Changes include: * May scale up to intermediate speeds after scaling down, rather than scale to max speed and then only scale down until max speed needed. * Tweaked thresholds at which max speed requested (previously CPU must have been 100% busy since idle exit timer started, now will go max if at least 85% busy) and default minimum sample time raised to 80ms. Tweaking based on UI tests, still in progress. * SMP fixes. * Fixed attempted multiple delete of sysfs group on governor stop. Set a just-in-case-CPU-goes-busy-again timer even if nr_running == 0 at timer function run time, but cancel if that CPU goes idle (and don't re-arm timer if that CPU is currently idle). * Re-evaluate speed if a CPU goes idle while above min speed (and no timer currently set) in case the platform requires all CPUs to be at the same speed. * Realtime workqueues disappeared upstream, convert speed up workqueue to a realtime task. Average scheduling latency measured significantly less than WQ_HIGHPRI. * Timers are not deferrable, must wake CPU from idle, since we now re-evaluate speed for idle CPUs. * CPU load is computed from higher of short-term load since idle exit vs. long-term load since last frequency change, to avoid dropping speed during temporary dips in load on long-term-busy CPU. * Avoid 1 CPU starting new idle exit load eval interval in a race with timer running on another CPU. * New fugly debugging printfs should be reworked or go away eventually. Change-Id: I606b5c1850637c35a7814309df12362d5c044825 via: https://review.source.android.com//#change,15809
		
			
				
	
	
		
			646 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			646 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * drivers/cpufreq/cpufreq_interactive.c
 | |
|  *
 | |
|  * Copyright (C) 2010 Google, Inc.
 | |
|  *
 | |
|  * This software is licensed under the terms of the GNU General Public
 | |
|  * License version 2, as published by the Free Software Foundation, and
 | |
|  * may be copied, distributed, and modified under those terms.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * Author: Mike Chan (mike@android.com)
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/cpumask.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/tick.h>
 | |
| #include <linux/timer.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/kthread.h>
 | |
| 
 | |
| #include <asm/cputime.h>
 | |
| 
 | |
| static void (*pm_idle_old)(void);
 | |
| static atomic_t active_count = ATOMIC_INIT(0);
 | |
| 
 | |
| struct cpufreq_interactive_cpuinfo {
 | |
| 	struct timer_list cpu_timer;
 | |
| 	int timer_idlecancel;
 | |
| 	u64 time_in_idle;
 | |
| 	u64 idle_exit_time;
 | |
| 	u64 timer_run_time;
 | |
| 	int idling;
 | |
| 	u64 freq_change_time;
 | |
| 	u64 freq_change_time_in_idle;
 | |
| 	struct cpufreq_policy *policy;
 | |
| 	struct cpufreq_frequency_table *freq_table;
 | |
| 	unsigned int target_freq;
 | |
| 	int governor_enabled;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
 | |
| 
 | |
| /* Workqueues handle frequency scaling */
 | |
| static struct task_struct *up_task;
 | |
| static struct workqueue_struct *down_wq;
 | |
| static struct work_struct freq_scale_down_work;
 | |
| static cpumask_t up_cpumask;
 | |
| static cpumask_t down_cpumask;
 | |
| 
 | |
| /*
 | |
|  * The minimum amount of time to spend at a frequency before we can ramp down.
 | |
|  */
 | |
| #define DEFAULT_MIN_SAMPLE_TIME 80000;
 | |
| static unsigned long min_sample_time;
 | |
| 
 | |
| #define LOAD_SCALE_MAX 85
 | |
| 
 | |
| #define DEBUG 0
 | |
| #define BUFSZ 128
 | |
| 
 | |
| #if DEBUG
 | |
| #include <linux/proc_fs.h>
 | |
| 
 | |
| struct dbgln {
 | |
| 	int cpu;
 | |
| 	unsigned long jiffy;
 | |
| 	unsigned long run;
 | |
| 	char buf[BUFSZ];
 | |
| };
 | |
| 
 | |
| #define NDBGLNS 256
 | |
| 
 | |
| static struct dbgln dbgbuf[NDBGLNS];
 | |
| static int dbgbufs;
 | |
| static int dbgbufe;
 | |
| static struct proc_dir_entry	*dbg_proc;
 | |
| static spinlock_t dbgpr_lock;
 | |
| 
 | |
| static u64 up_request_time;
 | |
| static unsigned int up_max_latency;
 | |
| 
 | |
| static void dbgpr(char *fmt, ...)
