1145 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1145 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * pSeries NUMA support
 | |
|  *
 | |
|  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version
 | |
|  * 2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| #include <linux/threads.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/mmzone.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/nodemask.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/notifier.h>
 | |
| #include <linux/lmb.h>
 | |
| #include <linux/of.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <asm/sparsemem.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/smp.h>
 | |
| 
 | |
| static int numa_enabled = 1;
 | |
| 
 | |
| static char *cmdline __initdata;
 | |
| 
 | |
| static int numa_debug;
 | |
| #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
 | |
| 
 | |
| int numa_cpu_lookup_table[NR_CPUS];
 | |
| cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 | |
| struct pglist_data *node_data[MAX_NUMNODES];
 | |
| 
 | |
| EXPORT_SYMBOL(numa_cpu_lookup_table);
 | |
| EXPORT_SYMBOL(numa_cpumask_lookup_table);
 | |
| EXPORT_SYMBOL(node_data);
 | |
| 
 | |
| static int min_common_depth;
 | |
| static int n_mem_addr_cells, n_mem_size_cells;
 | |
| 
 | |
| static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
 | |
| 						unsigned int *nid)
 | |
| {
 | |
| 	unsigned long long mem;
 | |
| 	char *p = cmdline;
 | |
| 	static unsigned int fake_nid;
 | |
| 	static unsigned long long curr_boundary;
 | |
| 
 | |
| 	/*
 | |
| 	 * Modify node id, iff we started creating NUMA nodes
 | |
| 	 * We want to continue from where we left of the last time
 | |
| 	 */
 | |
| 	if (fake_nid)
 | |
| 		*nid = fake_nid;
 | |
| 	/*
 | |
| 	 * In case there are no more arguments to parse, the
 | |
| 	 * node_id should be the same as the last fake node id
 | |
| 	 * (we've handled this above).
 | |
| 	 */
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	mem = memparse(p, &p);
 | |
| 	if (!mem)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (mem < curr_boundary)
 | |
| 		return 0;
 | |
| 
 | |
| 	curr_boundary = mem;
 | |
| 
 | |
| 	if ((end_pfn << PAGE_SHIFT) > mem) {
 | |
| 		/*
 | |
| 		 * Skip commas and spaces
 | |
| 		 */
 | |
| 		while (*p == ',' || *p == ' ' || *p == '\t')
 | |
| 			p++;
 | |
| 
 | |
| 		cmdline = p;
 | |
| 		fake_nid++;
 | |
| 		*nid = fake_nid;
 | |
| 		dbg("created new fake_node with id %d\n", fake_nid);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_active_region_work_fn - A helper function for get_node_active_region
 | |
|  *	Returns datax set to the start_pfn and end_pfn if they contain
 | |
|  *	the initial value of datax->start_pfn between them
 | |
|  * @start_pfn: start page(inclusive) of region to check
 | |
|  * @end_pfn: end page(exclusive) of region to check
 | |
|  * @datax: comes in with ->start_pfn set to value to search for and
 | |
|  *	goes out with active range if it contains it
 | |
|  * Returns 1 if search value is in range else 0
 | |
|  */
 | |
| static int __init get_active_region_work_fn(unsigned long start_pfn,
 | |
| 					unsigned long end_pfn, void *datax)
 | |
| {
 | |
| 	struct node_active_region *data;
 | |
| 	data = (struct node_active_region *)datax;
 | |
| 
 | |
| 	if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
 | |
| 		data->start_pfn = start_pfn;
 | |
| 		data->end_pfn = end_pfn;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * get_node_active_region - Return active region containing start_pfn
 | |
|  * Active range returned is empty if none found.
 | |
|  * @start_pfn: The page to return the region for.
 | |
|  * @node_ar: Returned set to the active region containing start_pfn
 | |
|  */
 | |
| static void __init get_node_active_region(unsigned long start_pfn,
 | |
| 		       struct node_active_region *node_ar)
 | |
| {
 | |
| 	int nid = early_pfn_to_nid(start_pfn);
 | |
| 
 | |
| 	node_ar->nid = nid;
 | |
| 	node_ar->start_pfn = start_pfn;
 | |
| 	node_ar->end_pfn = start_pfn;
 | |
| 	work_with_active_regions(nid, get_active_region_work_fn, node_ar);
 | |
| }
 | |
| 
 | |
| static void __cpuinit map_cpu_to_node(int cpu, int node)
 | |
| {
 | |
| 	numa_cpu_lookup_table[cpu] = node;
 | |
| 
 | |
| 	dbg("adding cpu %d to node %d\n", cpu, node);
 | |
| 
 | |
| 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node])))
 | |
| 		cpu_set(cpu, numa_cpumask_lookup_table[node]);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| static void unmap_cpu_from_node(unsigned long cpu)
 | |
| {
 | |
| 	int node = numa_cpu_lookup_table[cpu];
 | |
| 
 | |
| 	dbg("removing cpu %lu from node %d\n", cpu, node);
 | |
| 
 | |
| 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
 | |
| 		cpu_clear(cpu, numa_cpumask_lookup_table[node]);
 | |
| 	} else {
 | |
| 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
 | |
| 		       cpu, node);
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_HOTPLUG_CPU */
 | |
| 
 | |
| /* must hold reference to node during call */
 | |
| static const int *of_get_associativity(struct device_node *dev)
 | |
| {
 | |
| 	return of_get_property(dev, "ibm,associativity", NULL);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Returns the property linux,drconf-usable-memory if
 | |
|  * it exists (the property exists only in kexec/kdump kernels,
 | |
|  * added by kexec-tools)
 | |
|  */
 | |
| static const u32 *of_get_usable_memory(struct device_node *memory)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len;
 | |
| 	prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
 | |
| 	if (!prop || len < sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 	return prop;
 | |
| }
 | |
| 
 | |
| /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
 | |
|  * info is found.
