506 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			506 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * linux/arch/ia64/kernel/time.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 1998-2003 Hewlett-Packard Co
 | 
						|
 *	Stephane Eranian <eranian@hpl.hp.com>
 | 
						|
 *	David Mosberger <davidm@hpl.hp.com>
 | 
						|
 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
 | 
						|
 * Copyright (C) 1999-2000 VA Linux Systems
 | 
						|
 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/cpu.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/profile.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/interrupt.h>
 | 
						|
#include <linux/efi.h>
 | 
						|
#include <linux/timex.h>
 | 
						|
#include <linux/clocksource.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
 | 
						|
#include <asm/machvec.h>
 | 
						|
#include <asm/delay.h>
 | 
						|
#include <asm/hw_irq.h>
 | 
						|
#include <asm/paravirt.h>
 | 
						|
#include <asm/ptrace.h>
 | 
						|
#include <asm/sal.h>
 | 
						|
#include <asm/sections.h>
 | 
						|
#include <asm/system.h>
 | 
						|
 | 
						|
#include "fsyscall_gtod_data.h"
 | 
						|
 | 
						|
static cycle_t itc_get_cycles(struct clocksource *cs);
 | 
						|
 | 
						|
struct fsyscall_gtod_data_t fsyscall_gtod_data = {
 | 
						|
	.lock = SEQLOCK_UNLOCKED,
 | 
						|
};
 | 
						|
 | 
						|
struct itc_jitter_data_t itc_jitter_data;
 | 
						|
 | 
						|
volatile int time_keeper_id = 0; /* smp_processor_id() of time-keeper */
 | 
						|
 | 
						|
#ifdef CONFIG_IA64_DEBUG_IRQ
 | 
						|
 | 
						|
unsigned long last_cli_ip;
 | 
						|
EXPORT_SYMBOL(last_cli_ip);
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_PARAVIRT
 | 
						|
/* We need to define a real function for sched_clock, to override the
 | 
						|
   weak default version */
 | 
						|
unsigned long long sched_clock(void)
 | 
						|
{
 | 
						|
        return paravirt_sched_clock();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef CONFIG_PARAVIRT
 | 
						|
static void
 | 
						|
paravirt_clocksource_resume(void)
 | 
						|
{
 | 
						|
	if (pv_time_ops.clocksource_resume)
 | 
						|
		pv_time_ops.clocksource_resume();
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
static struct clocksource clocksource_itc = {
 | 
						|
	.name           = "itc",
 | 
						|
	.rating         = 350,
 | 
						|
	.read           = itc_get_cycles,
 | 
						|
	.mask           = CLOCKSOURCE_MASK(64),
 | 
						|
	.mult           = 0, /*to be calculated*/
 | 
						|
	.shift          = 16,
 | 
						|
	.flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 | 
						|
#ifdef CONFIG_PARAVIRT
 | 
						|
	.resume		= paravirt_clocksource_resume,
 | 
						|
#endif
 | 
						|
};
 | 
						|
static struct clocksource *itc_clocksource;
 | 
						|
 | 
						|
#ifdef CONFIG_VIRT_CPU_ACCOUNTING
 | 
						|
 | 
						|
#include <linux/kernel_stat.h>
 | 
						|
 | 
						|
extern cputime_t cycle_to_cputime(u64 cyc);
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from the context switch with interrupts disabled, to charge all
 | 
						|
 * accumulated times to the current process, and to prepare accounting on
 | 
						|
 * the next process.