 | |
| {
 | |
| 	va_list args;
 | |
| 	int n;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	spin_lock_irqsave(&dbgpr_lock, flags);
 | |
| 	n = dbgbufe;
 | |
|         va_start(args, fmt);
 | |
|         vsnprintf(dbgbuf[n].buf, BUFSZ, fmt, args);
 | |
|         va_end(args);
 | |
| 	dbgbuf[n].cpu = smp_processor_id();
 | |
| 	dbgbuf[n].run = nr_running();
 | |
| 	dbgbuf[n].jiffy = jiffies;
 | |
| 
 | |
| 	if (++dbgbufe >= NDBGLNS)
 | |
| 		dbgbufe = 0;
 | |
| 
 | |
| 	if (dbgbufe == dbgbufs)
 | |
| 		if (++dbgbufs >= NDBGLNS)
 | |
| 			dbgbufs = 0;
 | |
| 
 | |
| 	spin_unlock_irqrestore(&dbgpr_lock, flags);
 | |
| }
 | |
| 
 | |
| static void dbgdump(void)
 | |
| {
 | |
| 	int i, j;
 | |
| 	unsigned long flags;
 | |
| 	static struct dbgln prbuf[NDBGLNS];
 | |
| 
 | |
| 	spin_lock_irqsave(&dbgpr_lock, flags);
 | |
| 	i = dbgbufs;
 | |
| 	j = dbgbufe;
 | |
| 	memcpy(prbuf, dbgbuf, sizeof(dbgbuf));
 | |
| 	dbgbufs = 0;
 | |
| 	dbgbufe = 0;
 | |
| 	spin_unlock_irqrestore(&dbgpr_lock, flags);
 | |
| 
 | |
| 	while (i != j)
 | |
| 	{
 | |
| 		printk("%lu %d %lu %s",
 | |
| 		       prbuf[i].jiffy, prbuf[i].cpu, prbuf[i].run,
 | |
| 		       prbuf[i].buf);
 | |
| 		if (++i == NDBGLNS)
 | |
| 			i = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dbg_proc_read(char *buffer, char **start, off_t offset,
 | |
| 			       int count, int *peof, void *dat)
 | |
| {
 | |
| 	printk("max up_task latency=%uus\n", up_max_latency);
 | |
| 	dbgdump();
 | |
| 	*peof = 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| #else
 | |
| #define dbgpr(...) do {} while (0)
 | |
| #endif
 | |
| 
 | |
| static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
 | |
| 		unsigned int event);
 | |
| 
 | |
| #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
 | |
| static
 | |
| #endif
 | |
| struct cpufreq_governor cpufreq_gov_interactive = {
 | |
| 	.name = "interactive",
 | |
| 	.governor = cpufreq_governor_interactive,
 | |
| 	.max_transition_latency = 10000000,
 | |
| 	.owner = THIS_MODULE,
 | |
| };
 | |
| 
 | |
| static void cpufreq_interactive_timer(unsigned long data)
 | |
| {
 | |
| 	unsigned int delta_idle;
 | |
| 	unsigned int delta_time;
 | |
| 	int cpu_load;
 | |
| 	int load_since_change;
 | |
| 	u64 time_in_idle;
 | |
| 	u64 idle_exit_time;
 | |
| 	struct cpufreq_interactive_cpuinfo *pcpu =
 | |
| 		&per_cpu(cpuinfo, data);
 | |
| 	u64 now_idle;
 | |
| 	unsigned int new_freq;
 | |
| 	unsigned int index;
 | |
| 
 | |
| 	/*
 | |
| 	 * Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
 | |
| 	 * this lets idle exit know the current idle time sample has
 | |
| 	 * been processed, and idle exit can generate a new sample and
 | |
| 	 * re-arm the timer.  This prevents a concurrent idle
 | |
| 	 * exit on that CPU from writing a new set of info at the same time
 | |
| 	 * the timer function runs (the timer function can't use that info
 | |
| 	 * until more time passes).
