 | 
						|
	 * do we do once the error occurs ? For FCU notified fan
 | 
						|
	 * failures (-EFAULT) we probably want to notify userland
 | 
						|
	 * some way...
 | 
						|
	 */
 | 
						|
	set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
 | 
						|
	set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm);
 | 
						|
	set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
 | 
						|
	set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm);
 | 
						|
 | 
						|
	if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
 | 
						|
		set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump);
 | 
						|
	if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID)
 | 
						|
		set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump);
 | 
						|
}
 | 
						|
 | 
						|
static void do_monitor_cpu_split(struct cpu_pid_state *state)
 | 
						|
{
 | 
						|
	s32 temp, power;
 | 
						|
	int rc, intake;
 | 
						|
 | 
						|
	/* Read current fan status */
 | 
						|
	rc = do_read_one_cpu_values(state, &temp, &power);
 | 
						|
	if (rc < 0) {
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
 | 
						|
	 * full blown immediately and try to trigger a shutdown
 | 
						|
	 */
 | 
						|
	if (temp >= ((state->mpu.tmax + 8) << 16)) {
 | 
						|
		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
 | 
						|
		       " (%d) !\n",
 | 
						|
		       state->index, temp >> 16);
 | 
						|
		state->overtemp += CPU_MAX_OVERTEMP / 4;
 | 
						|
	} else if (temp > (state->mpu.tmax << 16))
 | 
						|
		state->overtemp++;
 | 
						|
	else
 | 
						|
		state->overtemp = 0;
 | 
						|
	if (state->overtemp >= CPU_MAX_OVERTEMP)
 | 
						|
		critical_state = 1;
 | 
						|
	if (state->overtemp > 0) {
 | 
						|
		state->rpm = state->mpu.rmaxn_exhaust_fan;
 | 
						|
		state->intake_rpm = intake = state->mpu.rmaxn_intake_fan;
 | 
						|
		goto do_set_fans;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Do the PID */
 | 
						|
	do_cpu_pid(state, temp, power);
 | 
						|
 | 
						|
	/* Range check */
 | 
						|
	state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan);
 | 
						|
	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan);
 | 
						|
 | 
						|
	/* Calculate intake fan */
 | 
						|
	intake = (state->rpm * CPU_INTAKE_SCALE) >> 16;
 | 
						|
	intake = max(intake, (int)state->mpu.rminn_intake_fan);
 | 
						|
	intake = min(intake, (int)state->mpu.rmaxn_intake_fan);
 | 
						|
	state->intake_rpm = intake;
 | 
						|
 | 
						|
 do_set_fans:
 | 
						|
	DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n",
 | 
						|
	    state->index, (int)state->rpm, intake, state->overtemp);
 | 
						|
 | 
						|
	/* We should check for errors, shouldn't we ? But then, what
 | 
						|
	 * do we do once the error occurs ? For FCU notified fan
 | 
						|
	 * failures (-EFAULT) we probably want to notify userland
 | 
						|
	 * some way...
 | 
						|
	 */
 | 
						|
	if (state->index == 0) {
 | 
						|
		set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake);
 | 
						|
		set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm);
 | 
						|
	} else {
 | 
						|
		set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake);
 | 
						|
		set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void do_monitor_cpu_rack(struct cpu_pid_state *state)
 | 
						|
{
 | 
						|
	s32 temp, power, fan_min;
 | 
						|
	int rc;
 | 
						|
 | 
						|
	/* Read current fan status */
 | 
						|
	rc = do_read_one_cpu_values(state, &temp, &power);
 | 
						|
	if (rc < 0) {
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check tmax, increment overtemp if we are there. At tmax+8, we go
 | 
						|
	 * full blown immediately and try to trigger a shutdown
 | 
						|
	 */
 | 
						|
	if (temp >= ((state->mpu.tmax + 8) << 16)) {
 | 
						|
		printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum"
 | 
						|
		       " (%d) !\n",
 | 
						|
		       state->index, temp >> 16);
 | 
						|
		state->overtemp = CPU_MAX_OVERTEMP / 4;
 | 
						|
	} else if (temp > (state->mpu.tmax << 16))
 | 
						|
		state->overtemp++;
 | 
						|
	else
 | 
						|
		state->overtemp = 0;
 | 
						|
	if (state->overtemp >= CPU_MAX_OVERTEMP)
 | 
						|
		critical_state = 1;
 | 
						|
	if (state->overtemp > 0) {
 | 
						|
		state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan;
 | 
						|
		goto do_set_fans;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Do the PID */
 | 
						|
	do_cpu_pid(state, temp, power);
 | 
						|
 | 
						|
	/* Check clamp from dimms */
 | 
						|
	fan_min = dimm_output_clamp;
 | 
						|
	fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan);
 | 
						|
 | 
						|
	DBG(" CPU min mpu = %d, min dimm = %d\n",
 | 
						|
	    state->mpu.rminn_intake_fan, dimm_output_clamp);
 | 
						|
 | 
						|
	state->rpm = max(state->rpm, (int)fan_min);
 | 
						|
	state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan);
 | 
						|
	state->intake_rpm = state->rpm;
 | 
						|
 | 
						|
 do_set_fans:
 | 
						|
	DBG("** CPU %d RPM: %d overtemp: %d\n",
 | 
						|
	    state->index, (int)state->rpm, state->overtemp);
 | 
						|
 | 
						|
	/* We should check for errors, shouldn't we ? But then, what
 | 
						|
	 * do we do once the error occurs ? For FCU notified fan
 | 
						|
	 * failures (-EFAULT) we probably want to notify userland
 | 
						|
	 * some way...