 | 
						|
 */
 | 
						|
void ia64_account_on_switch(struct task_struct *prev, struct task_struct *next)
 | 
						|
{
 | 
						|
	struct thread_info *pi = task_thread_info(prev);
 | 
						|
	struct thread_info *ni = task_thread_info(next);
 | 
						|
	cputime_t delta_stime, delta_utime;
 | 
						|
	__u64 now;
 | 
						|
 | 
						|
	now = ia64_get_itc();
 | 
						|
 | 
						|
	delta_stime = cycle_to_cputime(pi->ac_stime + (now - pi->ac_stamp));
 | 
						|
	if (idle_task(smp_processor_id()) != prev)
 | 
						|
		account_system_time(prev, 0, delta_stime, delta_stime);
 | 
						|
	else
 | 
						|
		account_idle_time(delta_stime);
 | 
						|
 | 
						|
	if (pi->ac_utime) {
 | 
						|
		delta_utime = cycle_to_cputime(pi->ac_utime);
 | 
						|
		account_user_time(prev, delta_utime, delta_utime);
 | 
						|
	}
 | 
						|
 | 
						|
	pi->ac_stamp = ni->ac_stamp = now;
 | 
						|
	ni->ac_stime = ni->ac_utime = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Account time for a transition between system, hard irq or soft irq state.
 | 
						|
 * Note that this function is called with interrupts enabled.
 | 
						|
 */
 | 
						|
void account_system_vtime(struct task_struct *tsk)
 | 
						|
{
 | 
						|
	struct thread_info *ti = task_thread_info(tsk);
 | 
						|
	unsigned long flags;
 | 
						|
	cputime_t delta_stime;
 | 
						|
	__u64 now;
 | 
						|
 | 
						|
	local_irq_save(flags);
 | 
						|
 | 
						|
	now = ia64_get_itc();
 | 
						|
 | 
						|
	delta_stime = cycle_to_cputime(ti->ac_stime + (now - ti->ac_stamp));
 | 
						|
	if (irq_count() || idle_task(smp_processor_id()) != tsk)
 | 
						|
		account_system_time(tsk, 0, delta_stime, delta_stime);
 | 
						|
	else
 | 
						|
		account_idle_time(delta_stime);
 | 
						|
	ti->ac_stime = 0;
 | 
						|
 | 
						|
	ti->ac_stamp = now;
 | 
						|
 | 
						|
	local_irq_restore(flags);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(account_system_vtime);
 | 
						|
 | 
						|
/*
 | 
						|
 * Called from the timer interrupt handler to charge accumulated user time
 | 
						|
 * to the current process.  Must be called with interrupts disabled.
 | 
						|
 */
 | 
						|
void account_process_tick(struct task_struct *p, int user_tick)
 | 
						|
{
 | 
						|
	struct thread_info *ti = task_thread_info(p);
 | 
						|
	cputime_t delta_utime;
 | 
						|
 | 
						|
	if (ti->ac_utime) {
 | 
						|
		delta_utime = cycle_to_cputime(ti->ac_utime);
 | 
						|
		account_user_time(p, delta_utime, delta_utime);
 | 
						|
		ti->ac_utime = 0;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
 | 
						|
 | 
						|
static irqreturn_t
 | 
						|
timer_interrupt (int irq, void *dev_id)
 | 
						|
{
 | 
						|
	unsigned long new_itm;
 | 
						|
 | 
						|
	if (unlikely(cpu_is_offline(smp_processor_id()))) {
 | 
						|
		return IRQ_HANDLED;
 | 
						|
	}
 | 
						|
 | 
						|
	platform_timer_interrupt(irq, dev_id);
 | 
						|
 | 
						|
	new_itm = local_cpu_data->itm_next;
 | 
						|
 | 
						|
	if (!time_after(ia64_get_itc(), new_itm))
 | 
						|
		printk(KERN_ERR "Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
 | 
						|
		       ia64_get_itc(), new_itm);
 | 
						|
 | 
						|
	profile_tick(CPU_PROFILING);
 | 
						|
 | 
						|
	if (paravirt_do_steal_accounting(&new_itm))
 | 
						|
		goto skip_process_time_accounting;
 | 
						|
 | 
						|
	while (1) {
 | 
						|
		update_process_times(user_mode(get_irq_regs()));
 | 
						|
 | 
						|
		new_itm += local_cpu_data->itm_delta;
 | 
						|
 | 
						|
		if (smp_processor_id() == time_keeper_id) {
 | 
						|
			/*
 | 
						|
			 * Here we are in the timer irq handler. We have irqs locally
 | 
						|
			 * disabled, but we don't know if the timer_bh is running on
 | 
						|
			 * another CPU. We need to avoid to SMP race by acquiring the
 | 
						|
			 * xtime_lock.
