881 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			881 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Freescale DMA ALSA SoC PCM driver
 | |
|  *
 | |
|  * Author: Timur Tabi <timur@freescale.com>
 | |
|  *
 | |
|  * Copyright 2007-2008 Freescale Semiconductor, Inc.  This file is licensed
 | |
|  * under the terms of the GNU General Public License version 2.  This
 | |
|  * program is licensed "as is" without any warranty of any kind, whether
 | |
|  * express or implied.
 | |
|  *
 | |
|  * This driver implements ASoC support for the Elo DMA controller, which is
 | |
|  * the DMA controller on Freescale 83xx, 85xx, and 86xx SOCs. In ALSA terms,
 | |
|  * the PCM driver is what handles the DMA buffer.
 | |
|  */
 | |
| 
 | |
| #include <linux/module.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/platform_device.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| #include <sound/core.h>
 | |
| #include <sound/pcm.h>
 | |
| #include <sound/pcm_params.h>
 | |
| #include <sound/soc.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| 
 | |
| #include "fsl_dma.h"
 | |
| 
 | |
| /*
 | |
|  * The formats that the DMA controller supports, which is anything
 | |
|  * that is 8, 16, or 32 bits.
 | |
|  */
 | |
| #define FSLDMA_PCM_FORMATS (SNDRV_PCM_FMTBIT_S8 	| \
 | |
| 			    SNDRV_PCM_FMTBIT_U8 	| \
 | |
| 			    SNDRV_PCM_FMTBIT_S16_LE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_S16_BE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_U16_LE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_U16_BE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_S24_LE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_S24_BE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_U24_LE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_U24_BE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_S32_LE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_S32_BE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_U32_LE     | \
 | |
| 			    SNDRV_PCM_FMTBIT_U32_BE)
 | |
| 
 | |
| #define FSLDMA_PCM_RATES (SNDRV_PCM_RATE_5512 | SNDRV_PCM_RATE_8000_192000 | \
 | |
| 			  SNDRV_PCM_RATE_CONTINUOUS)
 | |
| 
 | |
| /* DMA global data.  This structure is used by fsl_dma_open() to determine
 | |
|  * which DMA channels to assign to a substream.  Unfortunately, ASoC V1 does
 | |
|  * not allow the machine driver to provide this information to the PCM
 | |
|  * driver in advance, and there's no way to differentiate between the two
 | |
|  * DMA controllers.  So for now, this driver only supports one SSI device
 | |
|  * using two DMA channels.  We cannot support multiple DMA devices.
 | |
|  *
 | |
|  * ssi_stx_phys: bus address of SSI STX register
 | |
|  * ssi_srx_phys: bus address of SSI SRX register
 | |
|  * dma_channel: pointer to the DMA channel's registers
 | |
|  * irq: IRQ for this DMA channel
 | |
|  * assigned: set to 1 if that DMA channel is assigned to a substream
 | |
|  */
 | |
| static struct {
 | |
| 	dma_addr_t ssi_stx_phys;
 | |
| 	dma_addr_t ssi_srx_phys;
 | |
| 	struct ccsr_dma_channel __iomem *dma_channel[2];
 | |
| 	unsigned int irq[2];
 | |
| 	unsigned int assigned[2];
 | |
| } dma_global_data;
 | |
| 
 | |
| /*
 | |
|  * The number of DMA links to use.  Two is the bare minimum, but if you
 | |
|  * have really small links you might need more.
 | |
|  */
 | |
| #define NUM_DMA_LINKS   2
 | |
| 
 | |
| /** fsl_dma_private: p-substream DMA data
 | |
|  *
 | |
|  * Each substream has a 1-to-1 association with a DMA channel.
 | |
|  *
 | |
|  * The link[] array is first because it needs to be aligned on a 32-byte
 | |
|  * boundary, so putting it first will ensure alignment without padding the
 | |
|  * structure.
 | |
|  *
 | |
|  * @link[]: array of link descriptors
 | |
|  * @controller_id: which DMA controller (0, 1, ...)
 | |
|  * @channel_id: which DMA channel on the controller (0, 1, 2, ...)
 | |
|  * @dma_channel: pointer to the DMA channel's registers
 | |
|  * @irq: IRQ for this DMA channel
 | |
|  * @substream: pointer to the substream object, needed by the ISR
 | |
|  * @ssi_sxx_phys: bus address of the STX or SRX register to use
 | |
|  * @ld_buf_phys: physical address of the LD buffer
 | |
|  * @current_link: index into link[] of the link currently being processed
 | |
|  * @dma_buf_phys: physical address of the DMA buffer
 | |
|  * @dma_buf_next: physical address of the next period to process
 | |
|  * @dma_buf_end: physical address of the byte after the end of the DMA
 | |
|  * @buffer period_size: the size of a single period
 | |
|  * @num_periods: the number of periods in the DMA buffer
 | |
|  */
 | |
| struct fsl_dma_private {
 | |
| 	struct fsl_dma_link_descriptor link[NUM_DMA_LINKS];
 | |
| 	unsigned int controller_id;
 | |
| 	unsigned int channel_id;
 | |
| 	struct ccsr_dma_channel __iomem *dma_channel;
 | |
| 	unsigned int irq;
 | |
| 	struct snd_pcm_substream *substream;
 | |
| 	dma_addr_t ssi_sxx_phys;
 | |
| 	dma_addr_t ld_buf_phys;
 | |
| 	unsigned int current_link;
 | |
| 	dma_addr_t dma_buf_phys;
 | |
| 	dma_addr_t dma_buf_next;
 | |
| 	dma_addr_t dma_buf_end;
 | |
| 	size_t period_size;
 | |
| 	unsigned int num_periods;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_hardare: define characteristics of the PCM hardware.