 | |
|  */
 | |
| static int of_node_to_nid_single(struct device_node *device)
 | |
| {
 | |
| 	int nid = -1;
 | |
| 	const unsigned int *tmp;
 | |
| 
 | |
| 	if (min_common_depth == -1)
 | |
| 		goto out;
 | |
| 
 | |
| 	tmp = of_get_associativity(device);
 | |
| 	if (!tmp)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (tmp[0] >= min_common_depth)
 | |
| 		nid = tmp[min_common_depth];
 | |
| 
 | |
| 	/* POWER4 LPAR uses 0xffff as invalid node */
 | |
| 	if (nid == 0xffff || nid >= MAX_NUMNODES)
 | |
| 		nid = -1;
 | |
| out:
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /* Walk the device tree upwards, looking for an associativity id */
 | |
| int of_node_to_nid(struct device_node *device)
 | |
| {
 | |
| 	struct device_node *tmp;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	of_node_get(device);
 | |
| 	while (device) {
 | |
| 		nid = of_node_to_nid_single(device);
 | |
| 		if (nid != -1)
 | |
| 			break;
 | |
| 
 | |
| 	        tmp = device;
 | |
| 		device = of_get_parent(tmp);
 | |
| 		of_node_put(tmp);
 | |
| 	}
 | |
| 	of_node_put(device);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(of_node_to_nid);
 | |
| 
 | |
| /*
 | |
|  * In theory, the "ibm,associativity" property may contain multiple
 | |
|  * associativity lists because a resource may be multiply connected
 | |
|  * into the machine.  This resource then has different associativity
 | |
|  * characteristics relative to its multiple connections.  We ignore
 | |
|  * this for now.  We also assume that all cpu and memory sets have
 | |
|  * their distances represented at a common level.  This won't be
 | |
|  * true for hierarchical NUMA.
 | |
|  *
 | |
|  * In any case the ibm,associativity-reference-points should give
 | |
|  * the correct depth for a normal NUMA system.
 | |
|  *
 | |
|  * - Dave Hansen <haveblue@us.ibm.com>
 | |
|  */
 | |
| static int __init find_min_common_depth(void)
 | |
| {
 | |
| 	int depth;
 | |
| 	const unsigned int *ref_points;
 | |
| 	struct device_node *rtas_root;
 | |
| 	unsigned int len;
 | |
| 
 | |
| 	rtas_root = of_find_node_by_path("/rtas");
 | |
| 
 | |
| 	if (!rtas_root)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * this property is 2 32-bit integers, each representing a level of
 | |
| 	 * depth in the associativity nodes.  The first is for an SMP
 | |
| 	 * configuration (should be all 0's) and the second is for a normal
 | |
| 	 * NUMA configuration.
 | |
| 	 */
 | |
| 	ref_points = of_get_property(rtas_root,
 | |
| 			"ibm,associativity-reference-points", &len);
 | |
| 
 | |
| 	if ((len >= 2 * sizeof(unsigned int)) && ref_points) {
 | |
| 		depth = ref_points[1];
 | |
| 	} else {
 | |
| 		dbg("NUMA: ibm,associativity-reference-points not found.\n");
 | |
| 		depth = -1;
 | |
| 	}
 | |
| 	of_node_put(rtas_root);
 | |
| 
 | |
| 	return depth;
 | |
| }
 | |
| 
 | |
| static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 
 | |
| 	memory = of_find_node_by_type(memory, "memory");
 | |
| 	if (!memory)
 | |
| 		panic("numa.c: No memory nodes found!");
 | |
| 
 | |
| 	*n_addr_cells = of_n_addr_cells(memory);
 | |
| 	*n_size_cells = of_n_size_cells(memory);
 | |
| 	of_node_put(memory);
 | |
| }
 | |
| 
 | |
| static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
 | |
| {
 | |
| 	unsigned long result = 0;
 | |
| 
 | |
| 	while (n--) {
 | |
| 		result = (result << 32) | **buf;
 | |
| 		(*buf)++;
 | |
| 	}
 | |
| 	return result;
 | |
| }
 | |
| 
 | |
| struct of_drconf_cell {
 | |
| 	u64	base_addr;
 | |
| 	u32	drc_index;
 | |
| 	u32	reserved;
 | |
| 	u32	aa_index;
 | |
| 	u32	flags;
 | |
| };
 | |
| 
 | |
| #define DRCONF_MEM_ASSIGNED	0x00000008
 | |
| #define DRCONF_MEM_AI_INVALID	0x00000040
 | |
| #define DRCONF_MEM_RESERVED	0x00000080
 | |
| 
 | |
| /*
 | |
|  * Read the next lmb list entry from the ibm,dynamic-memory property
 | |
|  * and return the information in the provided of_drconf_cell structure.
