654 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			654 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* MN10300 Kernel probes implementation
 | 
						|
 *
 | 
						|
 * Copyright (C) 2005 Red Hat, Inc. All Rights Reserved.
 | 
						|
 * Written by Mark Salter (msalter@redhat.com)
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or modify
 | 
						|
 * it under the terms of the GNU General Public Licence as published by
 | 
						|
 * the Free Software Foundation; either version 2 of the Licence, or
 | 
						|
 * (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public Licence for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public Licence
 | 
						|
 * along with this program; if not, write to the Free Software
 | 
						|
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
 | 
						|
 */
 | 
						|
#include <linux/kprobes.h>
 | 
						|
#include <linux/ptrace.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/preempt.h>
 | 
						|
#include <linux/kdebug.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
 | 
						|
struct kretprobe_blackpoint kretprobe_blacklist[] = { { NULL, NULL } };
 | 
						|
const int kretprobe_blacklist_size = ARRAY_SIZE(kretprobe_blacklist);
 | 
						|
 | 
						|
/* kprobe_status settings */
 | 
						|
#define KPROBE_HIT_ACTIVE	0x00000001
 | 
						|
#define KPROBE_HIT_SS		0x00000002
 | 
						|
 | 
						|
static struct kprobe *current_kprobe;
 | 
						|
static unsigned long current_kprobe_orig_pc;
 | 
						|
static unsigned long current_kprobe_next_pc;
 | 
						|
static int current_kprobe_ss_flags;
 | 
						|
static unsigned long kprobe_status;
 | 
						|
static kprobe_opcode_t current_kprobe_ss_buf[MAX_INSN_SIZE + 2];
 | 
						|
static unsigned long current_kprobe_bp_addr;
 | 
						|
 | 
						|
DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
 | 
						|
 | 
						|
 | 
						|
/* singlestep flag bits */
 | 
						|
#define SINGLESTEP_BRANCH 1
 | 
						|
#define SINGLESTEP_PCREL  2
 | 
						|
 | 
						|
#define READ_BYTE(p, valp) \
 | 
						|
	do { *(u8 *)(valp) = *(u8 *)(p); } while (0)
 | 
						|
 | 
						|
#define READ_WORD16(p, valp)					\
 | 
						|
	do {							\
 | 
						|
		READ_BYTE((p), (valp));				\
 | 
						|
		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
#define READ_WORD32(p, valp)					\
 | 
						|
	do {							\
 | 
						|
		READ_BYTE((p), (valp));				\
 | 
						|
		READ_BYTE((u8 *)(p) + 1, (u8 *)(valp) + 1);	\
 | 
						|
		READ_BYTE((u8 *)(p) + 2, (u8 *)(valp) + 2);	\
 | 
						|
		READ_BYTE((u8 *)(p) + 3, (u8 *)(valp) + 3);	\
 | 
						|
	} while (0)
 | 
						|
 | 
						|
 | 
						|
static const u8 mn10300_insn_sizes[256] =
 | 
						|
{
 | 
						|
	/* 1  2  3  4  5  6  7  8  9  a  b  c  d  e  f */
 | 
						|
	1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3, 1, 3, 3, 3,	/* 0 */
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 1 */
 | 
						|
	2, 2, 2, 2, 3, 3, 3, 3, 2, 2, 2, 2, 3, 3, 3, 3, /* 2 */
 | 
						|
	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, /* 3 */
 | 
						|
	1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, /* 4 */
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, /* 5 */