 | |
|  *
 | |
|  * The PCM hardware is the Freescale DMA controller.  This structure defines
 | |
|  * the capabilities of that hardware.
 | |
|  *
 | |
|  * Since the sampling rate and data format are not controlled by the DMA
 | |
|  * controller, we specify no limits for those values.  The only exception is
 | |
|  * period_bytes_min, which is set to a reasonably low value to prevent the
 | |
|  * DMA controller from generating too many interrupts per second.
 | |
|  *
 | |
|  * Since each link descriptor has a 32-bit byte count field, we set
 | |
|  * period_bytes_max to the largest 32-bit number.  We also have no maximum
 | |
|  * number of periods.
 | |
|  *
 | |
|  * Note that we specify SNDRV_PCM_INFO_JOINT_DUPLEX here, but only because a
 | |
|  * limitation in the SSI driver requires the sample rates for playback and
 | |
|  * capture to be the same.
 | |
|  */
 | |
| static const struct snd_pcm_hardware fsl_dma_hardware = {
 | |
| 
 | |
| 	.info   		= SNDRV_PCM_INFO_INTERLEAVED |
 | |
| 				  SNDRV_PCM_INFO_MMAP |
 | |
| 				  SNDRV_PCM_INFO_MMAP_VALID |
 | |
| 				  SNDRV_PCM_INFO_JOINT_DUPLEX |
 | |
| 				  SNDRV_PCM_INFO_PAUSE,
 | |
| 	.formats		= FSLDMA_PCM_FORMATS,
 | |
| 	.rates  		= FSLDMA_PCM_RATES,
 | |
| 	.rate_min       	= 5512,
 | |
| 	.rate_max       	= 192000,
 | |
| 	.period_bytes_min       = 512,  	/* A reasonable limit */
 | |
| 	.period_bytes_max       = (u32) -1,
 | |
| 	.periods_min    	= NUM_DMA_LINKS,
 | |
| 	.periods_max    	= (unsigned int) -1,
 | |
| 	.buffer_bytes_max       = 128 * 1024,   /* A reasonable limit */
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_abort_stream: tell ALSA that the DMA transfer has aborted
 | |
|  *
 | |
|  * This function should be called by the ISR whenever the DMA controller
 | |
|  * halts data transfer.
 | |
|  */
 | |
| static void fsl_dma_abort_stream(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	snd_pcm_stream_lock_irqsave(substream, flags);
 | |
| 
 | |
| 	if (snd_pcm_running(substream))
 | |
| 		snd_pcm_stop(substream, SNDRV_PCM_STATE_XRUN);
 | |
| 
 | |
| 	snd_pcm_stream_unlock_irqrestore(substream, flags);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_update_pointers - update LD pointers to point to the next period
 | |
|  *
 | |
|  * As each period is completed, this function changes the the link
 | |
|  * descriptor pointers for that period to point to the next period.
 | |
|  */
 | |
| static void fsl_dma_update_pointers(struct fsl_dma_private *dma_private)
 | |
| {
 | |
| 	struct fsl_dma_link_descriptor *link =
 | |
| 		&dma_private->link[dma_private->current_link];
 | |
| 
 | |
| 	/* Update our link descriptors to point to the next period */
 | |
| 	if (dma_private->substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 | |
| 		link->source_addr =
 | |
| 			cpu_to_be32(dma_private->dma_buf_next);
 | |
| 	else
 | |
| 		link->dest_addr =
 | |
| 			cpu_to_be32(dma_private->dma_buf_next);
 | |
| 
 | |
| 	/* Update our variables for next time */
 | |
| 	dma_private->dma_buf_next += dma_private->period_size;
 | |
| 
 | |
| 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 | |
| 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
 | |
| 
 | |
| 	if (++dma_private->current_link >= NUM_DMA_LINKS)
 | |
| 		dma_private->current_link = 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_isr: interrupt handler for the DMA controller
 | |
|  *
 | |
|  * @irq: IRQ of the DMA channel
 | |
|  * @dev_id: pointer to the dma_private structure for this DMA channel
 | |
|  */
 | |
| static irqreturn_t fsl_dma_isr(int irq, void *dev_id)
 | |
| {
 | |
| 	struct fsl_dma_private *dma_private = dev_id;
 | |
| 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 | |
| 	irqreturn_t ret = IRQ_NONE;
 | |
| 	u32 sr, sr2 = 0;
 | |
| 
 | |
| 	/* We got an interrupt, so read the status register to see what we
 | |
| 	   were interrupted for.