 | |
|  */
 | |
| static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
 | |
| {
 | |
| 	const u32 *cp;
 | |
| 
 | |
| 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
 | |
| 
 | |
| 	cp = *cellp;
 | |
| 	drmem->drc_index = cp[0];
 | |
| 	drmem->reserved = cp[1];
 | |
| 	drmem->aa_index = cp[2];
 | |
| 	drmem->flags = cp[3];
 | |
| 
 | |
| 	*cellp = cp + 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retreive and validate the ibm,dynamic-memory property of the device tree.
 | |
|  *
 | |
|  * The layout of the ibm,dynamic-memory property is a number N of lmb
 | |
|  * list entries followed by N lmb list entries.  Each lmb list entry
 | |
|  * contains information as layed out in the of_drconf_cell struct above.
 | |
|  */
 | |
| static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len, entries;
 | |
| 
 | |
| 	prop = of_get_property(memory, "ibm,dynamic-memory", &len);
 | |
| 	if (!prop || len < sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 
 | |
| 	entries = *prop++;
 | |
| 
 | |
| 	/* Now that we know the number of entries, revalidate the size
 | |
| 	 * of the property read in to ensure we have everything
 | |
| 	 */
 | |
| 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 
 | |
| 	*dm = prop;
 | |
| 	return entries;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Retreive and validate the ibm,lmb-size property for drconf memory
 | |
|  * from the device tree.
 | |
|  */
 | |
| static u64 of_get_lmb_size(struct device_node *memory)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len;
 | |
| 
 | |
| 	prop = of_get_property(memory, "ibm,lmb-size", &len);
 | |
| 	if (!prop || len < sizeof(unsigned int))
 | |
| 		return 0;
 | |
| 
 | |
| 	return read_n_cells(n_mem_size_cells, &prop);
 | |
| }
 | |
| 
 | |
| struct assoc_arrays {
 | |
| 	u32	n_arrays;
 | |
| 	u32	array_sz;
 | |
| 	const u32 *arrays;
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Retreive and validate the list of associativity arrays for drconf
 | |
|  * memory from the ibm,associativity-lookup-arrays property of the
 | |
|  * device tree..
 | |
|  *
 | |
|  * The layout of the ibm,associativity-lookup-arrays property is a number N
 | |
|  * indicating the number of associativity arrays, followed by a number M
 | |
|  * indicating the size of each associativity array, followed by a list
 | |
|  * of N associativity arrays.
 | |
|  */
 | |
| static int of_get_assoc_arrays(struct device_node *memory,
 | |
| 			       struct assoc_arrays *aa)
 | |
| {
 | |
| 	const u32 *prop;
 | |
| 	u32 len;
 | |
| 
 | |
| 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
 | |
| 	if (!prop || len < 2 * sizeof(unsigned int))
 | |
| 		return -1;
 | |
| 
 | |
| 	aa->n_arrays = *prop++;
 | |
| 	aa->array_sz = *prop++;
 | |
| 
 | |
| 	/* Now that we know the number of arrrays and size of each array,
 | |
| 	 * revalidate the size of the property read in.
 | |
| 	 */
 | |
| 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
 | |
| 		return -1;
 | |
| 
 | |
| 	aa->arrays = prop;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This is like of_node_to_nid_single() for memory represented in the
 | |
|  * ibm,dynamic-reconfiguration-memory node.
 | |
|  */
 | |
| static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
 | |
| 				   struct assoc_arrays *aa)
 | |
| {
 | |
| 	int default_nid = 0;
 | |
| 	int nid = default_nid;
 | |
| 	int index;
 | |
| 
 | |
| 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
 | |
| 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
 | |
| 	    drmem->aa_index < aa->n_arrays) {
 | |
| 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
 | |
| 		nid = aa->arrays[index];
 | |
| 
 | |
| 		if (nid == 0xffff || nid >= MAX_NUMNODES)
 | |
| 			nid = default_nid;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Figure out to which domain a cpu belongs and stick it there.
 | |
|  * Return the id of the domain used.