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6 */
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 7 */
 | 
						|
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 8 */
 | 
						|
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* 9 */
 | 
						|
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* a */
 | 
						|
	2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, /* b */
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 2, /* c */
 | 
						|
	0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* d */
 | 
						|
	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* e */
 | 
						|
	0, 2, 2, 2, 2, 2, 2, 4, 0, 3, 0, 4, 0, 6, 7, 1  /* f */
 | 
						|
};
 | 
						|
 | 
						|
#define LT (1 << 0)
 | 
						|
#define GT (1 << 1)
 | 
						|
#define GE (1 << 2)
 | 
						|
#define LE (1 << 3)
 | 
						|
#define CS (1 << 4)
 | 
						|
#define HI (1 << 5)
 | 
						|
#define CC (1 << 6)
 | 
						|
#define LS (1 << 7)
 | 
						|
#define EQ (1 << 8)
 | 
						|
#define NE (1 << 9)
 | 
						|
#define RA (1 << 10)
 | 
						|
#define VC (1 << 11)
 | 
						|
#define VS (1 << 12)
 | 
						|
#define NC (1 << 13)
 | 
						|
#define NS (1 << 14)
 | 
						|
 | 
						|
static const u16 cond_table[] = {
 | 
						|
	/*  V  C  N  Z  */
 | 
						|
	/*  0  0  0  0  */ (NE | NC | CC | VC | GE | GT | HI),
 | 
						|
	/*  0  0  0  1  */ (EQ | NC | CC | VC | GE | LE | LS),
 | 
						|
	/*  0  0  1  0  */ (NE | NS | CC | VC | LT | LE | HI),
 | 
						|
	/*  0  0  1  1  */ (EQ | NS | CC | VC | LT | LE | LS),
 | 
						|
	/*  0  1  0  0  */ (NE | NC | CS | VC | GE | GT | LS),
 | 
						|
	/*  0  1  0  1  */ (EQ | NC | CS | VC | GE | LE | LS),
 | 
						|
	/*  0  1  1  0  */ (NE | NS | CS | VC | LT | LE | LS),
 | 
						|
	/*  0  1  1  1  */ (EQ | NS | CS | VC | LT | LE | LS),
 | 
						|
	/*  1  0  0  0  */ (NE | NC | CC | VS | LT | LE | HI),
 | 
						|
	/*  1  0  0  1  */ (EQ | NC | CC | VS | LT | LE | LS),
 | 
						|
	/*  1  0  1  0  */ (NE | NS | CC | VS | GE | GT | HI),
 | 
						|
	/*  1  0  1  1  */ (EQ | NS | CC | VS | GE | LE | LS),
 | 
						|
	/*  1  1  0  0  */ (NE | NC | CS | VS | LT | LE | LS),
 | 
						|
	/*  1  1  0  1  */ (EQ | NC | CS | VS | LT | LE | LS),
 | 
						|
	/*  1  1  1  0  */ (NE | NS | CS | VS | GE | GT | LS),
 | 
						|
	/*  1  1  1  1  */ (EQ | NS | CS | VS | GE | LE | LS),
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * Calculate what the PC will be after executing next instruction
 | 
						|
 */
 | 
						|
static unsigned find_nextpc(struct pt_regs *regs, int *flags)
 | 
						|
{
 | 
						|
	unsigned size;
 | 
						|
	s8  x8;
 | 
						|
	s16 x16;
 | 
						|
	s32 x32;
 | 
						|
	u8 opc, *pc, *sp, *next;
 | 
						|
 | 
						|
	next = 0;
 | 
						|
	*flags = SINGLESTEP_PCREL;
 | 
						|
 | 
						|
	pc = (u8 *) regs->pc;
 | 
						|
	sp = (u8 *) (regs + 1);
 | 
						|
	opc = *pc;
 | 
						|
 | 
						|
	size = mn10300_insn_sizes[opc];
 | 
						|
	if (size > 0) {
 | 
						|
		next = pc + size;
 | 
						|
	} else {
 | 
						|
		switch (opc) {
 | 
						|
			/* Bxx (d8,PC) */
 | 
						|
		case 0xc0 ... 0xca:
 | 
						|
			x8 = 2;
 | 
						|
			if (cond_table[regs->epsw & 0xf] & (1 << (opc & 0xf)))