 | 
						|
			 */
 | 
						|
			write_seqlock(&xtime_lock);
 | 
						|
			do_timer(1);
 | 
						|
			local_cpu_data->itm_next = new_itm;
 | 
						|
			write_sequnlock(&xtime_lock);
 | 
						|
		} else
 | 
						|
			local_cpu_data->itm_next = new_itm;
 | 
						|
 | 
						|
		if (time_after(new_itm, ia64_get_itc()))
 | 
						|
			break;
 | 
						|
 | 
						|
		/*
 | 
						|
		 * Allow IPIs to interrupt the timer loop.
 | 
						|
		 */
 | 
						|
		local_irq_enable();
 | 
						|
		local_irq_disable();
 | 
						|
	}
 | 
						|
 | 
						|
skip_process_time_accounting:
 | 
						|
 | 
						|
	do {
 | 
						|
		/*
 | 
						|
		 * If we're too close to the next clock tick for
 | 
						|
		 * comfort, we increase the safety margin by
 | 
						|
		 * intentionally dropping the next tick(s).  We do NOT
 | 
						|
		 * update itm.next because that would force us to call
 | 
						|
		 * do_timer() which in turn would let our clock run
 | 
						|
		 * too fast (with the potentially devastating effect
 | 
						|
		 * of losing monotony of time).
 | 
						|
		 */
 | 
						|
		while (!time_after(new_itm, ia64_get_itc() + local_cpu_data->itm_delta/2))
 | 
						|
			new_itm += local_cpu_data->itm_delta;
 | 
						|
		ia64_set_itm(new_itm);
 | 
						|
		/* double check, in case we got hit by a (slow) PMI: */
 | 
						|
	} while (time_after_eq(ia64_get_itc(), new_itm));
 | 
						|
	return IRQ_HANDLED;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Encapsulate access to the itm structure for SMP.
 | 
						|
 */
 | 
						|
void
 | 
						|
ia64_cpu_local_tick (void)
 | 
						|
{
 | 
						|
	int cpu = smp_processor_id();
 | 
						|
	unsigned long shift = 0, delta;
 | 
						|
 | 
						|
	/* arrange for the cycle counter to generate a timer interrupt: */
 | 
						|
	ia64_set_itv(IA64_TIMER_VECTOR);
 | 
						|
 | 
						|
	delta = local_cpu_data->itm_delta;
 | 
						|
	/*
 | 
						|
	 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
 | 
						|
	 * same time:
 | 
						|
	 */
 | 
						|
	if (cpu) {
 | 
						|
		unsigned long hi = 1UL << ia64_fls(cpu);
 | 
						|
		shift = (2*(cpu - hi) + 1) * delta/hi/2;
 | 
						|
	}
 | 
						|
	local_cpu_data->itm_next = ia64_get_itc() + delta + shift;
 | 
						|
	ia64_set_itm(local_cpu_data->itm_next);
 | 
						|
}
 | 
						|
 | 
						|
static int nojitter;
 | 
						|
 | 
						|
static int __init nojitter_setup(char *str)
 | 
						|
{
 | 
						|
	nojitter = 1;
 | 
						|
	printk("Jitter checking for ITC timers disabled\n");
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
__setup("nojitter", nojitter_setup);
 | 
						|
 | 
						|
 | 
						|
void __devinit
 | 
						|
ia64_init_itm (void)
 | 
						|
{
 | 
						|
	unsigned long platform_base_freq, itc_freq;
 | 
						|
	struct pal_freq_ratio itc_ratio, proc_ratio;
 | 
						|
	long status, platform_base_drift, itc_drift;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * According to SAL v2.6, we need to use a SAL call to determine the platform base
 | 
						|
	 * frequency and then a PAL call to determine the frequency ratio between the ITC
 | 
						|
	 * and the base frequency.