 | |
| 	 */
 | |
| 	sr = in_be32(&dma_channel->sr);
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_TE) {
 | |
| 		dev_err(dma_private->substream->pcm->card->dev,
 | |
| 			"DMA transmit error (controller=%u channel=%u irq=%u\n",
 | |
| 			dma_private->controller_id,
 | |
| 			dma_private->channel_id, irq);
 | |
| 		fsl_dma_abort_stream(dma_private->substream);
 | |
| 		sr2 |= CCSR_DMA_SR_TE;
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_CH)
 | |
| 		ret = IRQ_HANDLED;
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_PE) {
 | |
| 		dev_err(dma_private->substream->pcm->card->dev,
 | |
| 			"DMA%u programming error (channel=%u irq=%u)\n",
 | |
| 			dma_private->controller_id,
 | |
| 			dma_private->channel_id, irq);
 | |
| 		fsl_dma_abort_stream(dma_private->substream);
 | |
| 		sr2 |= CCSR_DMA_SR_PE;
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_EOLNI) {
 | |
| 		sr2 |= CCSR_DMA_SR_EOLNI;
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_CB)
 | |
| 		ret = IRQ_HANDLED;
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_EOSI) {
 | |
| 		struct snd_pcm_substream *substream = dma_private->substream;
 | |
| 
 | |
| 		/* Tell ALSA we completed a period. */
 | |
| 		snd_pcm_period_elapsed(substream);
 | |
| 
 | |
| 		/*
 | |
| 		 * Update our link descriptors to point to the next period. We
 | |
| 		 * only need to do this if the number of periods is not equal to
 | |
| 		 * the number of links.
 | |
| 		 */
 | |
| 		if (dma_private->num_periods != NUM_DMA_LINKS)
 | |
| 			fsl_dma_update_pointers(dma_private);
 | |
| 
 | |
| 		sr2 |= CCSR_DMA_SR_EOSI;
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	if (sr & CCSR_DMA_SR_EOLSI) {
 | |
| 		sr2 |= CCSR_DMA_SR_EOLSI;
 | |
| 		ret = IRQ_HANDLED;
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the bits that we set */
 | |
| 	if (sr2)
 | |
| 		out_be32(&dma_channel->sr, sr2);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_new: initialize this PCM driver.
 | |
|  *
 | |
|  * This function is called when the codec driver calls snd_soc_new_pcms(),
 | |
|  * once for each .dai_link in the machine driver's snd_soc_card
 | |
|  * structure.
 | |
|  */
 | |
| static int fsl_dma_new(struct snd_card *card, struct snd_soc_dai *dai,
 | |
| 	struct snd_pcm *pcm)
 | |
| {
 | |
| 	static u64 fsl_dma_dmamask = DMA_BIT_MASK(32);
 | |
| 	int ret;
 | |
| 
 | |
| 	if (!card->dev->dma_mask)
 | |
| 		card->dev->dma_mask = &fsl_dma_dmamask;
 | |
| 
 | |
| 	if (!card->dev->coherent_dma_mask)
 | |
| 		card->dev->coherent_dma_mask = fsl_dma_dmamask;
 | |
| 
 | |
| 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
 | |
| 		fsl_dma_hardware.buffer_bytes_max,
 | |
| 		&pcm->streams[0].substream->dma_buffer);
 | |
| 	if (ret) {
 | |
| 		dev_err(card->dev,
 | |
| 			"Can't allocate playback DMA buffer (size=%u)\n",
 | |
| 			fsl_dma_hardware.buffer_bytes_max);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	ret = snd_dma_alloc_pages(SNDRV_DMA_TYPE_DEV, card->dev,
 | |
| 		fsl_dma_hardware.buffer_bytes_max,
 | |
| 		&pcm->streams[1].substream->dma_buffer);
 | |
| 	if (ret) {
 | |
| 		snd_dma_free_pages(&pcm->streams[0].substream->dma_buffer);
 | |
| 		dev_err(card->dev,
 | |
| 			"Can't allocate capture DMA buffer (size=%u)\n",
 | |
| 			fsl_dma_hardware.buffer_bytes_max);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_open: open a new substream.
 | |
|  *
 | |
|  * Each substream has its own DMA buffer.
 | |
|  *
 | |
|  * ALSA divides the DMA buffer into N periods.  We create NUM_DMA_LINKS link
 | |
|  * descriptors that ping-pong from one period to the next.  For example, if
 | |
|  * there are six periods and two link descriptors, this is how they look
 | |
|  * before playback starts:
 | |
|  *
 | |
|  *      	   The last link descriptor
 | |
|  *   ____________  points back to the first
 | |
|  *  |   	 |
 | |
|  *  V   	 |
 | |
|  *  ___    ___   |
 | |
|  * |   |->|   |->|
 | |
|  * |___|  |___|
 | |
|  *   |      |
 | |
|  *   |      |
 | |
|  *   V      V
 | |
|  *  _________________________________________
 | |
|  * |      |      |      |      |      |      |  The DMA buffer is
 | |
|  * |      |      |      |      |      |      |    divided into 6 parts
 | |
|  * |______|______|______|______|______|______|
 | |
|  *
 | |
|  * and here's how they look after the first period is finished playing:
 | |
|  *
 | |
|  *   ____________
 | |
|  *  |   	 |
 | |
|  *  V   	 |
 | |
|  *  ___    ___   |
 | |
|  * |   |->|   |->|
 | |
|  * |___|  |___|
 | |
|  *   |      |
 | |
|  *   |______________
 | |
|  *          |       |
 | |
|  *          V       V
 | |
|  *  _________________________________________
 | |
|  * |      |      |      |      |      |      |
 | |
|  * |      |      |      |      |      |      |
 | |
|  * |______|______|______|______|______|______|
 | |
|  *
 | |
|  * The first link descriptor now points to the third period.  The DMA
 | |
|  * controller is currently playing the second period.  When it finishes, it
 | |
|  * will jump back to the first descriptor and play the third period.