 | 
						|
				x8 = (s8)pc[1];
 | 
						|
			next = pc + x8;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
 | 
						|
			/* JMP (d16,PC) or CALL (d16,PC) */
 | 
						|
		case 0xcc:
 | 
						|
		case 0xcd:
 | 
						|
			READ_WORD16(pc + 1, &x16);
 | 
						|
			next = pc + x16;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
 | 
						|
			/* JMP (d32,PC) or CALL (d32,PC) */
 | 
						|
		case 0xdc:
 | 
						|
		case 0xdd:
 | 
						|
			READ_WORD32(pc + 1, &x32);
 | 
						|
			next = pc + x32;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
 | 
						|
			/* RETF */
 | 
						|
		case 0xde:
 | 
						|
			next = (u8 *)regs->mdr;
 | 
						|
			*flags &= ~SINGLESTEP_PCREL;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
 | 
						|
			/* RET */
 | 
						|
		case 0xdf:
 | 
						|
			sp += pc[2];
 | 
						|
			READ_WORD32(sp, &x32);
 | 
						|
			next = (u8 *)x32;
 | 
						|
			*flags &= ~SINGLESTEP_PCREL;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0xf0:
 | 
						|
			next = pc + 2;
 | 
						|
			opc = pc[1];
 | 
						|
			if (opc >= 0xf0 && opc <= 0xf7) {
 | 
						|
				/* JMP (An) / CALLS (An) */
 | 
						|
				switch (opc & 3) {
 | 
						|
				case 0:
 | 
						|
					next = (u8 *)regs->a0;
 | 
						|
					break;
 | 
						|
				case 1:
 | 
						|
					next = (u8 *)regs->a1;
 | 
						|
					break;
 | 
						|
				case 2:
 | 
						|
					next = (u8 *)regs->a2;
 | 
						|
					break;
 | 
						|
				case 3:
 | 
						|
					next = (u8 *)regs->a3;
 | 
						|
					break;
 | 
						|
				}
 | 
						|
				*flags &= ~SINGLESTEP_PCREL;
 | 
						|
				*flags |= SINGLESTEP_BRANCH;
 | 
						|
			} else if (opc == 0xfc) {
 | 
						|
				/* RETS */
 | 
						|
				READ_WORD32(sp, &x32);
 | 
						|
				next = (u8 *)x32;
 | 
						|
				*flags &= ~SINGLESTEP_PCREL;
 | 
						|
				*flags |= SINGLESTEP_BRANCH;
 | 
						|
			} else if (opc == 0xfd) {
 | 
						|
				/* RTI */
 | 
						|
				READ_WORD32(sp + 4, &x32);
 | 
						|
				next = (u8 *)x32;
 | 
						|
				*flags &= ~SINGLESTEP_PCREL;
 | 
						|
				*flags |= SINGLESTEP_BRANCH;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
			/* potential 3-byte conditional branches */
 | 
						|
		case 0xf8:
 | 
						|
			next = pc + 3;
 | 
						|
			opc = pc[1];
 | 
						|
			if (opc >= 0xe8 && opc <= 0xeb &&
 | 
						|
			    (cond_table[regs->epsw & 0xf] &
 | 
						|
			     (1 << ((opc & 0xf) + 3)))
 | 
						|
			    ) {
 | 
						|
				READ_BYTE(pc+2, &x8);
 | 
						|
				next = pc + x8;
 | 
						|
				*flags |= SINGLESTEP_BRANCH;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0xfa:
 | 
						|
			if (pc[1] == 0xff) {
 | 
						|
				/* CALLS (d16,PC) */
 | 
						|
				READ_WORD16(pc + 2, &x16);
 | 
						|
				next = pc + x16;
 | 
						|
			} else
 | 
						|
				next = pc + 4;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0xfc:
 | 
						|
			x32 = 6;
 | 
						|
			if (pc[1] == 0xff) {
 | 
						|
				/* CALLS (d32,PC) */
 | 
						|
				READ_WORD32(pc + 2, &x32);
 | 
						|
			}
 | 
						|
			next = pc + x32;
 | 
						|
			*flags |= SINGLESTEP_BRANCH;
 | 
						|
			break;
 | 
						|
			/* LXX (d8,PC) */
 | 
						|