 | 
						|
	 */
 | 
						|
	if (state->index == 0) {
 | 
						|
		set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm);
 | 
						|
		set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm);
 | 
						|
		set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm);
 | 
						|
	} else {
 | 
						|
		set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm);
 | 
						|
		set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm);
 | 
						|
		set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the state structure for one CPU control loop
 | 
						|
 */
 | 
						|
static int init_cpu_state(struct cpu_pid_state *state, int index)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	state->index = index;
 | 
						|
	state->first = 1;
 | 
						|
	state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000;
 | 
						|
	state->overtemp = 0;
 | 
						|
	state->adc_config = 0x00;
 | 
						|
 | 
						|
 | 
						|
	if (index == 0)
 | 
						|
		state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor");
 | 
						|
	else if (index == 1)
 | 
						|
		state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor");
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	if (read_eeprom(index, &state->mpu))
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	state->count_power = state->mpu.tguardband;
 | 
						|
	if (state->count_power > CPU_POWER_HISTORY_SIZE) {
 | 
						|
		printk(KERN_WARNING "Warning ! too many power history slots\n");
 | 
						|
		state->count_power = CPU_POWER_HISTORY_SIZE;
 | 
						|
	}
 | 
						|
	DBG("CPU %d Using %d power history entries\n", index, state->count_power);
 | 
						|
 | 
						|
	if (index == 0) {
 | 
						|
		err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
 | 
						|
	} else {
 | 
						|
		err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
 | 
						|
		err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
 | 
						|
	}
 | 
						|
	if (err)
 | 
						|
		printk(KERN_WARNING "Failed to create some of the atribute"
 | 
						|
			"files for CPU %d\n", index);
 | 
						|
 | 
						|
	return 0;
 | 
						|
 fail:
 | 
						|
	state->monitor = NULL;
 | 
						|
	
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dispose of the state data for one CPU control loop
 | 
						|
 */
 | 
						|
static void dispose_cpu_state(struct cpu_pid_state *state)
 | 
						|
{
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	if (state->index == 0) {
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_current);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm);
 | 
						|
	} else {
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_current);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm);
 | 
						|
		device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm);
 | 
						|
	}
 | 
						|
 | 
						|
	state->monitor = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Motherboard backside & U3 heatsink fan control loop
 | 
						|
 */
 | 
						|
static void do_monitor_backside(struct backside_pid_state *state)
 | 
						|
{
 | 
						|
	s32 temp, integral, derivative, fan_min;
 | 
						|
	s64 integ_p, deriv_p, prop_p, sum; 
 | 
						|
	int i, rc;
 | 
						|
 | 
						|
	if (--state->ticks != 0)
 | 
						|
		return;
 | 
						|
	state->ticks = backside_params.interval;
 | 
						|
 | 
						|
	DBG("backside:\n");
 | 
						|
 | 
						|
	/* Check fan status */
 | 
						|
	rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX);
 | 
						|
	if (rc < 0) {
 | 
						|
		printk(KERN_WARNING "Error %d reading backside fan !\n", rc);
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	} else
 | 
						|
		state->pwm = rc;
 | 
						|
	DBG("  current pwm: %d\n", state->pwm);
 | 
						|
 | 
						|
	/* Get some sensor readings */
 | 
						|
	temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16;
 | 
						|
	state->last_temp = temp;
 | 
						|
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 | 
						|
	    FIX32TOPRINT(backside_params.input_target));
 | 
						|
 | 
						|
	/* Store temperature and error in history array */
 | 
						|
	state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE;
 | 
						|
	state->sample_history[state->cur_sample] = temp;
 | 
						|
	state->error_history[state->cur_sample] = temp - backside_params.input_target;
 | 
						|
	
 | 
						|
	/* If first loop, fill the history table */
 | 
						|
	if (state->first) {
 | 
						|
		for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) {
 | 
						|
			state->cur_sample = (state->cur_sample + 1) %
 | 
						|
				BACKSIDE_PID_HISTORY_SIZE;
 | 
						|
			state->sample_history[state->cur_sample] = temp;
 | 
						|
			state->error_history[state->cur_sample] =
 | 
						|
				temp - backside_params.input_target;
 | 
						|
		}
 | 
						|
		state->first = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the integral term */
 | 
						|
	sum = 0;
 | 
						|
	integral = 0;
 | 
						|
	for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++)
 | 
						|
		integral += state->error_history[i];
 | 
						|
	integral *= backside_params.interval;
 | 
						|
	DBG("  integral: %08x\n", integral);
 | 
						|
	integ_p = ((s64)backside_params.G_r) * (s64)integral;
 | 
						|
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 | 
						|
	sum += integ_p;
 | 
						|
 | 
						|
	/* Calculate the derivative term */
 | 
						|
	derivative = state->error_history[state->cur_sample] -
 | 
						|
		state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1)
 | 
						|
				    % BACKSIDE_PID_HISTORY_SIZE];
 | 
						|
	derivative /= backside_params.interval;
 | 
						|
	deriv_p = ((s64)backside_params.G_d) * (s64)derivative;
 | 
						|
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 | 
						|
	sum += deriv_p;
 | 
						|
 | 
						|
	/* Calculate the proportional term */
 | 
						|
	prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]);
 | 
						|
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 | 
						|
	sum += prop_p;
 | 
						|
 | 
						|
	/* Scale sum */
 | 
						|
	sum >>= 36;
 | 
						|
 | 
						|
	DBG("   sum: %d\n", (int)sum);
 | 
						|
	if (backside_params.additive)
 | 
						|
		state->pwm += (s32)sum;
 | 
						|
	else
 | 
						|
		state->pwm = sum;
 | 
						|
 | 
						|
	/* Check for clamp */
 | 
						|
	fan_min = (dimm_output_clamp * 100) / 14000;
 | 
						|
	fan_min = max(fan_min, backside_params.output_min);
 | 
						|
 | 
						|
	state->pwm = max(state->pwm, fan_min);
 | 
						|
	state->pwm = min(state->pwm, backside_params.output_max);
 | 
						|
 | 
						|
	DBG("** BACKSIDE PWM: %d\n", (int)state->pwm);
 | 
						|
	set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the state structure for the backside fan control loop
 | 
						|
 */
 | 
						|
static int init_backside_state(struct backside_pid_state *state)
 | 
						|
{
 | 
						|
	struct device_node *u3;
 | 
						|
	int u3h = 1; /* conservative by default */
 | 
						|
	int err;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * There are different PID params for machines with U3 and machines
 | 
						|
	 * with U3H, pick the right ones now
 | 
						|
	 */
 | 
						|
	u3 = of_find_node_by_path("/u3@0,f8000000");
 | 
						|
	if (u3 != NULL) {
 | 
						|
		const u32 *vers = of_get_property(u3, "device-rev", NULL);
 | 
						|
		if (vers)
 | 
						|
			if (((*vers) & 0x3f) < 0x34)
 | 
						|
				u3h = 0;
 | 
						|
		of_node_put(u3);
 | 
						|
	}
 | 
						|
 | 
						|
	if (rackmac) {
 | 
						|
		backside_params.G_d = BACKSIDE_PID_RACK_G_d;
 | 
						|
		backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET;
 | 
						|
		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
 | 
						|
		backside_params.interval = BACKSIDE_PID_RACK_INTERVAL;
 | 
						|
		backside_params.G_p = BACKSIDE_PID_RACK_G_p;
 | 
						|
		backside_params.G_r = BACKSIDE_PID_G_r;
 | 
						|
		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
 | 
						|
		backside_params.additive = 0;
 | 
						|
	} else if (u3h) {
 | 
						|
		backside_params.G_d = BACKSIDE_PID_U3H_G_d;
 | 
						|
		backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET;
 | 
						|
		backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN;
 | 
						|
		backside_params.interval = BACKSIDE_PID_INTERVAL;
 | 
						|
		backside_params.G_p = BACKSIDE_PID_G_p;
 | 
						|
		backside_params.G_r = BACKSIDE_PID_G_r;
 | 
						|
		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
 | 
						|
		backside_params.additive = 1;
 | 
						|
	} else {
 | 
						|
		backside_params.G_d = BACKSIDE_PID_U3_G_d;
 | 
						|
		backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET;
 | 
						|
		backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN;
 | 
						|
		backside_params.interval = BACKSIDE_PID_INTERVAL;
 | 
						|
		backside_params.G_p = BACKSIDE_PID_G_p;
 | 
						|
		backside_params.G_r = BACKSIDE_PID_G_r;
 | 
						|
		backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX;
 | 
						|
		backside_params.additive = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	state->ticks = 1;
 | 
						|
	state->first = 1;
 | 
						|
	state->pwm = 50;
 | 
						|
 | 
						|
	state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp");
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature);
 | 
						|
	err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
 | 
						|
	if (err)
 | 
						|
		printk(KERN_WARNING "Failed to create attribute file(s)"
 | 
						|
			" for backside fan\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dispose of the state data for the backside control loop
 | 
						|
 */
 | 
						|
static void dispose_backside_state(struct backside_pid_state *state)
 | 
						|
{
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_backside_temperature);
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm);
 | 
						|
 | 
						|
	state->monitor = NULL;
 | 
						|
}
 | 
						|
 
 | 
						|
/*
 | 
						|
 * Drives bay fan control loop
 | 
						|
 */
 | 
						|
static void do_monitor_drives(struct drives_pid_state *state)
 | 
						|
{
 | 
						|
	s32 temp, integral, derivative;
 | 
						|
	s64 integ_p, deriv_p, prop_p, sum; 
 | 
						|
	int i, rc;
 | 
						|
 | 
						|
	if (--state->ticks != 0)
 | 
						|
		return;
 | 
						|
	state->ticks = DRIVES_PID_INTERVAL;
 | 
						|
 | 
						|
	DBG("drives:\n");
 | 
						|
 | 
						|
	/* Check fan status */
 | 
						|
	rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED);
 | 
						|
	if (rc < 0) {
 | 
						|
		printk(KERN_WARNING "Error %d reading drives fan !\n", rc);
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	} else
 | 
						|
		state->rpm = rc;
 | 
						|
	DBG("  current rpm: %d\n", state->rpm);
 | 
						|
 | 
						|
	/* Get some sensor readings */
 | 
						|
	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
 | 
						|
						    DS1775_TEMP)) << 8;
 | 
						|
	state->last_temp = temp;
 | 
						|
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 | 
						|
	    FIX32TOPRINT(DRIVES_PID_INPUT_TARGET));
 | 
						|
 | 
						|
	/* Store temperature and error in history array */
 | 
						|
	state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE;
 | 
						|
	state->sample_history[state->cur_sample] = temp;
 | 
						|
	state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET;
 | 
						|
	
 | 
						|
	/* If first loop, fill the history table */
 | 
						|
	if (state->first) {
 | 
						|
		for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) {
 | 
						|
			state->cur_sample = (state->cur_sample + 1) %
 | 
						|
				DRIVES_PID_HISTORY_SIZE;
 | 
						|
			state->sample_history[state->cur_sample] = temp;
 | 
						|