 | |
|  */
 | |
| static int __cpuinit numa_setup_cpu(unsigned long lcpu)
 | |
| {
 | |
| 	int nid = 0;
 | |
| 	struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
 | |
| 
 | |
| 	if (!cpu) {
 | |
| 		WARN_ON(1);
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	nid = of_node_to_nid_single(cpu);
 | |
| 
 | |
| 	if (nid < 0 || !node_online(nid))
 | |
| 		nid = any_online_node(NODE_MASK_ALL);
 | |
| out:
 | |
| 	map_cpu_to_node(lcpu, nid);
 | |
| 
 | |
| 	of_node_put(cpu);
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
 | |
| 			     unsigned long action,
 | |
| 			     void *hcpu)
 | |
| {
 | |
| 	unsigned long lcpu = (unsigned long)hcpu;
 | |
| 	int ret = NOTIFY_DONE;
 | |
| 
 | |
| 	switch (action) {
 | |
| 	case CPU_UP_PREPARE:
 | |
| 	case CPU_UP_PREPARE_FROZEN:
 | |
| 		numa_setup_cpu(lcpu);
 | |
| 		ret = NOTIFY_OK;
 | |
| 		break;
 | |
| #ifdef CONFIG_HOTPLUG_CPU
 | |
| 	case CPU_DEAD:
 | |
| 	case CPU_DEAD_FROZEN:
 | |
| 	case CPU_UP_CANCELED:
 | |
| 	case CPU_UP_CANCELED_FROZEN:
 | |
| 		unmap_cpu_from_node(lcpu);
 | |
| 		break;
 | |
| 		ret = NOTIFY_OK;
 | |
| #endif
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Check and possibly modify a memory region to enforce the memory limit.
 | |
|  *
 | |
|  * Returns the size the region should have to enforce the memory limit.
 | |
|  * This will either be the original value of size, a truncated value,
 | |
|  * or zero. If the returned value of size is 0 the region should be
 | |
|  * discarded as it lies wholy above the memory limit.
 | |
|  */
 | |
| static unsigned long __init numa_enforce_memory_limit(unsigned long start,
 | |
| 						      unsigned long size)
 | |
| {
 | |
| 	/*
 | |
| 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because
 | |
| 	 * we've already adjusted it for the limit and it takes care of
 | |
| 	 * having memory holes below the limit.  Also, in the case of
 | |
| 	 * iommu_is_off, memory_limit is not set but is implicitly enforced.
 | |
| 	 */
 | |
| 
 | |
| 	if (start + size <= lmb_end_of_DRAM())
 | |
| 		return size;
 | |
| 
 | |
| 	if (start >= lmb_end_of_DRAM())
 | |
| 		return 0;
 | |
| 
 | |
| 	return lmb_end_of_DRAM() - start;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reads the counter for a given entry in
 | |
|  * linux,drconf-usable-memory property
 | |
|  */
 | |
| static inline int __init read_usm_ranges(const u32 **usm)
 | |
| {
 | |
| 	/*
 | |
| 	 * For each lmb in ibm,dynamic-memory a corresponding
 | |
| 	 * entry in linux,drconf-usable-memory property contains
 | |
| 	 * a counter followed by that many (base, size) duple.
 | |
| 	 * read the counter from linux,drconf-usable-memory
 | |
| 	 */
 | |
| 	return read_n_cells(n_mem_size_cells, usm);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
 | |
|  * node.  This assumes n_mem_{addr,size}_cells have been set.
 | |
|  */
 | |
| static void __init parse_drconf_memory(struct device_node *memory)
 | |
| {
 | |
| 	const u32 *dm, *usm;
 | |
| 	unsigned int n, rc, ranges, is_kexec_kdump = 0;
 | |
| 	unsigned long lmb_size, base, size, sz;
 | |
| 	int nid;
 | |
| 	struct assoc_arrays aa;
 | |
| 
 | |
| 	n = of_get_drconf_memory(memory, &dm);
 | |
| 	if (!n)
 | |
| 		return;
 | |
| 
 | |
| 	lmb_size = of_get_lmb_size(memory);
 | |
| 	if (!lmb_size)
 | |
| 		return;
 | |
| 
 | |
| 	rc = of_get_assoc_arrays(memory, &aa);
 | |
| 	if (rc)
 | |
| 		return;
 | |
| 
 | |
| 	/* check if this is a kexec/kdump kernel */
 | |
| 	usm = of_get_usable_memory(memory);
 | |
| 	if (usm != NULL)
 | |
| 		is_kexec_kdump = 1;
 | |
| 
 | |
| 	for (; n != 0; --n) {
 | |
| 		struct of_drconf_cell drmem;
 | |
| 
 | |
| 		read_drconf_cell(&drmem, &dm);
 | |
| 
 | |
| 		/* skip this block if the reserved bit is set in flags (0x80)
 | |
| 		   or if the block is not assigned to this partition (0x8) */
 | |
| 		if ((drmem.flags & DRCONF_MEM_RESERVED)
 | |