 | 
						|
	 */
 | 
						|
	status = ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM,
 | 
						|
				    &platform_base_freq, &platform_base_drift);
 | 
						|
	if (status != 0) {
 | 
						|
		printk(KERN_ERR "SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status));
 | 
						|
	} else {
 | 
						|
		status = ia64_pal_freq_ratios(&proc_ratio, NULL, &itc_ratio);
 | 
						|
		if (status != 0)
 | 
						|
			printk(KERN_ERR "PAL_FREQ_RATIOS failed with status=%ld\n", status);
 | 
						|
	}
 | 
						|
	if (status != 0) {
 | 
						|
		/* invent "random" values */
 | 
						|
		printk(KERN_ERR
 | 
						|
		       "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
 | 
						|
		platform_base_freq = 100000000;
 | 
						|
		platform_base_drift = -1;	/* no drift info */
 | 
						|
		itc_ratio.num = 3;
 | 
						|
		itc_ratio.den = 1;
 | 
						|
	}
 | 
						|
	if (platform_base_freq < 40000000) {
 | 
						|
		printk(KERN_ERR "Platform base frequency %lu bogus---resetting to 75MHz!\n",
 | 
						|
		       platform_base_freq);
 | 
						|
		platform_base_freq = 75000000;
 | 
						|
		platform_base_drift = -1;
 | 
						|
	}
 | 
						|
	if (!proc_ratio.den)
 | 
						|
		proc_ratio.den = 1;	/* avoid division by zero */
 | 
						|
	if (!itc_ratio.den)
 | 
						|
		itc_ratio.den = 1;	/* avoid division by zero */
 | 
						|
 | 
						|
	itc_freq = (platform_base_freq*itc_ratio.num)/itc_ratio.den;
 | 
						|
 | 
						|
	local_cpu_data->itm_delta = (itc_freq + HZ/2) / HZ;
 | 
						|
	printk(KERN_DEBUG "CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
 | 
						|
	       "ITC freq=%lu.%03luMHz", smp_processor_id(),
 | 
						|
	       platform_base_freq / 1000000, (platform_base_freq / 1000) % 1000,
 | 
						|
	       itc_ratio.num, itc_ratio.den, itc_freq / 1000000, (itc_freq / 1000) % 1000);
 | 
						|
 | 
						|
	if (platform_base_drift != -1) {
 | 
						|
		itc_drift = platform_base_drift*itc_ratio.num/itc_ratio.den;
 | 
						|
		printk("+/-%ldppm\n", itc_drift);
 | 
						|
	} else {
 | 
						|
		itc_drift = -1;
 | 
						|
		printk("\n");
 | 
						|
	}
 | 
						|
 | 
						|
	local_cpu_data->proc_freq = (platform_base_freq*proc_ratio.num)/proc_ratio.den;
 | 
						|
	local_cpu_data->itc_freq = itc_freq;
 | 
						|
	local_cpu_data->cyc_per_usec = (itc_freq + USEC_PER_SEC/2) / USEC_PER_SEC;
 | 
						|
	local_cpu_data->nsec_per_cyc = ((NSEC_PER_SEC<<IA64_NSEC_PER_CYC_SHIFT)
 | 
						|
					+ itc_freq/2)/itc_freq;
 | 
						|
 | 
						|
	if (!(sal_platform_features & IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT)) {
 | 
						|
#ifdef CONFIG_SMP
 | 
						|
		/* On IA64 in an SMP configuration ITCs are never accurately synchronized.