			/* SETLB - loads the next four bytes into the LIR reg */
 | 
						|
		case 0xd0 ... 0xda:
 | 
						|
		case 0xdb:
 | 
						|
			panic("Can't singlestep Lxx/SETLB\n");
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return (unsigned)next;
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * set up out of place singlestep of some branching instructions
 | 
						|
 */
 | 
						|
static unsigned __kprobes singlestep_branch_setup(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u8 opc, *pc, *sp, *next;
 | 
						|
 | 
						|
	next = NULL;
 | 
						|
	pc = (u8 *) regs->pc;
 | 
						|
	sp = (u8 *) (regs + 1);
 | 
						|
 | 
						|
	switch (pc[0]) {
 | 
						|
	case 0xc0 ... 0xca:	/* Bxx (d8,PC) */
 | 
						|
	case 0xcc:		/* JMP (d16,PC) */
 | 
						|
	case 0xdc:		/* JMP (d32,PC) */
 | 
						|
	case 0xf8:              /* Bxx (d8,PC)  3-byte version */
 | 
						|
		/* don't really need to do anything except cause trap  */
 | 
						|
		next = pc;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xcd:		/* CALL (d16,PC) */
 | 
						|
		pc[1] = 5;
 | 
						|
		pc[2] = 0;
 | 
						|
		next = pc + 5;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xdd:		/* CALL (d32,PC) */
 | 
						|
		pc[1] = 7;
 | 
						|
		pc[2] = 0;
 | 
						|
		pc[3] = 0;
 | 
						|
		pc[4] = 0;
 | 
						|
		next = pc + 7;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xde:		/* RETF */
 | 
						|
		next = pc + 3;
 | 
						|
		regs->mdr = (unsigned) next;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xdf:		/* RET */
 | 
						|
		sp += pc[2];
 | 
						|
		next = pc + 3;
 | 
						|
		*(unsigned *)sp = (unsigned) next;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xf0:
 | 
						|
		next = pc + 2;
 | 
						|
		opc = pc[1];
 | 
						|
		if (opc >= 0xf0 && opc <= 0xf3) {
 | 
						|
			/* CALLS (An) */
 | 
						|
			/* use CALLS (d16,PC) to avoid mucking with An */
 | 
						|
			pc[0] = 0xfa;
 | 
						|
			pc[1] = 0xff;
 | 
						|
			pc[2] = 4;
 | 
						|
			pc[3] = 0;
 | 
						|
			next = pc + 4;
 | 
						|
		} else if (opc >= 0xf4 && opc <= 0xf7) {
 | 
						|
			/* JMP (An) */
 | 
						|
			next = pc;
 | 
						|
		} else if (opc == 0xfc) {
 | 
						|
			/* RETS */
 | 
						|
			next = pc + 2;
 | 
						|
			*(unsigned *) sp = (unsigned) next;
 | 
						|
		} else if (opc == 0xfd) {
 | 
						|
			/* RTI */
 | 
						|
			next = pc + 2;
 | 
						|
			*(unsigned *)(sp + 4) = (unsigned) next;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xfa:	/* CALLS (d16,PC) */
 | 
						|
		pc[2] = 4;
 | 
						|
		pc[3] = 0;
 | 
						|
		next = pc + 4;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xfc:	/* CALLS (d32,PC) */
 | 
						|
		pc[2] = 6;
 | 
						|
		pc[3] = 0;
 | 
						|
		pc[4] = 0;
 | 
						|
		pc[5] = 0;
 | 
						|
		next = pc + 6;
 | 
						|
		break;
 | 
						|
 | 
						|
	case 0xd0 ... 0xda:	/* LXX (d8,PC) */
 | 
						|
	case 0xdb:		/* SETLB */
 | 
						|
		panic("Can't singlestep Lxx/SETLB\n");
 | 
						|
	}
 | 
						|
 | 
						|
	return (unsigned) next;
 | 
						|
}
 | 
						|
 | 
						|
int __kprobes arch_prepare_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void __kprobes arch_copy_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE);