 | |
|  *
 | |
|  * There are four reasons we do this:
 | |
|  *
 | |
|  * 1. The only way to get the DMA controller to automatically restart the
 | |
|  *    transfer when it gets to the end of the buffer is to use chaining
 | |
|  *    mode.  Basic direct mode doesn't offer that feature.
 | |
|  * 2. We need to receive an interrupt at the end of every period.  The DMA
 | |
|  *    controller can generate an interrupt at the end of every link transfer
 | |
|  *    (aka segment).  Making each period into a DMA segment will give us the
 | |
|  *    interrupts we need.
 | |
|  * 3. By creating only two link descriptors, regardless of the number of
 | |
|  *    periods, we do not need to reallocate the link descriptors if the
 | |
|  *    number of periods changes.
 | |
|  * 4. All of the audio data is still stored in a single, contiguous DMA
 | |
|  *    buffer, which is what ALSA expects.  We're just dividing it into
 | |
|  *    contiguous parts, and creating a link descriptor for each one.
 | |
|  */
 | |
| static int fsl_dma_open(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_dma_private *dma_private;
 | |
| 	struct ccsr_dma_channel __iomem *dma_channel;
 | |
| 	dma_addr_t ld_buf_phys;
 | |
| 	u64 temp_link;  	/* Pointer to next link descriptor */
 | |
| 	u32 mr;
 | |
| 	unsigned int channel;
 | |
| 	int ret = 0;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Reject any DMA buffer whose size is not a multiple of the period
 | |
| 	 * size.  We need to make sure that the DMA buffer can be evenly divided
 | |
| 	 * into periods.
 | |
| 	 */
 | |
| 	ret = snd_pcm_hw_constraint_integer(runtime,
 | |
| 		SNDRV_PCM_HW_PARAM_PERIODS);
 | |
| 	if (ret < 0) {
 | |
| 		dev_err(substream->pcm->card->dev, "invalid buffer size\n");
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	channel = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
 | |
| 
 | |
| 	if (dma_global_data.assigned[channel]) {
 | |
| 		dev_err(substream->pcm->card->dev,
 | |
| 			"DMA channel already assigned\n");
 | |
| 		return -EBUSY;
 | |
| 	}
 | |
| 
 | |
| 	dma_private = dma_alloc_coherent(substream->pcm->card->dev,
 | |
| 		sizeof(struct fsl_dma_private), &ld_buf_phys, GFP_KERNEL);
 | |
| 	if (!dma_private) {
 | |
| 		dev_err(substream->pcm->card->dev,
 | |
| 			"can't allocate DMA private data\n");
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 | |
| 		dma_private->ssi_sxx_phys = dma_global_data.ssi_stx_phys;
 | |
| 	else
 | |
| 		dma_private->ssi_sxx_phys = dma_global_data.ssi_srx_phys;
 | |
| 
 | |
| 	dma_private->dma_channel = dma_global_data.dma_channel[channel];
 | |
| 	dma_private->irq = dma_global_data.irq[channel];
 | |
| 	dma_private->substream = substream;
 | |
| 	dma_private->ld_buf_phys = ld_buf_phys;
 | |
| 	dma_private->dma_buf_phys = substream->dma_buffer.addr;
 | |
| 
 | |
| 	/* We only support one DMA controller for now */
 | |
| 	dma_private->controller_id = 0;
 | |
| 	dma_private->channel_id = channel;
 | |
| 
 | |
| 	ret = request_irq(dma_private->irq, fsl_dma_isr, 0, "DMA", dma_private);
 | |
| 	if (ret) {
 | |
| 		dev_err(substream->pcm->card->dev,
 | |
| 			"can't register ISR for IRQ %u (ret=%i)\n",
 | |
| 			dma_private->irq, ret);
 | |
| 		dma_free_coherent(substream->pcm->card->dev,
 | |
| 			sizeof(struct fsl_dma_private),
 | |
| 			dma_private, dma_private->ld_buf_phys);
 | |
| 		return ret;
 | |
| 	}
 | |
| 
 | |
| 	dma_global_data.assigned[channel] = 1;
 | |
| 
 | |
| 	snd_pcm_set_runtime_buffer(substream, &substream->dma_buffer);
 | |
| 	snd_soc_set_runtime_hwparams(substream, &fsl_dma_hardware);
 | |
| 	runtime->private_data = dma_private;
 | |
| 
 | |
| 	/* Program the fixed DMA controller parameters */
 | |
| 
