573 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			573 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* Support for MMIO probes.
 | |
|  * Benfit many code from kprobes
 | |
|  * (C) 2002 Louis Zhuang <louis.zhuang@intel.com>.
 | |
|  *     2007 Alexander Eichner
 | |
|  *     2008 Pekka Paalanen <pq@iki.fi>
 | |
|  */
 | |
| 
 | |
| #include <linux/list.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/uaccess.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/preempt.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/kdebug.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/io.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/tlbflush.h>
 | |
| #include <linux/errno.h>
 | |
| #include <asm/debugreg.h>
 | |
| #include <linux/mmiotrace.h>
 | |
| 
 | |
| #define KMMIO_PAGE_HASH_BITS 4
 | |
| #define KMMIO_PAGE_TABLE_SIZE (1 << KMMIO_PAGE_HASH_BITS)
 | |
| 
 | |
| struct kmmio_fault_page {
 | |
| 	struct list_head list;
 | |
| 	struct kmmio_fault_page *release_next;
 | |
| 	unsigned long page; /* location of the fault page */
 | |
| 	pteval_t old_presence; /* page presence prior to arming */
 | |
| 	bool armed;
 | |
| 
 | |
| 	/*
 | |
| 	 * Number of times this page has been registered as a part
 | |
| 	 * of a probe. If zero, page is disarmed and this may be freed.
 | |
| 	 * Used only by writers (RCU) and post_kmmio_handler().
 | |
| 	 * Protected by kmmio_lock, when linked into kmmio_page_table.
 | |
| 	 */
 | |
| 	int count;
 | |
| };
 | |
| 
 | |
| struct kmmio_delayed_release {
 | |
| 	struct rcu_head rcu;
 | |
| 	struct kmmio_fault_page *release_list;
 | |
| };
 | |
| 
 | |
| struct kmmio_context {
 | |
| 	struct kmmio_fault_page *fpage;
 | |
| 	struct kmmio_probe *probe;
 | |
| 	unsigned long saved_flags;
 | |
| 	unsigned long addr;
 | |
| 	int active;
 | |
| };
 | |
| 
 | |
| static DEFINE_SPINLOCK(kmmio_lock);
 | |
| 
 | |
| /* Protected by kmmio_lock */
 | |
| unsigned int kmmio_count;
 | |
| 
 | |
| /* Read-protected by RCU, write-protected by kmmio_lock. */
 | |
| static struct list_head kmmio_page_table[KMMIO_PAGE_TABLE_SIZE];
 | |
| static LIST_HEAD(kmmio_probes);
 | |
| 
 | |
| static struct list_head *kmmio_page_list(unsigned long page)
 | |
| {
 | |
| 	return &kmmio_page_table[hash_long(page, KMMIO_PAGE_HASH_BITS)];
 | |
| }
 | |
| 
 | |
| /* Accessed per-cpu */
 | |
| static DEFINE_PER_CPU(struct kmmio_context, kmmio_ctx);
 | |
| 
 | |
| /*
 | |
|  * this is basically a dynamic stabbing problem:
 | |
|  * Could use the existing prio tree code or
 | |
|  * Possible better implementations:
 | |
|  * The Interval Skip List: A Data Structure for Finding All Intervals That
 | |
|  * Overlap a Point (might be simple)
 | |
|  * Space Efficient Dynamic Stabbing with Fast Queries - Mikkel Thorup
 | |
|  */
 | |
| /* Get the kmmio at this addr (if any). You must be holding RCU read lock. */
 | |
| static struct kmmio_probe *get_kmmio_probe(unsigned long addr)
 | |
| {
 | |
| 	struct kmmio_probe *p;
 | |
| 	list_for_each_entry_rcu(p, &kmmio_probes, list) {
 | |
| 		if (addr >= p->addr && addr < (p->addr + p->len))
 | |
| 			return p;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /* You must be holding RCU read lock. */
 | |
| static struct kmmio_fault_page *get_kmmio_fault_page(unsigned long page)
 | |
| {
 | |
| 	struct list_head *head;
 | |