 | |
| 	 */
 | |
| 	time_in_idle = pcpu->time_in_idle;
 | |
| 	idle_exit_time = pcpu->idle_exit_time;
 | |
| 	now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/* If we raced with cancelling a timer, skip. */
 | |
| 	if (!idle_exit_time) {
 | |
| 		dbgpr("timer %d: no valid idle exit sample\n", (int) data);
 | |
| 		goto exit;
 | |
| 	}
 | |
| 
 | |
| #if DEBUG
 | |
| 	if ((int) jiffies - (int) pcpu->cpu_timer.expires >= 10)
 | |
| 		dbgpr("timer %d: late by %d ticks\n",
 | |
| 		      (int) data, jiffies - pcpu->cpu_timer.expires);
 | |
| #endif
 | |
| 
 | |
| 	delta_idle = (unsigned int) cputime64_sub(now_idle, time_in_idle);
 | |
| 	delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
 | |
| 						  idle_exit_time);
 | |
| 
 | |
| 	/*
 | |
| 	 * If timer ran less than 1ms after short-term sample started, retry.
 | |
| 	 */
 | |
| 	if (delta_time < 1000) {
 | |
| 		dbgpr("timer %d: time delta %u too short exit=%llu now=%llu\n", (int) data,
 | |
| 		      delta_time, idle_exit_time, pcpu->timer_run_time);
 | |
| 		goto rearm;
 | |
| 	}
 | |
| 
 | |
| 	if (delta_idle > delta_time)
 | |
| 		cpu_load = 0;
 | |
| 	else
 | |
| 		cpu_load = 100 * (delta_time - delta_idle) / delta_time;
 | |
| 
 | |
| 	delta_idle = (unsigned int) cputime64_sub(now_idle,
 | |
| 						 pcpu->freq_change_time_in_idle);
 | |
| 	delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
 | |
| 						  pcpu->freq_change_time);
 | |
| 
 | |
| 	if (delta_idle > delta_time)
 | |
| 		load_since_change = 0;
 | |
| 	else
 | |
| 		load_since_change =
 | |
| 			100 * (delta_time - delta_idle) / delta_time;
 | |
| 
 | |
| 	/*
 | |
| 	 * Choose greater of short-term load (since last idle timer
 | |
| 	 * started or timer function re-armed itself) or long-term load
 | |
| 	 * (since last frequency change).
 | |
| 	 */
 | |
| 	if (load_since_change > cpu_load)
 | |
| 		cpu_load = load_since_change;
 | |
| 
 | |
| 	if (cpu_load >= LOAD_SCALE_MAX)
 | |
| 		new_freq = pcpu->policy->max;
 | |
| 	else
 | |
| 		new_freq = pcpu->policy->max * cpu_load / 100;
 | |
| 
 | |
| 	if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
 | |
| 					   new_freq, CPUFREQ_RELATION_H,
 | |
| 					   &index)) {
 | |
| 		dbgpr("timer %d: cpufreq_frequency_table_target error\n", (int) data);
 | |
| 		goto rearm;
 | |
| 	}
 | |
| 
 | |
| 	new_freq = pcpu->freq_table[index].frequency;
 | |
| 
 | |
| 	if (pcpu->target_freq == new_freq)
 | |
| 	{
 | |
| 		dbgpr("timer %d: load=%d, already at %d\n", (int) data, cpu_load, new_freq);
 | |
| 		goto rearm_if_notmax;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Do not scale down unless we have been at this frequency for the
 | |
| 	 * minimum sample time.