 | 
						|
}
 | 
						|
 | 
						|
void __kprobes arch_arm_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	*p->addr = BREAKPOINT_INSTRUCTION;
 | 
						|
	flush_icache_range((unsigned long) p->addr,
 | 
						|
			   (unsigned long) p->addr + sizeof(kprobe_opcode_t));
 | 
						|
}
 | 
						|
 | 
						|
void __kprobes arch_disarm_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
	mn10300_dcache_flush();
 | 
						|
	mn10300_icache_inv();
 | 
						|
}
 | 
						|
 | 
						|
void arch_remove_kprobe(struct kprobe *p)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void __kprobes disarm_kprobe(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	*p->addr = p->opcode;
 | 
						|
	regs->pc = (unsigned long) p->addr;
 | 
						|
	mn10300_dcache_flush();
 | 
						|
	mn10300_icache_inv();
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long nextpc;
 | 
						|
 | 
						|
	current_kprobe_orig_pc = regs->pc;
 | 
						|
	memcpy(current_kprobe_ss_buf, &p->ainsn.insn[0], MAX_INSN_SIZE);
 | 
						|
	regs->pc = (unsigned long) current_kprobe_ss_buf;
 | 
						|
 | 
						|
	nextpc = find_nextpc(regs, ¤t_kprobe_ss_flags);
 | 
						|
	if (current_kprobe_ss_flags & SINGLESTEP_PCREL)
 | 
						|
		current_kprobe_next_pc =
 | 
						|
			current_kprobe_orig_pc + (nextpc - regs->pc);
 | 
						|
	else
 | 
						|
		current_kprobe_next_pc = nextpc;
 | 
						|
 | 
						|
	/* branching instructions need special handling */
 | 
						|
	if (current_kprobe_ss_flags & SINGLESTEP_BRANCH)
 | 
						|
		nextpc = singlestep_branch_setup(regs);
 | 
						|
 | 
						|
	current_kprobe_bp_addr = nextpc;
 | 
						|
 | 
						|
	*(u8 *) nextpc = BREAKPOINT_INSTRUCTION;
 | 
						|
	mn10300_dcache_flush_range2((unsigned) current_kprobe_ss_buf,
 | 
						|
				    sizeof(current_kprobe_ss_buf));
 | 
						|
	mn10300_icache_inv();
 | 
						|
}
 | 
						|
 | 
						|
static inline int __kprobes kprobe_handler(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct kprobe *p;
 | 
						|
	int ret = 0;
 | 
						|
	unsigned int *addr = (unsigned int *) regs->pc;
 | 
						|
 | 
						|
	/* We're in an interrupt, but this is clear and BUG()-safe. */
 | 
						|
	preempt_disable();
 | 
						|
 | 
						|
	/* Check we're not actually recursing */
 | 
						|
	if (kprobe_running()) {
 | 
						|
		/* We *are* holding lock here, so this is safe.
 | 
						|
		   Disarm the probe we just hit, and ignore it. */
 | 
						|
		p = get_kprobe(addr);
 | 
						|
		if (p) {
 | 
						|
			disarm_kprobe(p, regs);
 | 
						|
			ret = 1;
 | 
						|
		} else {
 | 
						|
			p = current_kprobe;
 | 
						|
			if (p->break_handler && p->break_handler(p, regs))
 | 
						|
				goto ss_probe;
 | 
						|
		}
 | 
						|
		/* If it's not ours, can't be delete race, (we hold lock). */
 | 
						|
		goto no_kprobe;
 | 
						|
	}
 | 
						|
 | 
						|
	p = get_kprobe(addr);
 | 
						|
	if (!p) {
 | 
						|
		if (*addr != BREAKPOINT_INSTRUCTION) {
 | 
						|
			/* The breakpoint instruction was removed right after
 | 
						|
			 * we hit it.  Another cpu has removed either a
 | 
						|
			 * probepoint or a debugger breakpoint at this address.