| 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 | |
| 			continue;
 | |
| 
 | |
| 		base = drmem.base_addr;
 | |
| 		size = lmb_size;
 | |
| 		ranges = 1;
 | |
| 
 | |
| 		if (is_kexec_kdump) {
 | |
| 			ranges = read_usm_ranges(&usm);
 | |
| 			if (!ranges) /* there are no (base, size) duple */
 | |
| 				continue;
 | |
| 		}
 | |
| 		do {
 | |
| 			if (is_kexec_kdump) {
 | |
| 				base = read_n_cells(n_mem_addr_cells, &usm);
 | |
| 				size = read_n_cells(n_mem_size_cells, &usm);
 | |
| 			}
 | |
| 			nid = of_drconf_to_nid_single(&drmem, &aa);
 | |
| 			fake_numa_create_new_node(
 | |
| 				((base + size) >> PAGE_SHIFT),
 | |
| 					   &nid);
 | |
| 			node_set_online(nid);
 | |
| 			sz = numa_enforce_memory_limit(base, size);
 | |
| 			if (sz)
 | |
| 				add_active_range(nid, base >> PAGE_SHIFT,
 | |
| 						 (base >> PAGE_SHIFT)
 | |
| 						 + (sz >> PAGE_SHIFT));
 | |
| 		} while (--ranges);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int __init parse_numa_properties(void)
 | |
| {
 | |
| 	struct device_node *cpu = NULL;
 | |
| 	struct device_node *memory = NULL;
 | |
| 	int default_nid = 0;
 | |
| 	unsigned long i;
 | |
| 
 | |
| 	if (numa_enabled == 0) {
 | |
| 		printk(KERN_WARNING "NUMA disabled by user\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	min_common_depth = find_min_common_depth();
 | |
| 
 | |
| 	if (min_common_depth < 0)
 | |
| 		return min_common_depth;
 | |
| 
 | |
| 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
 | |
| 
 | |
| 	/*
 | |
| 	 * Even though we connect cpus to numa domains later in SMP
 | |
| 	 * init, we need to know the node ids now. This is because
 | |
| 	 * each node to be onlined must have NODE_DATA etc backing it.
 | |
| 	 */
 | |
| 	for_each_present_cpu(i) {
 | |
| 		int nid;
 | |
| 
 | |
| 		cpu = of_get_cpu_node(i, NULL);
 | |
| 		BUG_ON(!cpu);
 | |
| 		nid = of_node_to_nid_single(cpu);
 | |
| 		of_node_put(cpu);
 | |
| 
 | |
| 		/*
 | |
| 		 * Don't fall back to default_nid yet -- we will plug
 | |
| 		 * cpus into nodes once the memory scan has discovered
 | |
| 		 * the topology.
 | |
| 		 */
 | |
| 		if (nid < 0)
 | |
| 			continue;
 | |
| 		node_set_online(nid);
 | |
| 	}
 | |
| 
 | |
| 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
 | |
| 	memory = NULL;
 | |
| 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 | |
| 		unsigned long start;
 | |
| 		unsigned long size;
 | |
| 		int nid;
 | |
| 		int ranges;
 | |
| 		const unsigned int *memcell_buf;
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		memcell_buf = of_get_property(memory,
 | |
| 			"linux,usable-memory", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			memcell_buf = of_get_property(memory, "reg", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ranges in cell */
 | |
| 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | |
| new_range:
 | |
| 		/* these are order-sensitive, and modify the buffer pointer */
 | |
| 		start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | |
| 		size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | |
| 
 | |
| 		/*
 | |
| 		 * Assumption: either all memory nodes or none will
 | |
| 		 * have associativity properties.  If none, then
 | |
| 		 * everything goes to default_nid.
 | |
| 		 */
 | |
| 		nid = of_node_to_nid_single(memory);
 | |
| 		if (nid < 0)
 | |
| 			nid = default_nid;
 | |
| 
 | |
| 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
 | |
| 		node_set_online(nid);
 | |
| 
 | |
| 		if (!(size = numa_enforce_memory_limit(start, size))) {
 | |
| 			if (--ranges)
 | |
| 				goto new_range;
 | |
| 			else
 | |
| 				continue;
 | |
| 		}
 | |
| 
 | |
| 		add_active_range(nid, start >> PAGE_SHIFT,
 | |
| 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
 | |
| 
 | |
| 		if (--ranges)
 | |
| 			goto new_range;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
 | |
| 	 * property in the ibm,dynamic-reconfiguration-memory node.