| 	struct kmmio_fault_page *f;
 | |
| 
 | |
| 	page &= PAGE_MASK;
 | |
| 	head = kmmio_page_list(page);
 | |
| 	list_for_each_entry_rcu(f, head, list) {
 | |
| 		if (f->page == page)
 | |
| 			return f;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void clear_pmd_presence(pmd_t *pmd, bool clear, pmdval_t *old)
 | |
| {
 | |
| 	pmdval_t v = pmd_val(*pmd);
 | |
| 	if (clear) {
 | |
| 		*old = v & _PAGE_PRESENT;
 | |
| 		v &= ~_PAGE_PRESENT;
 | |
| 	} else	/* presume this has been called with clear==true previously */
 | |
| 		v |= *old;
 | |
| 	set_pmd(pmd, __pmd(v));
 | |
| }
 | |
| 
 | |
| static void clear_pte_presence(pte_t *pte, bool clear, pteval_t *old)
 | |
| {
 | |
| 	pteval_t v = pte_val(*pte);
 | |
| 	if (clear) {
 | |
| 		*old = v & _PAGE_PRESENT;
 | |
| 		v &= ~_PAGE_PRESENT;
 | |
| 	} else	/* presume this has been called with clear==true previously */
 | |
| 		v |= *old;
 | |
| 	set_pte_atomic(pte, __pte(v));
 | |
| }
 | |
| 
 | |
| static int clear_page_presence(struct kmmio_fault_page *f, bool clear)
 | |
| {
 | |
| 	unsigned int level;
 | |
| 	pte_t *pte = lookup_address(f->page, &level);
 | |
| 
 | |
| 	if (!pte) {
 | |
| 		pr_err("kmmio: no pte for page 0x%08lx\n", f->page);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	switch (level) {
 | |
| 	case PG_LEVEL_2M:
 | |
| 		clear_pmd_presence((pmd_t *)pte, clear, &f->old_presence);
 | |
| 		break;
 | |
| 	case PG_LEVEL_4K:
 | |
| 		clear_pte_presence(pte, clear, &f->old_presence);
 | |
| 		break;
 | |
| 	default:
 | |
| 		pr_err("kmmio: unexpected page level 0x%x.\n", level);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	__flush_tlb_one(f->page);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Mark the given page as not present. Access to it will trigger a fault.
 | |
|  *
 | |
|  * Struct kmmio_fault_page is protected by RCU and kmmio_lock, but the
 | |
|  * protection is ignored here. RCU read lock is assumed held, so the struct
 | |
|  * will not disappear unexpectedly. Furthermore, the caller must guarantee,
 | |
|  * that double arming the same virtual address (page) cannot occur.
 | |
|  *
 | |
|  * Double disarming on the other hand is allowed, and may occur when a fault
 | |
|  * and mmiotrace shutdown happen simultaneously.
 | |
|  */
 | |
| static int arm_kmmio_fault_page(struct kmmio_fault_page *f)
 | |
| {
 | |
| 	int ret;
 | |
| 	WARN_ONCE(f->armed, KERN_ERR "kmmio page already armed.\n");
 | |
| 	if (f->armed) {
 | |
| 		pr_warning("kmmio double-arm: page 0x%08lx, ref %d, old %d\n",
 | |
| 					f->page, f->count, !!f->old_presence);
 | |
| 	}
 | |
| 	ret = clear_page_presence(f, true);
 | |
| 	WARN_ONCE(ret < 0, KERN_ERR "kmmio arming 0x%08lx failed.\n", f->page);
 | |
| 	f->armed = true;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /** Restore the given page to saved presence state. */
 | |
| static void disarm_kmmio_fault_page(struct kmmio_fault_page *f)
 | |
| {
 | |
| 	int ret = clear_page_presence(f, false);
 | |
| 	WARN_ONCE(ret < 0,
 | |
| 			KERN_ERR "kmmio disarming 0x%08lx failed.\n", f->page);
 | |
| 	f->armed = false;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is being called from do_page_fault().
 | |
|  *
 | |
|  * We may be in an interrupt or a critical section. Also prefecthing may
 | |
|  * trigger a page fault. We may be in the middle of process switch.