 | 
						|
			 * In either case, no further handling of this
 | 
						|
			 * interrupt is appropriate.
 | 
						|
			 */
 | 
						|
			ret = 1;
 | 
						|
		}
 | 
						|
		/* Not one of ours: let kernel handle it */
 | 
						|
		goto no_kprobe;
 | 
						|
	}
 | 
						|
 | 
						|
	kprobe_status = KPROBE_HIT_ACTIVE;
 | 
						|
	current_kprobe = p;
 | 
						|
	if (p->pre_handler(p, regs)) {
 | 
						|
		/* handler has already set things up, so skip ss setup */
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
ss_probe:
 | 
						|
	prepare_singlestep(p, regs);
 | 
						|
	kprobe_status = KPROBE_HIT_SS;
 | 
						|
	return 1;
 | 
						|
 | 
						|
no_kprobe:
 | 
						|
	preempt_enable_no_resched();
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Called after single-stepping.  p->addr is the address of the
 | 
						|
 * instruction whose first byte has been replaced by the "breakpoint"
 | 
						|
 * instruction.  To avoid the SMP problems that can occur when we
 | 
						|
 * temporarily put back the original opcode to single-step, we
 | 
						|
 * single-stepped a copy of the instruction.  The address of this
 | 
						|
 * copy is p->ainsn.insn.
 | 
						|
 */
 | 
						|
static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	/* we may need to fixup regs/stack after singlestepping a call insn */
 | 
						|
	if (current_kprobe_ss_flags & SINGLESTEP_BRANCH) {
 | 
						|
		regs->pc = current_kprobe_orig_pc;
 | 
						|
		switch (p->ainsn.insn[0]) {
 | 
						|
		case 0xcd:	/* CALL (d16,PC) */
 | 
						|
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 5;
 | 
						|
			break;
 | 
						|
		case 0xdd:	/* CALL (d32,PC) */
 | 
						|
			/* fixup mdr and return address on stack */
 | 
						|
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 7;
 | 
						|
			break;
 | 
						|
		case 0xf0:
 | 
						|
			if (p->ainsn.insn[1] >= 0xf0 &&
 | 
						|
			    p->ainsn.insn[1] <= 0xf3) {
 | 
						|
				/* CALLS (An) */
 | 
						|
				/* fixup MDR and return address on stack */
 | 
						|
				regs->mdr = regs->pc + 2;
 | 
						|
				*(unsigned *) regs->sp = regs->mdr;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0xfa:	/* CALLS (d16,PC) */
 | 
						|
			/* fixup MDR and return address on stack */
 | 
						|
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 4;
 | 
						|
			break;
 | 
						|
 | 
						|
		case 0xfc:	/* CALLS (d32,PC) */
 | 
						|
			/* fixup MDR and return address on stack */
 | 
						|
			*(unsigned *) regs->sp = regs->mdr = regs->pc + 6;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	regs->pc = current_kprobe_next_pc;
 | 
						|
	current_kprobe_bp_addr = 0;
 | 
						|
}
 | 
						|
 | 
						|
static inline int __kprobes post_kprobe_handler(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	if (!kprobe_running())
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (current_kprobe->post_handler)
 | 
						|
		current_kprobe->post_handler(current_kprobe, regs, 0);
 | 
						|
 | 
						|
	resume_execution(current_kprobe, regs);
 | 
						|
	reset_current_kprobe();
 | 
						|
	preempt_enable_no_resched();
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/* Interrupts disabled, kprobe_lock held. */
 | 
						|
static inline
 | 
						|
int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr)
 | 
						|
{
 | 
						|
	if (current_kprobe->fault_handler &&
 | 
						|
	    current_kprobe->fault_handler(current_kprobe, regs, trapnr))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (kprobe_status & KPROBE_HIT_SS) {
 | 
						|
		resume_execution(current_kprobe, regs);
 | 
						|
		reset_current_kprobe();
 | 
						|
		preempt_enable_no_resched();
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Wrapper routine to for handling exceptions.