 | |
| 	 */
 | |
| 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | |
| 	if (memory)
 | |
| 		parse_drconf_memory(memory);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void __init setup_nonnuma(void)
 | |
| {
 | |
| 	unsigned long top_of_ram = lmb_end_of_DRAM();
 | |
| 	unsigned long total_ram = lmb_phys_mem_size();
 | |
| 	unsigned long start_pfn, end_pfn;
 | |
| 	unsigned int i, nid = 0;
 | |
| 
 | |
| 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
 | |
| 	       top_of_ram, total_ram);
 | |
| 	printk(KERN_DEBUG "Memory hole size: %ldMB\n",
 | |
| 	       (top_of_ram - total_ram) >> 20);
 | |
| 
 | |
| 	for (i = 0; i < lmb.memory.cnt; ++i) {
 | |
| 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
 | |
| 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
 | |
| 
 | |
| 		fake_numa_create_new_node(end_pfn, &nid);
 | |
| 		add_active_range(nid, start_pfn, end_pfn);
 | |
| 		node_set_online(nid);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init dump_numa_cpu_topology(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int cpu, count;
 | |
| 
 | |
| 	if (min_common_depth == -1 || !numa_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		printk(KERN_DEBUG "Node %d CPUs:", node);
 | |
| 
 | |
| 		count = 0;
 | |
| 		/*
 | |
| 		 * If we used a CPU iterator here we would miss printing
 | |
| 		 * the holes in the cpumap.
 | |
| 		 */
 | |
| 		for (cpu = 0; cpu < NR_CPUS; cpu++) {
 | |
| 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) {
 | |
| 				if (count == 0)
 | |
| 					printk(" %u", cpu);
 | |
| 				++count;
 | |
| 			} else {
 | |
| 				if (count > 1)
 | |
| 					printk("-%u", cpu - 1);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (count > 1)
 | |
| 			printk("-%u", NR_CPUS - 1);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void __init dump_numa_memory_topology(void)
 | |
| {
 | |
| 	unsigned int node;
 | |
| 	unsigned int count;
 | |
| 
 | |
| 	if (min_common_depth == -1 || !numa_enabled)
 | |
| 		return;
 | |
| 
 | |
| 	for_each_online_node(node) {
 | |
| 		unsigned long i;
 | |
| 
 | |
| 		printk(KERN_DEBUG "Node %d Memory:", node);
 | |
| 
 | |
| 		count = 0;
 | |
| 
 | |
| 		for (i = 0; i < lmb_end_of_DRAM();
 | |
| 		     i += (1 << SECTION_SIZE_BITS)) {
 | |
| 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
 | |
| 				if (count == 0)
 | |
| 					printk(" 0x%lx", i);
 | |
| 				++count;
 | |
| 			} else {
 | |
| 				if (count > 0)
 | |
| 					printk("-0x%lx", i);
 | |
| 				count = 0;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (count > 0)
 | |
| 			printk("-0x%lx", i);
 | |
| 		printk("\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Allocate some memory, satisfying the lmb or bootmem allocator where
 | |
|  * required. nid is the preferred node and end is the physical address of
 | |
|  * the highest address in the node.
 | |
|  *
 | |
|  * Returns the virtual address of the memory.
 | |
|  */
 | |
| static void __init *careful_zallocation(int nid, unsigned long size,
 | |
| 				       unsigned long align,
 | |
| 				       unsigned long end_pfn)
 | |
| {
 | |
| 	void *ret;
 | |
| 	int new_nid;
 | |
| 	unsigned long ret_paddr;
 | |
| 
 | |
| 	ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 	/* retry over all memory */
 | |
| 	if (!ret_paddr)
 | |
| 		ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
 | |
| 
 | |
| 	if (!ret_paddr)
 | |
| 		panic("numa.c: cannot allocate %lu bytes for node %d",
 | |
| 		      size, nid);
 | |
| 
 | |
| 	ret = __va(ret_paddr);
 | |
| 
 | |
| 	/*
 | |
| 	 * We initialize the nodes in numeric order: 0, 1, 2...
 | |
| 	 * and hand over control from the LMB allocator to the
 | |
| 	 * bootmem allocator.  If this function is called for
 | |
| 	 * node 5, then we know that all nodes <5 are using the
 | |
| 	 * bootmem allocator instead of the LMB allocator.
 | |
| 	 *
 | |
| 	 * So, check the nid from which this allocation came
 | |
| 	 * and double check to see if we need to use bootmem
 | |
| 	 * instead of the LMB.  We don't free the LMB memory
 | |
| 	 * since it would be useless.
 | |
| 	 */
 | |
| 	new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
 | |
| 	if (new_nid < nid) {
 | |
| 		ret = __alloc_bootmem_node(NODE_DATA(new_nid),
 | |
| 				size, align, 0);
 | |
| 
 | |
| 		dbg("alloc_bootmem %p %lx\n", ret, size);
 | |
| 	}
 | |
| 
 | |
| 	memset(ret, 0, size);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static struct notifier_block __cpuinitdata ppc64_numa_nb = {
 | |
| 	.notifier_call = cpu_numa_callback,
 | |
| 	.priority = 1 /* Must run before sched domains notifier. */
 | |
| };
 | |
| 
 | |
| static void mark_reserved_regions_for_nid(int nid)
 | |
| {
 | |
| 	struct pglist_data *node = NODE_DATA(nid);
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < lmb.reserved.cnt; i++) {
 | |
| 		unsigned long physbase = lmb.reserved.region[i].base;
 | |
| 		unsigned long size = lmb.reserved.region[i].size;
 | |
| 		unsigned long start_pfn = physbase >> PAGE_SHIFT;
 | |
| 		unsigned long end_pfn = PFN_UP(physbase + size);
 | |
| 		struct node_active_region node_ar;
 | |
| 		unsigned long node_end_pfn = node->node_start_pfn +
 | |
| 					     node->node_spanned_pages;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check to make sure that this lmb.reserved area is
 | |
| 		 * within the bounds of the node that we care about.