 | |
| 	dma_channel = dma_private->dma_channel;
 | |
| 
 | |
| 	temp_link = dma_private->ld_buf_phys +
 | |
| 		sizeof(struct fsl_dma_link_descriptor);
 | |
| 
 | |
| 	for (i = 0; i < NUM_DMA_LINKS; i++) {
 | |
| 		dma_private->link[i].next = cpu_to_be64(temp_link);
 | |
| 
 | |
| 		temp_link += sizeof(struct fsl_dma_link_descriptor);
 | |
| 	}
 | |
| 	/* The last link descriptor points to the first */
 | |
| 	dma_private->link[i - 1].next = cpu_to_be64(dma_private->ld_buf_phys);
 | |
| 
 | |
| 	/* Tell the DMA controller where the first link descriptor is */
 | |
| 	out_be32(&dma_channel->clndar,
 | |
| 		CCSR_DMA_CLNDAR_ADDR(dma_private->ld_buf_phys));
 | |
| 	out_be32(&dma_channel->eclndar,
 | |
| 		CCSR_DMA_ECLNDAR_ADDR(dma_private->ld_buf_phys));
 | |
| 
 | |
| 	/* The manual says the BCR must be clear before enabling EMP */
 | |
| 	out_be32(&dma_channel->bcr, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Program the mode register for interrupts, external master control,
 | |
| 	 * and source/destination hold.  Also clear the Channel Abort bit.
 | |
| 	 */
 | |
| 	mr = in_be32(&dma_channel->mr) &
 | |
| 		~(CCSR_DMA_MR_CA | CCSR_DMA_MR_DAHE | CCSR_DMA_MR_SAHE);
 | |
| 
 | |
| 	/*
 | |
| 	 * We want External Master Start and External Master Pause enabled,
 | |
| 	 * because the SSI is controlling the DMA controller.  We want the DMA
 | |
| 	 * controller to be set up in advance, and then we signal only the SSI
 | |
| 	 * to start transferring.
 | |
| 	 *
 | |
| 	 * We want End-Of-Segment Interrupts enabled, because this will generate
 | |
| 	 * an interrupt at the end of each segment (each link descriptor
 | |
| 	 * represents one segment).  Each DMA segment is the same thing as an
 | |
| 	 * ALSA period, so this is how we get an interrupt at the end of every
 | |
| 	 * period.
 | |
| 	 *
 | |
| 	 * We want Error Interrupt enabled, so that we can get an error if
 | |
| 	 * the DMA controller is mis-programmed somehow.
 | |
| 	 */
 | |
| 	mr |= CCSR_DMA_MR_EOSIE | CCSR_DMA_MR_EIE | CCSR_DMA_MR_EMP_EN |
 | |
| 		CCSR_DMA_MR_EMS_EN;
 | |
| 
 | |
| 	/* For playback, we want the destination address to be held.  For
 | |
| 	   capture, set the source address to be held. */
 | |
| 	mr |= (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) ?
 | |
| 		CCSR_DMA_MR_DAHE : CCSR_DMA_MR_SAHE;
 | |
| 
 | |
| 	out_be32(&dma_channel->mr, mr);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_hw_params: continue initializing the DMA links
 | |
|  *
 | |
|  * This function obtains hardware parameters about the opened stream and
 | |
|  * programs the DMA controller accordingly.
 | |
|  *
 | |
|  * One drawback of big-endian is that when copying integers of different
 | |
|  * sizes to a fixed-sized register, the address to which the integer must be
 | |
|  * copied is dependent on the size of the integer.
 | |
|  *
 | |
|  * For example, if P is the address of a 32-bit register, and X is a 32-bit
 | |
|  * integer, then X should be copied to address P.  However, if X is a 16-bit
 | |
|  * integer, then it should be copied to P+2.  If X is an 8-bit register,
 | |
|  * then it should be copied to P+3.
 | |
|  *
 | |
|  * So for playback of 8-bit samples, the DMA controller must transfer single
 | |
|  * bytes from the DMA buffer to the last byte of the STX0 register, i.e.
 | |
|  * offset by 3 bytes. For 16-bit samples, the offset is two bytes.
 | |
|  *
 | |
|  * For 24-bit samples, the offset is 1 byte.  However, the DMA controller
 | |
|  * does not support 3-byte copies (the DAHTS register supports only 1, 2, 4,
 | |
|  * and 8 bytes at a time).  So we do not support packed 24-bit samples.
 | |
|  * 24-bit data must be padded to 32 bits.