 | |
|  * We cannot take any locks, because we could be executing especially
 | |
|  * within a kmmio critical section.
 | |
|  *
 | |
|  * Local interrupts are disabled, so preemption cannot happen.
 | |
|  * Do not enable interrupts, do not sleep, and watch out for other CPUs.
 | |
|  */
 | |
| /*
 | |
|  * Interrupts are disabled on entry as trap3 is an interrupt gate
 | |
|  * and they remain disabled thorough out this function.
 | |
|  */
 | |
| int kmmio_handler(struct pt_regs *regs, unsigned long addr)
 | |
| {
 | |
| 	struct kmmio_context *ctx;
 | |
| 	struct kmmio_fault_page *faultpage;
 | |
| 	int ret = 0; /* default to fault not handled */
 | |
| 
 | |
| 	/*
 | |
| 	 * Preemption is now disabled to prevent process switch during
 | |
| 	 * single stepping. We can only handle one active kmmio trace
 | |
| 	 * per cpu, so ensure that we finish it before something else
 | |
| 	 * gets to run. We also hold the RCU read lock over single
 | |
| 	 * stepping to avoid looking up the probe and kmmio_fault_page
 | |
| 	 * again.
 | |
| 	 */
 | |
| 	preempt_disable();
 | |
| 	rcu_read_lock();
 | |
| 
 | |
| 	faultpage = get_kmmio_fault_page(addr);
 | |
| 	if (!faultpage) {
 | |
| 		/*
 | |
| 		 * Either this page fault is not caused by kmmio, or
 | |
| 		 * another CPU just pulled the kmmio probe from under
 | |
| 		 * our feet. The latter case should not be possible.
 | |
| 		 */
 | |
| 		goto no_kmmio;
 | |
| 	}
 | |
| 
 | |
| 	ctx = &get_cpu_var(kmmio_ctx);
 | |
| 	if (ctx->active) {
 | |
| 		if (addr == ctx->addr) {
 | |
| 			/*
 | |
| 			 * A second fault on the same page means some other
 | |
| 			 * condition needs handling by do_page_fault(), the
 | |
| 			 * page really not being present is the most common.
 | |
| 			 */
 | |
| 			pr_debug("kmmio: secondary hit for 0x%08lx CPU %d.\n",
 | |
| 					addr, smp_processor_id());
 | |
| 
 | |
| 			if (!faultpage->old_presence)
 | |
| 				pr_info("kmmio: unexpected secondary hit for "
 | |
| 					"address 0x%08lx on CPU %d.\n", addr,
 | |
| 					smp_processor_id());
 | |
| 		} else {
 | |
| 			/*
 | |
| 			 * Prevent overwriting already in-flight context.
 | |
| 			 * This should not happen, let's hope disarming at
 | |
| 			 * least prevents a panic.
 | |
| 			 */
 | |
| 			pr_emerg("kmmio: recursive probe hit on CPU %d, "
 | |
| 					"for address 0x%08lx. Ignoring.\n",
 | |
| 					smp_processor_id(), addr);
 | |
| 			pr_emerg("kmmio: previous hit was at 0x%08lx.\n",
 | |
| 						ctx->addr);
 | |
| 			disarm_kmmio_fault_page(faultpage);
 | |
| 		}
 | |
| 		goto no_kmmio_ctx;
 | |
| 	}
 | |
| 	ctx->active++;
 | |
| 
 | |
| 	ctx->fpage = faultpage;
 | |
| 	ctx->probe = get_kmmio_probe(addr);
 | |
| 	ctx->saved_flags = (regs->flags & (X86_EFLAGS_TF | X86_EFLAGS_IF));
 | |
| 	ctx->addr = addr;
 | |
| 
 | |
| 	if (ctx->probe && ctx->probe->pre_handler)
 | |
| 		ctx->probe->pre_handler(ctx->probe, regs, addr);
 | |
| 
 | |
| 	/*
 | |
| 	 * Enable single-stepping and disable interrupts for the faulting
 | |
| 	 * context. Local interrupts must not get enabled during stepping.