			state->error_history[state->cur_sample] =
 | 
						|
				temp - DRIVES_PID_INPUT_TARGET;
 | 
						|
		}
 | 
						|
		state->first = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the integral term */
 | 
						|
	sum = 0;
 | 
						|
	integral = 0;
 | 
						|
	for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++)
 | 
						|
		integral += state->error_history[i];
 | 
						|
	integral *= DRIVES_PID_INTERVAL;
 | 
						|
	DBG("  integral: %08x\n", integral);
 | 
						|
	integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral;
 | 
						|
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 | 
						|
	sum += integ_p;
 | 
						|
 | 
						|
	/* Calculate the derivative term */
 | 
						|
	derivative = state->error_history[state->cur_sample] -
 | 
						|
		state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1)
 | 
						|
				    % DRIVES_PID_HISTORY_SIZE];
 | 
						|
	derivative /= DRIVES_PID_INTERVAL;
 | 
						|
	deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative;
 | 
						|
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 | 
						|
	sum += deriv_p;
 | 
						|
 | 
						|
	/* Calculate the proportional term */
 | 
						|
	prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
 | 
						|
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 | 
						|
	sum += prop_p;
 | 
						|
 | 
						|
	/* Scale sum */
 | 
						|
	sum >>= 36;
 | 
						|
 | 
						|
	DBG("   sum: %d\n", (int)sum);
 | 
						|
	state->rpm += (s32)sum;
 | 
						|
 | 
						|
	state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN);
 | 
						|
	state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX);
 | 
						|
 | 
						|
	DBG("** DRIVES RPM: %d\n", (int)state->rpm);
 | 
						|
	set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the state structure for the drives bay fan control loop
 | 
						|
 */
 | 
						|
static int init_drives_state(struct drives_pid_state *state)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	state->ticks = 1;
 | 
						|
	state->first = 1;
 | 
						|
	state->rpm = 1000;
 | 
						|
 | 
						|
	state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp");
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature);
 | 
						|
	err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
 | 
						|
	if (err)
 | 
						|
		printk(KERN_WARNING "Failed to create attribute file(s)"
 | 
						|
			" for drives bay fan\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dispose of the state data for the drives control loop
 | 
						|
 */
 | 
						|
static void dispose_drives_state(struct drives_pid_state *state)
 | 
						|
{
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_drives_temperature);
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm);
 | 
						|
 | 
						|
	state->monitor = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * DIMMs temp control loop
 | 
						|
 */
 | 
						|
static void do_monitor_dimms(struct dimm_pid_state *state)
 | 
						|
{
 | 
						|
	s32 temp, integral, derivative, fan_min;
 | 
						|
	s64 integ_p, deriv_p, prop_p, sum;
 | 
						|
	int i;
 | 
						|
 | 
						|
	if (--state->ticks != 0)
 | 
						|
		return;
 | 
						|
	state->ticks = DIMM_PID_INTERVAL;
 | 
						|
 | 
						|
	DBG("DIMM:\n");
 | 
						|
 | 
						|
	DBG("  current value: %d\n", state->output);
 | 
						|
 | 
						|
	temp = read_lm87_reg(state->monitor, LM87_INT_TEMP);
 | 
						|
	if (temp < 0)
 | 
						|
		return;
 | 
						|
	temp <<= 16;
 | 
						|
	state->last_temp = temp;
 | 
						|
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 | 
						|
	    FIX32TOPRINT(DIMM_PID_INPUT_TARGET));
 | 
						|
 | 
						|
	/* Store temperature and error in history array */
 | 
						|
	state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE;
 | 
						|
	state->sample_history[state->cur_sample] = temp;
 | 
						|
	state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET;
 | 
						|
 | 
						|
	/* If first loop, fill the history table */
 | 
						|
	if (state->first) {
 | 
						|
		for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) {
 | 
						|
			state->cur_sample = (state->cur_sample + 1) %
 | 
						|
				DIMM_PID_HISTORY_SIZE;
 | 
						|
			state->sample_history[state->cur_sample] = temp;
 | 
						|
			state->error_history[state->cur_sample] =
 | 
						|
				temp - DIMM_PID_INPUT_TARGET;
 | 
						|
		}
 | 
						|
		state->first = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the integral term */
 | 
						|
	sum = 0;
 | 
						|
	integral = 0;
 | 
						|
	for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++)
 | 
						|
		integral += state->error_history[i];
 | 
						|
	integral *= DIMM_PID_INTERVAL;
 | 
						|
	DBG("  integral: %08x\n", integral);
 | 
						|
	integ_p = ((s64)DIMM_PID_G_r) * (s64)integral;
 | 
						|
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 | 
						|
	sum += integ_p;
 | 
						|
 | 
						|
	/* Calculate the derivative term */
 | 
						|
	derivative = state->error_history[state->cur_sample] -
 | 
						|
		state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1)
 | 
						|
				    % DIMM_PID_HISTORY_SIZE];
 | 
						|
	derivative /= DIMM_PID_INTERVAL;
 | 
						|
	deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative;
 | 
						|
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 | 
						|
	sum += deriv_p;
 | 
						|
 | 
						|
	/* Calculate the proportional term */
 | 
						|
	prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
 | 
						|
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 | 
						|
	sum += prop_p;
 | 
						|
 | 
						|
	/* Scale sum */
 | 
						|
	sum >>= 36;
 | 
						|
 | 
						|
	DBG("   sum: %d\n", (int)sum);
 | 
						|
	state->output = (s32)sum;
 | 
						|
	state->output = max(state->output, DIMM_PID_OUTPUT_MIN);
 | 
						|
	state->output = min(state->output, DIMM_PID_OUTPUT_MAX);