 | |
|  */
 | |
| static int fsl_dma_hw_params(struct snd_pcm_substream *substream,
 | |
| 	struct snd_pcm_hw_params *hw_params)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_dma_private *dma_private = runtime->private_data;
 | |
| 
 | |
| 	/* Number of bits per sample */
 | |
| 	unsigned int sample_size =
 | |
| 		snd_pcm_format_physical_width(params_format(hw_params));
 | |
| 
 | |
| 	/* Number of bytes per frame */
 | |
| 	unsigned int frame_size = 2 * (sample_size / 8);
 | |
| 
 | |
| 	/* Bus address of SSI STX register */
 | |
| 	dma_addr_t ssi_sxx_phys = dma_private->ssi_sxx_phys;
 | |
| 
 | |
| 	/* Size of the DMA buffer, in bytes */
 | |
| 	size_t buffer_size = params_buffer_bytes(hw_params);
 | |
| 
 | |
| 	/* Number of bytes per period */
 | |
| 	size_t period_size = params_period_bytes(hw_params);
 | |
| 
 | |
| 	/* Pointer to next period */
 | |
| 	dma_addr_t temp_addr = substream->dma_buffer.addr;
 | |
| 
 | |
| 	/* Pointer to DMA controller */
 | |
| 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 | |
| 
 | |
| 	u32 mr; /* DMA Mode Register */
 | |
| 
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	/* Initialize our DMA tracking variables */
 | |
| 	dma_private->period_size = period_size;
 | |
| 	dma_private->num_periods = params_periods(hw_params);
 | |
| 	dma_private->dma_buf_end = dma_private->dma_buf_phys + buffer_size;
 | |
| 	dma_private->dma_buf_next = dma_private->dma_buf_phys +
 | |
| 		(NUM_DMA_LINKS * period_size);
 | |
| 
 | |
| 	if (dma_private->dma_buf_next >= dma_private->dma_buf_end)
 | |
| 		/* This happens if the number of periods == NUM_DMA_LINKS */
 | |
| 		dma_private->dma_buf_next = dma_private->dma_buf_phys;
 | |
| 
 | |
| 	mr = in_be32(&dma_channel->mr) & ~(CCSR_DMA_MR_BWC_MASK |
 | |
| 		  CCSR_DMA_MR_SAHTS_MASK | CCSR_DMA_MR_DAHTS_MASK);
 | |
| 
 | |
| 	/* Due to a quirk of the SSI's STX register, the target address
 | |
| 	 * for the DMA operations depends on the sample size.  So we calculate
 | |
| 	 * that offset here.  While we're at it, also tell the DMA controller
 | |
| 	 * how much data to transfer per sample.
 | |
| 	 */
 | |
| 	switch (sample_size) {
 | |
| 	case 8:
 | |
| 		mr |= CCSR_DMA_MR_DAHTS_1 | CCSR_DMA_MR_SAHTS_1;
 | |
| 		ssi_sxx_phys += 3;
 | |
| 		break;
 | |
| 	case 16:
 | |
| 		mr |= CCSR_DMA_MR_DAHTS_2 | CCSR_DMA_MR_SAHTS_2;
 | |
| 		ssi_sxx_phys += 2;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		mr |= CCSR_DMA_MR_DAHTS_4 | CCSR_DMA_MR_SAHTS_4;
 | |
| 		break;
 | |
| 	default:
 | |
| 		/* We should never get here */
 | |
| 		dev_err(substream->pcm->card->dev,
 | |
| 			"unsupported sample size %u\n", sample_size);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * BWC should always be a multiple of the frame size.  BWC determines
 | |
| 	 * how many bytes are sent/received before the DMA controller checks the
 | |
| 	 * SSI to see if it needs to stop.  For playback, the transmit FIFO can
 | |
| 	 * hold three frames, so we want to send two frames at a time. For
 | |
| 	 * capture, the receive FIFO is triggered when it contains one frame, so
 | |
| 	 * we want to receive one frame at a time.
 | |
| 	 */
 | |
| 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 | |
| 		mr |= CCSR_DMA_MR_BWC(2 * frame_size);
 | |
| 	else
 | |
| 		mr |= CCSR_DMA_MR_BWC(frame_size);
 | |
| 
 | |
| 	out_be32(&dma_channel->mr, mr);
 | |
| 
 | |
| 	for (i = 0; i < NUM_DMA_LINKS; i++) {
 | |
| 		struct fsl_dma_link_descriptor *link = &dma_private->link[i];
 | |
| 
 | |
| 		link->count = cpu_to_be32(period_size);
 | |
| 
 | |
| 		/* Even though the DMA controller supports 36-bit addressing,
 | |
| 		 * for simplicity we allow only 32-bit addresses for the audio
 | |
| 		 * buffer itself.  This was enforced in fsl_dma_new() with the
 | |
| 		 * DMA mask.
 | |
| 		 *
 | |
| 		 * The snoop bit tells the DMA controller whether it should tell
 | |
| 		 * the ECM to snoop during a read or write to an address. For
 | |
| 		 * audio, we use DMA to transfer data between memory and an I/O
 | |
| 		 * device (the SSI's STX0 or SRX0 register). Snooping is only
 | |
| 		 * needed if there is a cache, so we need to snoop memory
 | |
| 		 * addresses only.  For playback, that means we snoop the source
 | |
| 		 * but not the destination.  For capture, we snoop the
 | |
| 		 * destination but not the source.