 | |
| 	 */
 | |
| 	regs->flags |= X86_EFLAGS_TF;
 | |
| 	regs->flags &= ~X86_EFLAGS_IF;
 | |
| 
 | |
| 	/* Now we set present bit in PTE and single step. */
 | |
| 	disarm_kmmio_fault_page(ctx->fpage);
 | |
| 
 | |
| 	/*
 | |
| 	 * If another cpu accesses the same page while we are stepping,
 | |
| 	 * the access will not be caught. It will simply succeed and the
 | |
| 	 * only downside is we lose the event. If this becomes a problem,
 | |
| 	 * the user should drop to single cpu before tracing.
 | |
| 	 */
 | |
| 
 | |
| 	put_cpu_var(kmmio_ctx);
 | |
| 	return 1; /* fault handled */
 | |
| 
 | |
| no_kmmio_ctx:
 | |
| 	put_cpu_var(kmmio_ctx);
 | |
| no_kmmio:
 | |
| 	rcu_read_unlock();
 | |
| 	preempt_enable_no_resched();
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Interrupts are disabled on entry as trap1 is an interrupt gate
 | |
|  * and they remain disabled thorough out this function.
 | |
|  * This must always get called as the pair to kmmio_handler().
 | |
|  */
 | |
| static int post_kmmio_handler(unsigned long condition, struct pt_regs *regs)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	struct kmmio_context *ctx = &get_cpu_var(kmmio_ctx);
 | |
| 
 | |
| 	if (!ctx->active) {
 | |
| 		/*
 | |
| 		 * debug traps without an active context are due to either
 | |
| 		 * something external causing them (f.e. using a debugger while
 | |
| 		 * mmio tracing enabled), or erroneous behaviour
 | |
| 		 */
 | |
| 		pr_warning("kmmio: unexpected debug trap on CPU %d.\n",
 | |
| 							smp_processor_id());
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (ctx->probe && ctx->probe->post_handler)
 | |
| 		ctx->probe->post_handler(ctx->probe, condition, regs);
 | |
| 
 | |
| 	/* Prevent racing against release_kmmio_fault_page(). */
 | |
| 	spin_lock(&kmmio_lock);
 | |
| 	if (ctx->fpage->count)
 | |
| 		arm_kmmio_fault_page(ctx->fpage);
 | |
| 	spin_unlock(&kmmio_lock);
 | |
| 
 | |
| 	regs->flags &= ~X86_EFLAGS_TF;
 | |
| 	regs->flags |= ctx->saved_flags;
 | |
| 
 | |
| 	/* These were acquired in kmmio_handler(). */
 | |
| 	ctx->active--;
 | |
| 	BUG_ON(ctx->active);
 | |
| 	rcu_read_unlock();
 | |
| 	preempt_enable_no_resched();
 | |
| 
 | |
| 	/*
 | |
| 	 * if somebody else is singlestepping across a probe point, flags
 | |
| 	 * will have TF set, in which case, continue the remaining processing
 | |
| 	 * of do_debug, as if this is not a probe hit.