 | 
						|
 */
 | 
						|
int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
 | 
						|
				       unsigned long val, void *data)
 | 
						|
{
 | 
						|
	struct die_args *args = data;
 | 
						|
 | 
						|
	switch (val) {
 | 
						|
	case DIE_BREAKPOINT:
 | 
						|
		if (current_kprobe_bp_addr != args->regs->pc) {
 | 
						|
			if (kprobe_handler(args->regs))
 | 
						|
				return NOTIFY_STOP;
 | 
						|
		} else {
 | 
						|
			if (post_kprobe_handler(args->regs))
 | 
						|
				return NOTIFY_STOP;
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case DIE_GPF:
 | 
						|
		if (kprobe_running() &&
 | 
						|
		    kprobe_fault_handler(args->regs, args->trapnr))
 | 
						|
			return NOTIFY_STOP;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	return NOTIFY_DONE;
 | 
						|
}
 | 
						|
 | 
						|
/* Jprobes support.  */
 | 
						|
static struct pt_regs jprobe_saved_regs;
 | 
						|
static struct pt_regs *jprobe_saved_regs_location;
 | 
						|
static kprobe_opcode_t jprobe_saved_stack[MAX_STACK_SIZE];
 | 
						|
 | 
						|
int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct jprobe *jp = container_of(p, struct jprobe, kp);
 | 
						|
 | 
						|
	jprobe_saved_regs_location = regs;
 | 
						|
	memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
 | 
						|
 | 
						|
	/* Save a whole stack frame, this gets arguments
 | 
						|
	 * pushed onto the stack after using up all the
 | 
						|
	 * arg registers.
 | 
						|
	 */
 | 
						|
	memcpy(&jprobe_saved_stack, regs + 1, sizeof(jprobe_saved_stack));
 | 
						|
 | 
						|
	/* setup return addr to the jprobe handler routine */
 | 
						|
	regs->pc = (unsigned long) jp->entry;
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
void __kprobes jprobe_return(void)
 | 
						|
{
 | 
						|
	void *orig_sp = jprobe_saved_regs_location + 1;
 | 
						|
 | 
						|
	preempt_enable_no_resched();
 | 
						|
	asm volatile("		mov	%0,sp\n"
 | 
						|
		     ".globl	jprobe_return_bp_addr\n"
 | 
						|
		     "jprobe_return_bp_addr:\n\t"
 | 
						|
		     "		.byte	0xff\n"
 | 
						|
		     : : "d" (orig_sp));
 | 
						|
}
 | 
						|
 | 
						|
extern void jprobe_return_bp_addr(void);
 | 
						|
 | 
						|
int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	u8 *addr = (u8 *) regs->pc;
 | 
						|
 | 
						|
	if (addr == (u8 *) jprobe_return_bp_addr) {
 | 
						|
		if (jprobe_saved_regs_location != regs) {
 | 
						|
			printk(KERN_ERR"JPROBE:"
 | 
						|
			       " Current regs (%p) does not match saved regs"
 | 
						|
			       " (%p).\n",
 | 
						|
			       regs, jprobe_saved_regs_location);
 | 
						|
			BUG();
 | 
						|
		}
 | 
						|
 | 
						|
		/* Restore old register state.
 | 
						|
		 */
 | 
						|
		memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
 | 
						|
 | 
						|
		memcpy(regs + 1, &jprobe_saved_stack,
 | 
						|
		       sizeof(jprobe_saved_stack));
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int __init arch_init_kprobes(void)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 |