 | |
| 		 *
 | |
| 		 * Note that failing to snoop properly is unlikely to cause
 | |
| 		 * cache incoherency if the period size is larger than the
 | |
| 		 * size of L1 cache.  This is because filling in one period will
 | |
| 		 * flush out the data for the previous period.  So if you
 | |
| 		 * increased period_bytes_min to a large enough size, you might
 | |
| 		 * get more performance by not snooping, and you'll still be
 | |
| 		 * okay.
 | |
| 		 */
 | |
| 		if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
 | |
| 			link->source_addr = cpu_to_be32(temp_addr);
 | |
| 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
 | |
| 
 | |
| 			link->dest_addr = cpu_to_be32(ssi_sxx_phys);
 | |
| 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
 | |
| 		} else {
 | |
| 			link->source_addr = cpu_to_be32(ssi_sxx_phys);
 | |
| 			link->source_attr = cpu_to_be32(CCSR_DMA_ATR_NOSNOOP);
 | |
| 
 | |
| 			link->dest_addr = cpu_to_be32(temp_addr);
 | |
| 			link->dest_attr = cpu_to_be32(CCSR_DMA_ATR_SNOOP);
 | |
| 		}
 | |
| 
 | |
| 		temp_addr += period_size;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_pointer: determine the current position of the DMA transfer
 | |
|  *
 | |
|  * This function is called by ALSA when ALSA wants to know where in the
 | |
|  * stream buffer the hardware currently is.
 | |
|  *
 | |
|  * For playback, the SAR register contains the physical address of the most
 | |
|  * recent DMA transfer.  For capture, the value is in the DAR register.
 | |
|  *
 | |
|  * The base address of the buffer is stored in the source_addr field of the
 | |
|  * first link descriptor.
 | |
|  */
 | |
| static snd_pcm_uframes_t fsl_dma_pointer(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_dma_private *dma_private = runtime->private_data;
 | |
| 	struct ccsr_dma_channel __iomem *dma_channel = dma_private->dma_channel;
 | |
| 	dma_addr_t position;
 | |
| 	snd_pcm_uframes_t frames;
 | |
| 
 | |
| 	if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
 | |
| 		position = in_be32(&dma_channel->sar);
 | |
| 	else
 | |
| 		position = in_be32(&dma_channel->dar);
 | |
| 
 | |
| 	/*
 | |
| 	 * When capture is started, the SSI immediately starts to fill its FIFO.
 | |
| 	 * This means that the DMA controller is not started until the FIFO is
 | |
| 	 * full.  However, ALSA calls this function before that happens, when
 | |
| 	 * MR.DAR is still zero.  In this case, just return zero to indicate
 | |
| 	 * that nothing has been received yet.
 | |
| 	 */
 | |
| 	if (!position)
 | |
| 		return 0;
 | |
| 
 | |
| 	if ((position < dma_private->dma_buf_phys) ||
 | |
| 	    (position > dma_private->dma_buf_end)) {
 | |
| 		dev_err(substream->pcm->card->dev,
 | |
| 			"dma pointer is out of range, halting stream\n");
 | |
| 		return SNDRV_PCM_POS_XRUN;
 | |
| 	}
 | |
| 
 | |
| 	frames = bytes_to_frames(runtime, position - dma_private->dma_buf_phys);
 | |
| 
 | |
| 	/*
 | |
| 	 * If the current address is just past the end of the buffer, wrap it
 | |
| 	 * around.
 | |
| 	 */
 | |
| 	if (frames == runtime->buffer_size)
 | |
| 		frames = 0;
 | |
| 
 | |
| 	return frames;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_hw_free: release resources allocated in fsl_dma_hw_params()
 | |
|  *
 | |
|  * Release the resources allocated in fsl_dma_hw_params() and de-program the
 | |
|  * registers.
 | |
|  *
 | |
|  * This function can be called multiple times.
 | |
|  */
 | |
| static int fsl_dma_hw_free(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_dma_private *dma_private = runtime->private_data;
 | |
| 
 | |
| 	if (dma_private) {
 | |
| 		struct ccsr_dma_channel __iomem *dma_channel;
 | |
| 
 | |
| 		dma_channel = dma_private->dma_channel;
 | |
| 
 | |
| 		/* Stop the DMA */
 | |
| 		out_be32(&dma_channel->mr, CCSR_DMA_MR_CA);
 | |
| 		out_be32(&dma_channel->mr, 0);
 | |
| 
 | |
| 		/* Reset all the other registers */
 | |
| 		out_be32(&dma_channel->sr, -1);
 | |
| 		out_be32(&dma_channel->clndar, 0);
 | |
| 		out_be32(&dma_channel->eclndar, 0);
 | |
| 		out_be32(&dma_channel->satr, 0);
 | |
| 		out_be32(&dma_channel->sar, 0);
 | |
| 		out_be32(&dma_channel->datr, 0);
 | |
| 		out_be32(&dma_channel->dar, 0);
 | |
| 		out_be32(&dma_channel->bcr, 0);
 | |
| 		out_be32(&dma_channel->nlndar, 0);
 | |
| 		out_be32(&dma_channel->enlndar, 0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_close: close the stream.