 | |
| 	 */
 | |
| 	if (!(regs->flags & X86_EFLAGS_TF))
 | |
| 		ret = 1;
 | |
| out:
 | |
| 	put_cpu_var(kmmio_ctx);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /* You must be holding kmmio_lock. */
 | |
| static int add_kmmio_fault_page(unsigned long page)
 | |
| {
 | |
| 	struct kmmio_fault_page *f;
 | |
| 
 | |
| 	page &= PAGE_MASK;
 | |
| 	f = get_kmmio_fault_page(page);
 | |
| 	if (f) {
 | |
| 		if (!f->count)
 | |
| 			arm_kmmio_fault_page(f);
 | |
| 		f->count++;
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	f = kzalloc(sizeof(*f), GFP_ATOMIC);
 | |
| 	if (!f)
 | |
| 		return -1;
 | |
| 
 | |
| 	f->count = 1;
 | |
| 	f->page = page;
 | |
| 
 | |
| 	if (arm_kmmio_fault_page(f)) {
 | |
| 		kfree(f);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	list_add_rcu(&f->list, kmmio_page_list(f->page));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /* You must be holding kmmio_lock. */
 | |
| static void release_kmmio_fault_page(unsigned long page,
 | |
| 				struct kmmio_fault_page **release_list)
 | |
| {
 | |
| 	struct kmmio_fault_page *f;
 | |
| 
 | |
| 	page &= PAGE_MASK;
 | |
| 	f = get_kmmio_fault_page(page);
 | |
| 	if (!f)
 | |
| 		return;
 | |
| 
 | |
| 	f->count--;
 | |
| 	BUG_ON(f->count < 0);
 | |
| 	if (!f->count) {
 | |
| 		disarm_kmmio_fault_page(f);
 | |
| 		f->release_next = *release_list;
 | |
| 		*release_list = f;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * With page-unaligned ioremaps, one or two armed pages may contain
 | |
|  * addresses from outside the intended mapping. Events for these addresses
 | |
|  * are currently silently dropped. The events may result only from programming
 | |
|  * mistakes by accessing addresses before the beginning or past the end of a
 | |
|  * mapping.
 | |
|  */
 | |
| int register_kmmio_probe(struct kmmio_probe *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	int ret = 0;
 | |
| 	unsigned long size = 0;
 | |
| 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 | |
| 
 | |
| 	spin_lock_irqsave(&kmmio_lock, flags);
 | |
| 	if (get_kmmio_probe(p->addr)) {
 | |
| 		ret = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	kmmio_count++;
 | |
| 	list_add_rcu(&p->list, &kmmio_probes);
 | |
| 	while (size < size_lim) {
 | |
| 		if (add_kmmio_fault_page(p->addr + size))
 | |
| 			pr_err("kmmio: Unable to set page fault.\n");
 | |
| 		size += PAGE_SIZE;
 | |
| 	}
 | |
| out:
 | |
| 	spin_unlock_irqrestore(&kmmio_lock, flags);
 | |
| 	/*
 | |
| 	 * XXX: What should I do here?
 | |
| 	 * Here was a call to global_flush_tlb(), but it does not exist
 | |
| 	 * anymore. It seems it's not needed after all.
 | |
| 	 */
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL(register_kmmio_probe);
 | |
| 
 | |
| static void rcu_free_kmmio_fault_pages(struct rcu_head *head)
 | |
| {
 | |
| 	struct kmmio_delayed_release *dr = container_of(
 | |
| 						head,
 | |
| 						struct kmmio_delayed_release,
 | |
| 						rcu);
 | |
| 	struct kmmio_fault_page *f = dr->release_list;
 | |
| 	while (f) {
 | |
| 		struct kmmio_fault_page *next = f->release_next;
 | |
| 		BUG_ON(f->count);
 | |
| 		kfree(f);
 | |
| 		f = next;
 | |
| 	}
 | |
| 	kfree(dr);
 | |
| }
 | |
| 
 | |
| static void remove_kmmio_fault_pages(struct rcu_head *head)
 | |
| {
 | |
| 	struct kmmio_delayed_release *dr =
 | |
| 		container_of(head, struct kmmio_delayed_release, rcu);
 | |
| 	struct kmmio_fault_page *f = dr->release_list;
 | |
| 	struct kmmio_fault_page **prevp = &dr->release_list;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&kmmio_lock, flags);
 | |
| 	while (f) {
 | |
| 		if (!f->count) {
 | |
| 			list_del_rcu(&f->list);
 | |
| 			prevp = &f->release_next;
 | |
| 		} else {
 | |
| 			*prevp = f->release_next;
 | |
| 		}
 | |
| 		f = f->release_next;
 | |
| 	}
 | |
| 	spin_unlock_irqrestore(&kmmio_lock, flags);
 | |
| 
 | |
| 	/* This is the real RCU destroy call. */
 | |
| 	call_rcu(&dr->rcu, rcu_free_kmmio_fault_pages);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove a kmmio probe. You have to synchronize_rcu() before you can be
 | |
|  * sure that the callbacks will not be called anymore. Only after that
 | |
|  * you may actually release your struct kmmio_probe.