 | 
						|
		 * Jitter compensation requires a cmpxchg which may limit
 | 
						|
		 * the scalability of the syscalls for retrieving time.
 | 
						|
		 * The ITC synchronization is usually successful to within a few
 | 
						|
		 * ITC ticks but this is not a sure thing. If you need to improve
 | 
						|
		 * timer performance in SMP situations then boot the kernel with the
 | 
						|
		 * "nojitter" option. However, doing so may result in time fluctuating (maybe
 | 
						|
		 * even going backward) if the ITC offsets between the individual CPUs
 | 
						|
		 * are too large.
 | 
						|
		 */
 | 
						|
		if (!nojitter)
 | 
						|
			itc_jitter_data.itc_jitter = 1;
 | 
						|
#endif
 | 
						|
	} else
 | 
						|
		/*
 | 
						|
		 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
 | 
						|
		 * ITC values may fluctuate significantly between processors.
 | 
						|
		 * Clock should not be used for hrtimers. Mark itc as only
 | 
						|
		 * useful for boot and testing.
 | 
						|
		 *
 | 
						|
		 * Note that jitter compensation is off! There is no point of
 | 
						|
		 * synchronizing ITCs since they may be large differentials
 | 
						|
		 * that change over time.
 | 
						|
		 *
 | 
						|
		 * The only way to fix this would be to repeatedly sync the
 | 
						|
		 * ITCs. Until that time we have to avoid ITC.
 | 
						|
		 */
 | 
						|
		clocksource_itc.rating = 50;
 | 
						|
 | 
						|
	paravirt_init_missing_ticks_accounting(smp_processor_id());
 | 
						|
 | 
						|
	/* avoid softlock up message when cpu is unplug and plugged again. */
 | 
						|
	touch_softlockup_watchdog();
 | 
						|
 | 
						|
	/* Setup the CPU local timer tick */
 | 
						|
	ia64_cpu_local_tick();
 | 
						|
 | 
						|
	if (!itc_clocksource) {
 | 
						|
		/* Sort out mult/shift values: */
 | 
						|
		clocksource_itc.mult =
 | 
						|
			clocksource_hz2mult(local_cpu_data->itc_freq,
 | 
						|
						clocksource_itc.shift);
 | 
						|
		clocksource_register(&clocksource_itc);
 | 
						|
		itc_clocksource = &clocksource_itc;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static cycle_t itc_get_cycles(struct clocksource *cs)
 | 
						|
{
 | 
						|
	unsigned long lcycle, now, ret;
 | 
						|
 | 
						|
	if (!itc_jitter_data.itc_jitter)
 | 
						|
		return get_cycles();
 | 
						|
 | 
						|
	lcycle = itc_jitter_data.itc_lastcycle;
 | 
						|
	now = get_cycles();
 | 
						|
	if (lcycle && time_after(lcycle, now))
 | 
						|
		return lcycle;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Keep track of the last timer value returned.
 | 
						|
	 * In an SMP environment, you could lose out in contention of
 | 
						|
	 * cmpxchg. If so, your cmpxchg returns new value which the
 | 
						|
	 * winner of contention updated to. Use the new value instead.
 | 
						|
	 */
 | 
						|
	ret = cmpxchg(&itc_jitter_data.itc_lastcycle, lcycle, now);
 | 
						|
	if (unlikely(ret != lcycle))
 | 
						|
		return ret;
 | 
						|
 | 
						|
	return now;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static struct irqaction timer_irqaction = {
 | 
						|
	.handler =	timer_interrupt,
 | 
						|
	.flags =	IRQF_DISABLED | IRQF_IRQPOLL,
 | 
						|
	.name =		"timer"
 | 
						|
};
 | 
						|
 | 
						|
static struct platform_device rtc_efi_dev = {
 | 
						|
	.name = "rtc-efi",
 | 
						|
	.id = -1,
 | 
						|
};
 | 
						|
 | 
						|
static int __init rtc_init(void)
 | 
						|
{
 | 
						|
	if (platform_device_register(&rtc_efi_dev) < 0)
 | 
						|
		printk(KERN_ERR "unable to register rtc device...\n");
 | 
						|
 | 
						|
	/* not necessarily an error */
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
module_init(rtc_init);
 | 
						|
 | 
						|
void __init
 | 
						|
time_init (void)
 | 
						|
{
 | 
						|
	register_percpu_irq(IA64_TIMER_VECTOR, &timer_irqaction);
 | 
						|
	efi_gettimeofday(&xtime);
 | 
						|
	ia64_init_itm();
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Initialize wall_to_monotonic such that adding it to xtime will yield zero, the
 | 
						|
	 * tv_nsec field must be normalized (i.e., 0 <= nsec < NSEC_PER_SEC).