 | |
|  */
 | |
| static int fsl_dma_close(struct snd_pcm_substream *substream)
 | |
| {
 | |
| 	struct snd_pcm_runtime *runtime = substream->runtime;
 | |
| 	struct fsl_dma_private *dma_private = runtime->private_data;
 | |
| 	int dir = substream->stream == SNDRV_PCM_STREAM_PLAYBACK ? 0 : 1;
 | |
| 
 | |
| 	if (dma_private) {
 | |
| 		if (dma_private->irq)
 | |
| 			free_irq(dma_private->irq, dma_private);
 | |
| 
 | |
| 		if (dma_private->ld_buf_phys) {
 | |
| 			dma_unmap_single(substream->pcm->card->dev,
 | |
| 				dma_private->ld_buf_phys,
 | |
| 				sizeof(dma_private->link), DMA_TO_DEVICE);
 | |
| 		}
 | |
| 
 | |
| 		/* Deallocate the fsl_dma_private structure */
 | |
| 		dma_free_coherent(substream->pcm->card->dev,
 | |
| 			sizeof(struct fsl_dma_private),
 | |
| 			dma_private, dma_private->ld_buf_phys);
 | |
| 		substream->runtime->private_data = NULL;
 | |
| 	}
 | |
| 
 | |
| 	dma_global_data.assigned[dir] = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Remove this PCM driver.
 | |
|  */
 | |
| static void fsl_dma_free_dma_buffers(struct snd_pcm *pcm)
 | |
| {
 | |
| 	struct snd_pcm_substream *substream;
 | |
| 	unsigned int i;
 | |
| 
 | |
| 	for (i = 0; i < ARRAY_SIZE(pcm->streams); i++) {
 | |
| 		substream = pcm->streams[i].substream;
 | |
| 		if (substream) {
 | |
| 			snd_dma_free_pages(&substream->dma_buffer);
 | |
| 			substream->dma_buffer.area = NULL;
 | |
| 			substream->dma_buffer.addr = 0;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct snd_pcm_ops fsl_dma_ops = {
 | |
| 	.open   	= fsl_dma_open,
 | |
| 	.close  	= fsl_dma_close,
 | |
| 	.ioctl  	= snd_pcm_lib_ioctl,
 | |
| 	.hw_params      = fsl_dma_hw_params,
 | |
| 	.hw_free	= fsl_dma_hw_free,
 | |
| 	.pointer	= fsl_dma_pointer,
 | |
| };
 | |
| 
 | |
| struct snd_soc_platform fsl_soc_platform = {
 | |
| 	.name   	= "fsl-dma",
 | |
| 	.pcm_ops	= &fsl_dma_ops,
 | |
| 	.pcm_new	= fsl_dma_new,
 | |
| 	.pcm_free       = fsl_dma_free_dma_buffers,
 | |
| };
 | |
| EXPORT_SYMBOL_GPL(fsl_soc_platform);
 | |
| 
 | |
| /**
 | |
|  * fsl_dma_configure: store the DMA parameters from the fabric driver.
 | |
|  *
 | |
|  * This function is called by the ASoC fabric driver to give us the DMA and
 | |
|  * SSI channel information.
 | |
|  *
 | |
|  * Unfortunately, ASoC V1 does make it possible to determine the DMA/SSI
 | |
|  * data when a substream is created, so for now we need to store this data
 | |
|  * into a global variable.  This means that we can only support one DMA
 | |
|  * controller, and hence only one SSI.
 | |
|  */
 | |
| int fsl_dma_configure(struct fsl_dma_info *dma_info)
 | |
| {
 | |
| 	static int initialized;
 | |
| 
 | |
| 	/* We only support one DMA controller for now */
 | |
| 	if (initialized)
 | |
| 		return 0;
 | |
| 
 | |
| 	dma_global_data.ssi_stx_phys = dma_info->ssi_stx_phys;
 | |
| 	dma_global_data.ssi_srx_phys = dma_info->ssi_srx_phys;
 | |
| 	dma_global_data.dma_channel[0] = dma_info->dma_channel[0];
 | |
| 	dma_global_data.dma_channel[1] = dma_info->dma_channel[1];
 | |
| 	dma_global_data.irq[0] = dma_info->dma_irq[0];
 | |
| 	dma_global_data.irq[1] = dma_info->dma_irq[1];
 | |
| 	dma_global_data.assigned[0] = 0;
 | |
| 	dma_global_data.assigned[1] = 0;
 | |
| 
 | |
| 	initialized = 1;
 | |
| 	return 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(fsl_dma_configure);
 | |
| 
 | |
| static int __init fsl_soc_platform_init(void)
 | |
| {
 | |
| 	return snd_soc_register_platform(&fsl_soc_platform);
 | |
| }
 | |
| module_init(fsl_soc_platform_init);
 | |
| 
 | |
| static void __exit fsl_soc_platform_exit(void)
 | |
| {
 | |
| 	snd_soc_unregister_platform(&fsl_soc_platform);
 | |
| }
 | |
| module_exit(fsl_soc_platform_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Timur Tabi <timur@freescale.com>");
 | |
| MODULE_DESCRIPTION("Freescale Elo DMA ASoC PCM module");
 | |
| MODULE_LICENSE("GPL");
 |