 | |
|  *
 | |
|  * Unregistering a kmmio fault page has three steps:
 | |
|  * 1. release_kmmio_fault_page()
 | |
|  *    Disarm the page, wait a grace period to let all faults finish.
 | |
|  * 2. remove_kmmio_fault_pages()
 | |
|  *    Remove the pages from kmmio_page_table.
 | |
|  * 3. rcu_free_kmmio_fault_pages()
 | |
|  *    Actally free the kmmio_fault_page structs as with RCU.
 | |
|  */
 | |
| void unregister_kmmio_probe(struct kmmio_probe *p)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	unsigned long size = 0;
 | |
| 	const unsigned long size_lim = p->len + (p->addr & ~PAGE_MASK);
 | |
| 	struct kmmio_fault_page *release_list = NULL;
 | |
| 	struct kmmio_delayed_release *drelease;
 | |
| 
 | |
| 	spin_lock_irqsave(&kmmio_lock, flags);
 | |
| 	while (size < size_lim) {
 | |
| 		release_kmmio_fault_page(p->addr + size, &release_list);
 | |
| 		size += PAGE_SIZE;
 | |
| 	}
 | |
| 	list_del_rcu(&p->list);
 | |
| 	kmmio_count--;
 | |
| 	spin_unlock_irqrestore(&kmmio_lock, flags);
 | |
| 
 | |
| 	drelease = kmalloc(sizeof(*drelease), GFP_ATOMIC);
 | |
| 	if (!drelease) {
 | |
| 		pr_crit("kmmio: leaking kmmio_fault_page objects.\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	drelease->release_list = release_list;
 | |
| 
 | |
| 	/*
 | |
| 	 * This is not really RCU here. We have just disarmed a set of
 | |
| 	 * pages so that they cannot trigger page faults anymore. However,
 | |
| 	 * we cannot remove the pages from kmmio_page_table,
 | |
| 	 * because a probe hit might be in flight on another CPU. The
 | |
| 	 * pages are collected into a list, and they will be removed from
 | |
| 	 * kmmio_page_table when it is certain that no probe hit related to
 | |
| 	 * these pages can be in flight. RCU grace period sounds like a
 | |
| 	 * good choice.
 | |
| 	 *
 | |
| 	 * If we removed the pages too early, kmmio page fault handler might
 | |
| 	 * not find the respective kmmio_fault_page and determine it's not
 | |
| 	 * a kmmio fault, when it actually is. This would lead to madness.
 | |
| 	 */
 | |
| 	call_rcu(&drelease->rcu, remove_kmmio_fault_pages);
 | |
| }
 | |
| EXPORT_SYMBOL(unregister_kmmio_probe);
 | |
| 
 | |
| static int
 | |
| kmmio_die_notifier(struct notifier_block *nb, unsigned long val, void *args)
 | |
| {
 | |
| 	struct die_args *arg = args;
 | |
| 
 | |
| 	if (val == DIE_DEBUG && (arg->err & DR_STEP))
 | |
| 		if (post_kmmio_handler(arg->err, arg->regs) == 1)
 | |
| 			return NOTIFY_STOP;
 | |
| 
 | |
| 	return NOTIFY_DONE;
 | |
| }
 | |
| 
 | |
| static struct notifier_block nb_die = {
 | |
| 	.notifier_call = kmmio_die_notifier
 | |
| };
 | |
| 
 | |
| int kmmio_init(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++)
 | |
| 		INIT_LIST_HEAD(&kmmio_page_table[i]);
 | |
| 
 | |
| 	return register_die_notifier(&nb_die);
 | |
| }
 | |
| 
 | |
| void kmmio_cleanup(void)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	unregister_die_notifier(&nb_die);
 | |
| 	for (i = 0; i < KMMIO_PAGE_TABLE_SIZE; i++) {
 | |
| 		WARN_ONCE(!list_empty(&kmmio_page_table[i]),
 | |
| 			KERN_ERR "kmmio_page_table not empty at cleanup, any further tracing will leak memory.\n");
 | |
| 	}
 | |
| }
 |