 | |
| 		 * Checking the nid of the start and end points is not
 | |
| 		 * sufficient because the reserved area could span the
 | |
| 		 * entire node.
 | |
| 		 */
 | |
| 		if (end_pfn <= node->node_start_pfn ||
 | |
| 		    start_pfn >= node_end_pfn)
 | |
| 			continue;
 | |
| 
 | |
| 		get_node_active_region(start_pfn, &node_ar);
 | |
| 		while (start_pfn < end_pfn &&
 | |
| 			node_ar.start_pfn < node_ar.end_pfn) {
 | |
| 			unsigned long reserve_size = size;
 | |
| 			/*
 | |
| 			 * if reserved region extends past active region
 | |
| 			 * then trim size to active region
 | |
| 			 */
 | |
| 			if (end_pfn > node_ar.end_pfn)
 | |
| 				reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
 | |
| 					- physbase;
 | |
| 			/*
 | |
| 			 * Only worry about *this* node, others may not
 | |
| 			 * yet have valid NODE_DATA().
 | |
| 			 */
 | |
| 			if (node_ar.nid == nid) {
 | |
| 				dbg("reserve_bootmem %lx %lx nid=%d\n",
 | |
| 					physbase, reserve_size, node_ar.nid);
 | |
| 				reserve_bootmem_node(NODE_DATA(node_ar.nid),
 | |
| 						physbase, reserve_size,
 | |
| 						BOOTMEM_DEFAULT);
 | |
| 			}
 | |
| 			/*
 | |
| 			 * if reserved region is contained in the active region
 | |
| 			 * then done.
 | |
| 			 */
 | |
| 			if (end_pfn <= node_ar.end_pfn)
 | |
| 				break;
 | |
| 
 | |
| 			/*
 | |
| 			 * reserved region extends past the active region
 | |
| 			 *   get next active region that contains this
 | |
| 			 *   reserved region
 | |
| 			 */
 | |
| 			start_pfn = node_ar.end_pfn;
 | |
| 			physbase = start_pfn << PAGE_SHIFT;
 | |
| 			size = size - reserve_size;
 | |
| 			get_node_active_region(start_pfn, &node_ar);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| void __init do_init_bootmem(void)
 | |
| {
 | |
| 	int nid;
 | |
| 
 | |
| 	min_low_pfn = 0;
 | |
| 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	max_pfn = max_low_pfn;
 | |
| 
 | |
| 	if (parse_numa_properties())
 | |
| 		setup_nonnuma();
 | |
| 	else
 | |
| 		dump_numa_memory_topology();
 | |
| 
 | |
| 	register_cpu_notifier(&ppc64_numa_nb);
 | |
| 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
 | |
| 			  (void *)(unsigned long)boot_cpuid);
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		unsigned long start_pfn, end_pfn;
 | |
| 		void *bootmem_vaddr;
 | |
| 		unsigned long bootmap_pages;
 | |
| 
 | |
| 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 | |
| 
 | |
| 		/*
 | |
| 		 * Allocate the node structure node local if possible
 | |
| 		 *
 | |
| 		 * Be careful moving this around, as it relies on all
 | |
| 		 * previous nodes' bootmem to be initialized and have
 | |
| 		 * all reserved areas marked.
 | |
| 		 */
 | |
| 		NODE_DATA(nid) = careful_zallocation(nid,
 | |
| 					sizeof(struct pglist_data),
 | |
| 					SMP_CACHE_BYTES, end_pfn);
 | |
| 
 | |
|   		dbg("node %d\n", nid);
 | |
| 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
 | |
| 
 | |
| 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
 | |
| 		NODE_DATA(nid)->node_start_pfn = start_pfn;
 | |
| 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
 | |
| 
 | |
| 		if (NODE_DATA(nid)->node_spanned_pages == 0)
 | |
|   			continue;
 | |
| 
 | |
|   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
 | |
|   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
 | |
| 
 | |
| 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
 | |
| 		bootmem_vaddr = careful_zallocation(nid,
 | |
| 					bootmap_pages << PAGE_SHIFT,
 | |
| 					PAGE_SIZE, end_pfn);
 | |
| 
 | |
| 		dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
 | |
| 
 | |
| 		init_bootmem_node(NODE_DATA(nid),
 | |
| 				  __pa(bootmem_vaddr) >> PAGE_SHIFT,
 | |
| 				  start_pfn, end_pfn);
 | |
| 
 | |
| 		free_bootmem_with_active_regions(nid, end_pfn);
 | |
| 		/*
 | |
| 		 * Be very careful about moving this around.  Future
 | |
| 		 * calls to careful_zallocation() depend on this getting
 | |
| 		 * done correctly.