 | 
						|
	dimm_output_clamp = state->output;
 | 
						|
 | 
						|
	DBG("** DIMM clamp value: %d\n", (int)state->output);
 | 
						|
 | 
						|
	/* Backside PID is only every 5 seconds, force backside fan clamping now */
 | 
						|
	fan_min = (dimm_output_clamp * 100) / 14000;
 | 
						|
	fan_min = max(fan_min, backside_params.output_min);
 | 
						|
	if (backside_state.pwm < fan_min) {
 | 
						|
		backside_state.pwm = fan_min;
 | 
						|
		DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min);
 | 
						|
		set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the state structure for the DIMM temp control loop
 | 
						|
 */
 | 
						|
static int init_dimms_state(struct dimm_pid_state *state)
 | 
						|
{
 | 
						|
	state->ticks = 1;
 | 
						|
	state->first = 1;
 | 
						|
	state->output = 4000;
 | 
						|
 | 
						|
	state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp");
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature))
 | 
						|
		printk(KERN_WARNING "Failed to create attribute file"
 | 
						|
			" for DIMM temperature\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dispose of the state data for the DIMM control loop
 | 
						|
 */
 | 
						|
static void dispose_dimms_state(struct dimm_pid_state *state)
 | 
						|
{
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature);
 | 
						|
 | 
						|
	state->monitor = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Slots fan control loop
 | 
						|
 */
 | 
						|
static void do_monitor_slots(struct slots_pid_state *state)
 | 
						|
{
 | 
						|
	s32 temp, integral, derivative;
 | 
						|
	s64 integ_p, deriv_p, prop_p, sum;
 | 
						|
	int i, rc;
 | 
						|
 | 
						|
	if (--state->ticks != 0)
 | 
						|
		return;
 | 
						|
	state->ticks = SLOTS_PID_INTERVAL;
 | 
						|
 | 
						|
	DBG("slots:\n");
 | 
						|
 | 
						|
	/* Check fan status */
 | 
						|
	rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX);
 | 
						|
	if (rc < 0) {
 | 
						|
		printk(KERN_WARNING "Error %d reading slots fan !\n", rc);
 | 
						|
		/* XXX What do we do now ? */
 | 
						|
	} else
 | 
						|
		state->pwm = rc;
 | 
						|
	DBG("  current pwm: %d\n", state->pwm);
 | 
						|
 | 
						|
	/* Get some sensor readings */
 | 
						|
	temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor,
 | 
						|
						    DS1775_TEMP)) << 8;
 | 
						|
	state->last_temp = temp;
 | 
						|
	DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp),
 | 
						|
	    FIX32TOPRINT(SLOTS_PID_INPUT_TARGET));
 | 
						|
 | 
						|
	/* Store temperature and error in history array */
 | 
						|
	state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE;
 | 
						|
	state->sample_history[state->cur_sample] = temp;
 | 
						|
	state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET;
 | 
						|
 | 
						|
	/* If first loop, fill the history table */
 | 
						|
	if (state->first) {
 | 
						|
		for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) {
 | 
						|
			state->cur_sample = (state->cur_sample + 1) %
 | 
						|
				SLOTS_PID_HISTORY_SIZE;
 | 
						|
			state->sample_history[state->cur_sample] = temp;
 | 
						|
			state->error_history[state->cur_sample] =
 | 
						|
				temp - SLOTS_PID_INPUT_TARGET;
 | 
						|
		}
 | 
						|
		state->first = 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Calculate the integral term */
 | 
						|
	sum = 0;
 | 
						|
	integral = 0;
 | 
						|
	for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++)
 | 
						|
		integral += state->error_history[i];
 | 
						|
	integral *= SLOTS_PID_INTERVAL;
 | 
						|
	DBG("  integral: %08x\n", integral);
 | 
						|
	integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral;
 | 
						|
	DBG("   integ_p: %d\n", (int)(integ_p >> 36));
 | 
						|
	sum += integ_p;
 | 
						|
 | 
						|
	/* Calculate the derivative term */
 | 
						|
	derivative = state->error_history[state->cur_sample] -
 | 
						|
		state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1)
 | 
						|
				    % SLOTS_PID_HISTORY_SIZE];
 | 
						|
	derivative /= SLOTS_PID_INTERVAL;
 | 
						|
	deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative;
 | 
						|
	DBG("   deriv_p: %d\n", (int)(deriv_p >> 36));
 | 
						|
	sum += deriv_p;
 | 
						|
 | 
						|
	/* Calculate the proportional term */
 | 
						|
	prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]);
 | 
						|
	DBG("   prop_p: %d\n", (int)(prop_p >> 36));
 | 
						|
	sum += prop_p;
 | 
						|
 | 
						|
	/* Scale sum */
 | 
						|
	sum >>= 36;
 | 
						|
 | 
						|
	DBG("   sum: %d\n", (int)sum);
 | 
						|
	state->pwm = (s32)sum;
 | 
						|
 | 
						|
	state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN);
 | 
						|
	state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX);
 | 
						|
 | 
						|
	DBG("** DRIVES PWM: %d\n", (int)state->pwm);
 | 
						|
	set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Initialize the state structure for the slots bay fan control loop
 | 
						|
 */
 | 
						|
static int init_slots_state(struct slots_pid_state *state)
 | 
						|
{
 | 
						|
	int err;
 | 
						|
 | 
						|
	state->ticks = 1;
 | 
						|
	state->first = 1;
 | 
						|
	state->pwm = 50;
 | 
						|
 | 
						|
	state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp");
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature);
 | 
						|
	err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
 | 
						|
	if (err)
 | 
						|
		printk(KERN_WARNING "Failed to create attribute file(s)"
 | 
						|
			" for slots bay fan\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dispose of the state data for the slots control loop
 | 
						|
 */
 | 
						|
static void dispose_slots_state(struct slots_pid_state *state)
 | 
						|
{
 | 
						|
	if (state->monitor == NULL)