 | 
						|
	 */
 | 
						|
	set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Generic udelay assumes that if preemption is allowed and the thread
 | 
						|
 * migrates to another CPU, that the ITC values are synchronized across
 | 
						|
 * all CPUs.
 | 
						|
 */
 | 
						|
static void
 | 
						|
ia64_itc_udelay (unsigned long usecs)
 | 
						|
{
 | 
						|
	unsigned long start = ia64_get_itc();
 | 
						|
	unsigned long end = start + usecs*local_cpu_data->cyc_per_usec;
 | 
						|
 | 
						|
	while (time_before(ia64_get_itc(), end))
 | 
						|
		cpu_relax();
 | 
						|
}
 | 
						|
 | 
						|
void (*ia64_udelay)(unsigned long usecs) = &ia64_itc_udelay;
 | 
						|
 | 
						|
void
 | 
						|
udelay (unsigned long usecs)
 | 
						|
{
 | 
						|
	(*ia64_udelay)(usecs);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(udelay);
 | 
						|
 | 
						|
/* IA64 doesn't cache the timezone */
 | 
						|
void update_vsyscall_tz(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
void update_vsyscall(struct timespec *wall, struct clocksource *c)
 | 
						|
{
 | 
						|
        unsigned long flags;
 | 
						|
 | 
						|
        write_seqlock_irqsave(&fsyscall_gtod_data.lock, flags);
 | 
						|
 | 
						|
        /* copy fsyscall clock data */
 | 
						|
        fsyscall_gtod_data.clk_mask = c->mask;
 | 
						|
        fsyscall_gtod_data.clk_mult = c->mult;
 | 
						|
        fsyscall_gtod_data.clk_shift = c->shift;
 | 
						|
        fsyscall_gtod_data.clk_fsys_mmio = c->fsys_mmio;
 | 
						|
        fsyscall_gtod_data.clk_cycle_last = c->cycle_last;
 | 
						|
 | 
						|
	/* copy kernel time structures */
 | 
						|
        fsyscall_gtod_data.wall_time.tv_sec = wall->tv_sec;
 | 
						|
        fsyscall_gtod_data.wall_time.tv_nsec = wall->tv_nsec;
 | 
						|
        fsyscall_gtod_data.monotonic_time.tv_sec = wall_to_monotonic.tv_sec
 | 
						|
							+ wall->tv_sec;
 | 
						|
        fsyscall_gtod_data.monotonic_time.tv_nsec = wall_to_monotonic.tv_nsec
 | 
						|
							+ wall->tv_nsec;
 | 
						|
 | 
						|
	/* normalize */
 | 
						|
	while (fsyscall_gtod_data.monotonic_time.tv_nsec >= NSEC_PER_SEC) {
 | 
						|
		fsyscall_gtod_data.monotonic_time.tv_nsec -= NSEC_PER_SEC;
 | 
						|
		fsyscall_gtod_data.monotonic_time.tv_sec++;
 | 
						|
	}
 | 
						|
 | 
						|
        write_sequnlock_irqrestore(&fsyscall_gtod_data.lock, flags);
 | 
						|
}
 | 
						|
 |