 | |
| 		 */
 | |
| 		mark_reserved_regions_for_nid(nid);
 | |
| 		sparse_memory_present_with_active_regions(nid);
 | |
| 	}
 | |
| 
 | |
| 	init_bootmem_done = 1;
 | |
| }
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| }
 | |
| 
 | |
| static int __init early_numa(char *p)
 | |
| {
 | |
| 	if (!p)
 | |
| 		return 0;
 | |
| 
 | |
| 	if (strstr(p, "off"))
 | |
| 		numa_enabled = 0;
 | |
| 
 | |
| 	if (strstr(p, "debug"))
 | |
| 		numa_debug = 1;
 | |
| 
 | |
| 	p = strstr(p, "fake=");
 | |
| 	if (p)
 | |
| 		cmdline = p + strlen("fake=");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| early_param("numa", early_numa);
 | |
| 
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section for
 | |
|  * memory represented in the device tree by the property
 | |
|  * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
 | |
|  */
 | |
| static int hot_add_drconf_scn_to_nid(struct device_node *memory,
 | |
| 				     unsigned long scn_addr)
 | |
| {
 | |
| 	const u32 *dm;
 | |
| 	unsigned int drconf_cell_cnt, rc;
 | |
| 	unsigned long lmb_size;
 | |
| 	struct assoc_arrays aa;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
 | |
| 	if (!drconf_cell_cnt)
 | |
| 		return -1;
 | |
| 
 | |
| 	lmb_size = of_get_lmb_size(memory);
 | |
| 	if (!lmb_size)
 | |
| 		return -1;
 | |
| 
 | |
| 	rc = of_get_assoc_arrays(memory, &aa);
 | |
| 	if (rc)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
 | |
| 		struct of_drconf_cell drmem;
 | |
| 
 | |
| 		read_drconf_cell(&drmem, &dm);
 | |
| 
 | |
| 		/* skip this block if it is reserved or not assigned to
 | |
| 		 * this partition */
 | |
| 		if ((drmem.flags & DRCONF_MEM_RESERVED)
 | |
| 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED))
 | |
| 			continue;
 | |
| 
 | |
| 		if ((scn_addr < drmem.base_addr)
 | |
| 		    || (scn_addr >= (drmem.base_addr + lmb_size)))
 | |
| 			continue;
 | |
| 
 | |
| 		nid = of_drconf_to_nid_single(&drmem, &aa);
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section for memory
 | |
|  * represented in the device tree as a node (i.e. memory@XXXX) for
 | |
|  * each lmb.
 | |
|  */
 | |
| int hot_add_node_scn_to_nid(unsigned long scn_addr)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 	int nid = -1;
 | |
| 
 | |
| 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
 | |
| 		unsigned long start, size;
 | |
| 		int ranges;
 | |
| 		const unsigned int *memcell_buf;
 | |
| 		unsigned int len;
 | |
| 
 | |
| 		memcell_buf = of_get_property(memory, "reg", &len);
 | |
| 		if (!memcell_buf || len <= 0)
 | |
| 			continue;
 | |
| 
 | |
| 		/* ranges in cell */
 | |
| 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
 | |
| 
 | |
| 		while (ranges--) {
 | |
| 			start = read_n_cells(n_mem_addr_cells, &memcell_buf);
 | |
| 			size = read_n_cells(n_mem_size_cells, &memcell_buf);
 | |
| 
 | |
| 			if ((scn_addr < start) || (scn_addr >= (start + size)))
 | |
| 				continue;
 | |
| 
 | |
| 			nid = of_node_to_nid_single(memory);
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		of_node_put(memory);
 | |
| 		if (nid >= 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Find the node associated with a hot added memory section.  Section
 | |
|  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that
 | |
|  * sections are fully contained within a single LMB.
 | |
|  */
 | |
| int hot_add_scn_to_nid(unsigned long scn_addr)
 | |
| {
 | |
| 	struct device_node *memory = NULL;
 | |
| 	int nid, found = 0;
 | |
| 
 | |
| 	if (!numa_enabled || (min_common_depth < 0))
 | |
| 		return any_online_node(NODE_MASK_ALL);
 | |
| 
 | |
| 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
 | |
| 	if (memory) {
 | |
| 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
 | |
| 		of_node_put(memory);
 | |
| 	} else {
 | |
| 		nid = hot_add_node_scn_to_nid(scn_addr);
 | |
| 	}
 | |
| 
 | |
| 	if (nid < 0 || !node_online(nid))
 | |
| 		nid = any_online_node(NODE_MASK_ALL);
 | |
| 
 | |
| 	if (NODE_DATA(nid)->node_spanned_pages)
 | |
| 		return nid;
 | |
| 
 | |
| 	for_each_online_node(nid) {
 | |
| 		if (NODE_DATA(nid)->node_spanned_pages) {
 | |
| 			found = 1;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	BUG_ON(!found);
 | |
| 	return nid;
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 |