 | 
						|
		return;
 | 
						|
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_slots_temperature);
 | 
						|
	device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm);
 | 
						|
 | 
						|
	state->monitor = NULL;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int call_critical_overtemp(void)
 | 
						|
{
 | 
						|
	char *argv[] = { critical_overtemp_path, NULL };
 | 
						|
	static char *envp[] = { "HOME=/",
 | 
						|
				"TERM=linux",
 | 
						|
				"PATH=/sbin:/usr/sbin:/bin:/usr/bin",
 | 
						|
				NULL };
 | 
						|
 | 
						|
	return call_usermodehelper(critical_overtemp_path,
 | 
						|
				   argv, envp, UMH_WAIT_EXEC);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Here's the kernel thread that calls the various control loops
 | 
						|
 */
 | 
						|
static int main_control_loop(void *x)
 | 
						|
{
 | 
						|
	DBG("main_control_loop started\n");
 | 
						|
 | 
						|
	mutex_lock(&driver_lock);
 | 
						|
 | 
						|
	if (start_fcu() < 0) {
 | 
						|
		printk(KERN_ERR "kfand: failed to start FCU\n");
 | 
						|
		mutex_unlock(&driver_lock);
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Set the PCI fan once for now on non-RackMac */
 | 
						|
	if (!rackmac)
 | 
						|
		set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM);
 | 
						|
 | 
						|
	/* Initialize ADCs */
 | 
						|
	initialize_adc(&cpu_state[0]);
 | 
						|
	if (cpu_state[1].monitor != NULL)
 | 
						|
		initialize_adc(&cpu_state[1]);
 | 
						|
 | 
						|
	fcu_tickle_ticks = FCU_TICKLE_TICKS;
 | 
						|
 | 
						|
	mutex_unlock(&driver_lock);
 | 
						|
 | 
						|
	while (state == state_attached) {
 | 
						|
		unsigned long elapsed, start;
 | 
						|
 | 
						|
		start = jiffies;
 | 
						|
 | 
						|
		mutex_lock(&driver_lock);
 | 
						|
 | 
						|
		/* Tickle the FCU just in case */
 | 
						|
		if (--fcu_tickle_ticks < 0) {
 | 
						|
			fcu_tickle_ticks = FCU_TICKLE_TICKS;
 | 
						|
			tickle_fcu();
 | 
						|
		}
 | 
						|
 | 
						|
		/* First, we always calculate the new DIMMs state on an Xserve */
 | 
						|
		if (rackmac)
 | 
						|
			do_monitor_dimms(&dimms_state);
 | 
						|
 | 
						|
		/* Then, the CPUs */
 | 
						|
		if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
 | 
						|
			do_monitor_cpu_combined();
 | 
						|
		else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) {
 | 
						|
			do_monitor_cpu_rack(&cpu_state[0]);
 | 
						|
			if (cpu_state[1].monitor != NULL)
 | 
						|
				do_monitor_cpu_rack(&cpu_state[1]);
 | 
						|
			// better deal with UP
 | 
						|
		} else {
 | 
						|
			do_monitor_cpu_split(&cpu_state[0]);
 | 
						|
			if (cpu_state[1].monitor != NULL)
 | 
						|
				do_monitor_cpu_split(&cpu_state[1]);
 | 
						|
			// better deal with UP
 | 
						|
		}
 | 
						|
		/* Then, the rest */
 | 
						|
		do_monitor_backside(&backside_state);
 | 
						|
		if (rackmac)
 | 
						|
			do_monitor_slots(&slots_state);
 | 
						|
		else
 | 
						|
			do_monitor_drives(&drives_state);
 | 
						|
		mutex_unlock(&driver_lock);
 | 
						|
 | 
						|
		if (critical_state == 1) {
 | 
						|
			printk(KERN_WARNING "Temperature control detected a critical condition\n");
 | 
						|
			printk(KERN_WARNING "Attempting to shut down...\n");
 | 
						|
			if (call_critical_overtemp()) {
 | 
						|
				printk(KERN_WARNING "Can't call %s, power off now!\n",
 | 
						|
				       critical_overtemp_path);
 | 
						|
				machine_power_off();
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (critical_state > 0)
 | 
						|
			critical_state++;
 | 
						|
		if (critical_state > MAX_CRITICAL_STATE) {
 | 
						|
			printk(KERN_WARNING "Shutdown timed out, power off now !\n");
 | 
						|
			machine_power_off();
 | 
						|
		}
 | 
						|
 | 
						|
		// FIXME: Deal with signals
 | 
						|
		elapsed = jiffies - start;
 | 
						|
		if (elapsed < HZ)
 | 
						|
			schedule_timeout_interruptible(HZ - elapsed);
 | 
						|
	}
 | 
						|
 | 
						|
 out:
 | 
						|
	DBG("main_control_loop ended\n");
 | 
						|
 | 
						|
	ctrl_task = 0;
 | 
						|
	complete_and_exit(&ctrl_complete, 0);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Dispose the control loops when tearing down
 | 
						|
 */
 | 
						|
static void dispose_control_loops(void)
 | 
						|
{
 | 
						|
	dispose_cpu_state(&cpu_state[0]);
 | 
						|
	dispose_cpu_state(&cpu_state[1]);
 | 
						|
	dispose_backside_state(&backside_state);
 | 
						|
	dispose_drives_state(&drives_state);
 | 
						|
	dispose_slots_state(&slots_state);
 | 
						|
	dispose_dimms_state(&dimms_state);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create the control loops. U3-0 i2c bus is up, so we can now
 | 
						|
 * get to the various sensors
 | 
						|
 */
 | 
						|
static int create_control_loops(void)
 | 
						|
{
 | 
						|
	struct device_node *np;
 | 
						|
 | 
						|
	/* Count CPUs from the device-tree, we don't care how many are
 | 
						|
	 * actually used by Linux
 | 
						|
	 */
 | 
						|
	cpu_count = 0;
 | 
						|
	for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));)
 | 
						|
		cpu_count++;
 | 
						|
 | 
						|
	DBG("counted %d CPUs in the device-tree\n", cpu_count);
 | 
						|
 | 
						|
	/* Decide the type of PID algorithm to use based on the presence of
 | 
						|
	 * the pumps, though that may not be the best way, that is good enough
 | 
						|
	 * for now
 | 
						|
	 */
 | 
						|
	if (rackmac)
 | 
						|
		cpu_pid_type = CPU_PID_TYPE_RACKMAC;
 | 
						|
	else if (machine_is_compatible("PowerMac7,3")
 | 
						|
	    && (cpu_count > 1)
 | 
						|
	    && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID
 | 
						|
	    && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) {
 | 
						|
		printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n");
 | 
						|
		cpu_pid_type = CPU_PID_TYPE_COMBINED;
 | 
						|
	} else
 | 
						|
		cpu_pid_type = CPU_PID_TYPE_SPLIT;
 | 
						|
 | 
						|
	/* Create control loops for everything. If any fail, everything
 | 
						|
	 * fails
 | 
						|
	 */
 | 
						|
	if (init_cpu_state(&cpu_state[0], 0))
 | 
						|
		goto fail;
 | 
						|
	if (cpu_pid_type == CPU_PID_TYPE_COMBINED)
 | 
						|
		fetch_cpu_pumps_minmax();
 | 
						|
 | 
						|
	if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1))
 | 
						|
		goto fail;
 | 
						|
	if (init_backside_state(&backside_state))
 | 
						|
		goto fail;
 | 
						|
	if (rackmac && init_dimms_state(&dimms_state))
 | 
						|
		goto fail;
 | 
						|
	if (rackmac && init_slots_state(&slots_state))
 | 
						|
		goto fail;
 | 
						|
	if (!rackmac && init_drives_state(&drives_state))
 | 
						|
		goto fail;
 | 
						|
 | 
						|
	DBG("all control loops up !\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
	
 | 
						|
 fail:
 | 
						|
	DBG("failure creating control loops, disposing\n");
 | 
						|
 | 
						|
	dispose_control_loops();
 | 
						|
 | 
						|
	return -ENODEV;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Start the control loops after everything is up, that is create
 | 
						|
 * the thread that will make them run
 | 
						|
 */
 | 
						|
static void start_control_loops(void)
 | 
						|
{
 | 
						|
	init_completion(&ctrl_complete);
 | 
						|
 | 
						|
	ctrl_task = kthread_run(main_control_loop, NULL, "kfand");
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Stop the control loops when tearing down
 | 
						|
 */
 | 
						|
static void stop_control_loops(void)
 | 
						|
{
 | 
						|
	if (ctrl_task)
 | 
						|
		wait_for_completion(&ctrl_complete);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Attach to the i2c FCU after detecting U3-1 bus
 | 
						|
 */
 | 
						|
static int attach_fcu(void)
 | 
						|
{
 | 
						|
	fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu");
 | 
						|
	if (fcu == NULL)
 | 
						|
		return -ENODEV;
 | 
						|
 | 
						|
	DBG("FCU attached\n");
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Detach from the i2c FCU when tearing down
 | 
						|
 */
 | 
						|
static void detach_fcu(void)
 | 
						|
{
 | 
						|
	fcu = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Attach to the i2c controller. We probe the various chips based
 | 
						|
 * on the device-tree nodes and build everything for the driver to
 | 
						|
 * run, we then kick the driver monitoring thread
 | 
						|
 */
 | 
						|
static int therm_pm72_attach(struct i2c_adapter *adapter)
 | 
						|
{
 | 
						|
	mutex_lock(&driver_lock);
 | 
						|
 | 
						|
	/* Check state */
 | 
						|
	if (state == state_detached)
 | 
						|
		state = state_attaching;
 | 
						|
	if (state != state_attaching) {
 | 
						|
		mutex_unlock(&driver_lock);
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Check if we are looking for one of these */
 | 
						|
	if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) {
 | 
						|
		u3_0 = adapter;
 | 
						|
		DBG("found U3-0\n");
 | 
						|
		if (k2 || !rackmac)
 | 
						|
			if (create_control_loops())
 | 
						|
				u3_0 = NULL;
 | 
						|
	} else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) {
 | 
						|
		u3_1 = adapter;
 | 
						|
		DBG("found U3-1, attaching FCU\n");
 | 
						|
		if (attach_fcu())
 | 
						|
			u3_1 = NULL;
 | 
						|
	} else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) {
 | 
						|
		k2 = adapter;
 | 
						|
		DBG("Found K2\n");
 | 
						|
		if (u3_0 && rackmac)
 | 
						|
			if (create_control_loops())
 | 
						|
				k2 = NULL;
 | 
						|
	}
 | 
						|
	/* We got all we need, start control loops */
 | 
						|
	if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) {
 | 
						|
		DBG("everything up, starting control loops\n");
 | 
						|
		state = state_attached;
 | 
						|
		start_control_loops();
 | 
						|
	}
 | 
						|
	mutex_unlock(&driver_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int therm_pm72_probe(struct i2c_client *client,
 | 
						|
			    const struct i2c_device_id *id)
 | 
						|
{
 | 
						|
	/* Always succeed, the real work was done in therm_pm72_attach() */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called when any of the devices which participates into thermal management
 | 
						|
 * is going away.
 | 
						|
 */
 | 
						|
static int therm_pm72_remove(struct i2c_client *client)
 | 
						|
{
 | 
						|
	struct i2c_adapter *adapter = client->adapter;
 | 
						|
 | 
						|
	mutex_lock(&driver_lock);
 | 
						|
 | 
						|
	if (state != state_detached)
 | 
						|
		state = state_detaching;
 | 
						|
 | 
						|
	/* Stop control loops if any */
 | 
						|
	DBG("stopping control loops\n");
 | 
						|
	mutex_unlock(&driver_lock);
 | 
						|
	stop_control_loops();
 | 
						|
	mutex_lock(&driver_lock);
 | 
						|
 | 
						|
	if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) {
 | 
						|
		DBG("lost U3-0, disposing control loops\n");
 | 
						|
		dispose_control_loops();
 | 
						|
		u3_0 = NULL;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) {
 | 
						|
		DBG("lost U3-1, detaching FCU\n");
 | 
						|
		detach_fcu();
 | 
						|
		u3_1 = NULL;
 | 
						|
	}
 | 
						|
	if (u3_0 == NULL && u3_1 == NULL)
 | 
						|
		state = state_detached;
 | 
						|
 | 
						|
	mutex_unlock(&driver_lock);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * i2c_driver structure to attach to the host i2c controller
 | 
						|
 */
 | 
						|
 | 
						|
static const struct i2c_device_id therm_pm72_id[] = {
 | 
						|
	/*
 | 
						|
	 * Fake device name, thermal management is done by several
 | 
						|
	 * chips but we don't need to differentiate between them at
 | 
						|
	 * this point.
 | 
						|
	 */
 | 
						|
	{ "therm_pm72", 0 },
 | 
						|
	{ }
 | 
						|
};
 | 
						|
 | 
						|
static struct i2c_driver therm_pm72_driver = {
 | 
						|
	.driver = {
 | 
						|
		.name	= "therm_pm72",
 | 
						|
	},
 | 
						|
	.attach_adapter	= therm_pm72_attach,
 | 
						|
	.probe		= therm_pm72_probe,
 | 
						|
	.remove		= therm_pm72_remove,
 | 
						|
	.id_table	= therm_pm72_id,
 | 
						|
};
 | 
						|
 | 
						|
static int fan_check_loc_match(const char *loc, int fan)
 | 
						|
{
 | 
						|
	char	tmp[64];
 | 
						|
	char	*c, *e;
 | 
						|
 | 
						|
	strlcpy(tmp, fcu_fans[fan].loc, 64);
 | 
						|
 | 
						|
	c = tmp;
 | 
						|
	for (;;) {
 | 
						|
		e = strchr(c, ',');
 | 
						|
		if (e)
 | 
						|
			*e = 0;
 | 
						|
		if (strcmp(loc, c) == 0)
 | 
						|
			return 1;
 | 
						|
		if (e == NULL)
 | 
						|
			break;
 | 
						|
		c = e + 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void fcu_lookup_fans(struct device_node *fcu_node)
 | 
						|
{
 | 
						|
	struct device_node *np = NULL;
 | 
						|
	int i;
 | 
						|
 | 
						|
	/* The table is filled by default with values that are suitable
 | 
						|
	 * for the old machines without device-tree informations. We scan
 | 
						|
	 * the device-tree and override those values with whatever is
 | 
						|
	 * there
 | 
						|
	 */
 | 
						|
 | 
						|
	DBG("Looking up FCU controls in device-tree...\n");
 | 
						|
 | 
						|
	while ((np = of_get_next_child(fcu_node, np)) != NULL) {
 | 
						|
		int type = -1;
 | 
						|
		const char *loc;
 | 
						|
		const u32 *reg;
 | 
						|
 | 
						|
		DBG(" control: %s, type: %s\n", np->name, np->type);
 | 
						|
 | 
						|
		/* Detect control type */
 | 
						|
		if (!strcmp(np->type, "fan-rpm-control") ||
 | 
						|
		    !strcmp(np->type, "fan-rpm"))
 | 
						|
			type = FCU_FAN_RPM;
 | 
						|
		if (!strcmp(np->type, "fan-pwm-control") ||
 | 
						|
		    !strcmp(np->type, "fan-pwm"))
 | 
						|
			type = FCU_FAN_PWM;
 | 
						|
		/* Only care about fans for now */
 | 
						|
		if (type == -1)
 | 
						|
			continue;
 | 
						|
 | 
						|
		/* Lookup for a matching location */
 | 
						|
		loc = of_get_property(np, "location", NULL);
 | 
						|
		reg = of_get_property(np, "reg", NULL);
 | 
						|
		if (loc == NULL || reg == NULL)
 | 
						|
			continue;
 | 
						|
		DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg);
 | 
						|
 | 
						|
		for (i = 0; i < FCU_FAN_COUNT; i++) {
 | 
						|
			int fan_id;
 | 
						|
 | 
						|
			if (!fan_check_loc_match(loc, i))
 | 
						|
				continue;
 | 
						|
			DBG(" location match, index: %d\n", i);
 | 
						|
			fcu_fans[i].id = FCU_FAN_ABSENT_ID;
 | 
						|
			if (type != fcu_fans[i].type) {
 | 
						|
				printk(KERN_WARNING "therm_pm72: Fan type mismatch "
 | 
						|
				       "in device-tree for %s\n", np->full_name);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (type == FCU_FAN_RPM)
 | 
						|
				fan_id = ((*reg) - 0x10) / 2;
 | 
						|
			else
 | 
						|
				fan_id = ((*reg) - 0x30) / 2;
 | 
						|
			if (fan_id > 7) {
 | 
						|
				printk(KERN_WARNING "therm_pm72: Can't parse "
 | 
						|
				       "fan ID in device-tree for %s\n", np->full_name);
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			DBG(" fan id -> %d, type -> %d\n", fan_id, type);
 | 
						|
			fcu_fans[i].id = fan_id;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* Now dump the array */
 | 
						|
	printk(KERN_INFO "Detected fan controls:\n");
 | 
						|
	for (i = 0; i < FCU_FAN_COUNT; i++) {
 | 
						|
		if (fcu_fans[i].id == FCU_FAN_ABSENT_ID)
 | 
						|
			continue;
 | 
						|
		printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i,
 | 
						|
		       fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM",
 | 
						|
		       fcu_fans[i].id, fcu_fans[i].loc);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match)
 | 
						|
{
 | 
						|
	state = state_detached;
 | 
						|
 | 
						|
	/* Lookup the fans in the device tree */
 | 
						|
	fcu_lookup_fans(dev->node);
 | 
						|
 | 
						|
	/* Add the driver */
 | 
						|
	return i2c_add_driver(&therm_pm72_driver);
 | 
						|
}
 | 
						|
 | 
						|
static int fcu_of_remove(struct of_device* dev)
 | 
						|
{
 | 
						|
	i2c_del_driver(&therm_pm72_driver);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static struct of_device_id fcu_match[] = 
 | 
						|
{
 | 
						|
	{
 | 
						|
	.type		= "fcu",
 | 
						|
	},
 | 
						|
	{},
 | 
						|
};
 | 
						|
 | 
						|
static struct of_platform_driver fcu_of_platform_driver = 
 | 
						|
{
 | 
						|
	.name 		= "temperature",
 | 
						|
	.match_table	= fcu_match,
 | 
						|
	.probe		= fcu_of_probe,
 | 
						|
	.remove		= fcu_of_remove
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Check machine type, attach to i2c controller
 | 
						|
 */
 | 
						|
static int __init therm_pm72_init(void)
 | 
						|
{
 | 
						|
	struct device_node *np;
 | 
						|
 | 
						|
	rackmac = machine_is_compatible("RackMac3,1");
 | 
						|
 | 
						|
	if (!machine_is_compatible("PowerMac7,2") &&
 | 
						|
	    !machine_is_compatible("PowerMac7,3") &&
 | 
						|
	    !rackmac)
 | 
						|
	    	return -ENODEV;
 | 
						|
 | 
						|
	printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION);
 | 
						|
 | 
						|
	np = of_find_node_by_type(NULL, "fcu");
 | 
						|
	if (np == NULL) {
 | 
						|
		/* Some machines have strangely broken device-tree */
 | 
						|
		np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e");
 | 
						|
		if (np == NULL) {
 | 
						|
			    printk(KERN_ERR "Can't find FCU in device-tree !\n");
 | 
						|
			    return -ENODEV;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	of_dev = of_platform_device_create(np, "temperature", NULL);
 | 
						|
	if (of_dev == NULL) {
 | 
						|
		printk(KERN_ERR "Can't register FCU platform device !\n");
 | 
						|
		return -ENODEV;
 | 
						|
	}
 | 
						|
 | 
						|
	of_register_platform_driver(&fcu_of_platform_driver);
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void __exit therm_pm72_exit(void)
 | 
						|
{
 | 
						|
	of_unregister_platform_driver(&fcu_of_platform_driver);
 | 
						|
 | 
						|
	if (of_dev)
 | 
						|
		of_device_unregister(of_dev);
 | 
						|
}
 | 
						|
 | 
						|
module_init(therm_pm72_init);
 | 
						|
module_exit(therm_pm72_exit);
 | 
						|
 | 
						|
MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>");
 | 
						|
MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control");
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
 |