 | |
| 	 */
 | |
| 	if (new_freq < pcpu->target_freq) {
 | |
| 		if (cputime64_sub(pcpu->timer_run_time, pcpu->freq_change_time) <
 | |
| 		    min_sample_time) {
 | |
| 			dbgpr("timer %d: load=%d cur=%d tgt=%d not yet\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
 | |
| 			goto rearm;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	dbgpr("timer %d: load=%d cur=%d tgt=%d queue\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
 | |
| 
 | |
| 	if (new_freq < pcpu->target_freq) {
 | |
| 		pcpu->target_freq = new_freq;
 | |
| 		cpumask_set_cpu(data, &down_cpumask);
 | |
| 		queue_work(down_wq, &freq_scale_down_work);
 | |
| 	} else {
 | |
| 		pcpu->target_freq = new_freq;
 | |
| #if DEBUG
 | |
| 		up_request_time = ktime_to_us(ktime_get());
 | |
| #endif
 | |
| 		cpumask_set_cpu(data, &up_cpumask);
 | |
| 		wake_up_process(up_task);
 | |
| 	}
 | |
| 
 | |
| rearm_if_notmax:
 | |
| 	/*
 | |
| 	 * Already set max speed and don't see a need to change that,
 | |
| 	 * wait until next idle to re-evaluate, don't need timer.
 | |
| 	 */
 | |
| 	if (pcpu->target_freq == pcpu->policy->max)
 | |
| 		goto exit;
 | |
| 
 | |
| rearm:
 | |
| 	if (!timer_pending(&pcpu->cpu_timer)) {
 | |
| 		/*
 | |
| 		 * If already at min: if that CPU is idle, don't set timer.
 | |
| 		 * Else cancel the timer if that CPU goes idle.  We don't
 | |
| 		 * need to re-evaluate speed until the next idle exit.
 | |
| 		 */
 | |
| 		if (pcpu->target_freq == pcpu->policy->min) {
 | |
| 			smp_rmb();
 | |
| 
 | |
| 			if (pcpu->idling) {
 | |
| 				dbgpr("timer %d: cpu idle, don't re-arm\n", (int) data);
 | |
| 				goto exit;
 | |
| 			}
 | |
| 
 | |
| 			pcpu->timer_idlecancel = 1;
 | |
| 		}
 | |
| 
 | |
| 		pcpu->time_in_idle = get_cpu_idle_time_us(
 | |
| 			data, &pcpu->idle_exit_time);
 | |
| 		mod_timer(&pcpu->cpu_timer, jiffies + 2);
 | |
| 		dbgpr("timer %d: set timer for %lu exit=%llu\n", (int) data, pcpu->cpu_timer.expires, pcpu->idle_exit_time);
 | |
| 	}
 | |
| 
 | |
| exit:
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void cpufreq_interactive_idle(void)
 | |
| {
 | |
| 	struct cpufreq_interactive_cpuinfo *pcpu =
 | |
| 		&per_cpu(cpuinfo, smp_processor_id());
 | |
| 	int pending;
 | |
| 
 | |
| 	if (!pcpu->governor_enabled) {
 | |
| 		pm_idle_old();
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	pcpu->idling = 1;
 | |
| 	smp_wmb();
 | |
| 	pending = timer_pending(&pcpu->cpu_timer);
 | |
| 
 | |
| 	if (pcpu->target_freq != pcpu->policy->min) {
 | |
| #ifdef CONFIG_SMP
 | |
| 		/*
 | |
| 		 * Entering idle while not at lowest speed.  On some
 | |
| 		 * platforms this can hold the other CPU(s) at that speed
 | |
| 		 * even though the CPU is idle. Set a timer to re-evaluate
 | |
| 		 * speed so this idle CPU doesn't hold the other CPUs above
 | |
| 		 * min indefinitely.  This should probably be a quirk of
 | |
| 		 * the CPUFreq driver.
 | |
| 		 */
 | |
| 		if (!pending) {
 | |
| 			pcpu->time_in_idle = get_cpu_idle_time_us(
 | |
| 				smp_processor_id(), &pcpu->idle_exit_time);
 | |
| 			pcpu->timer_idlecancel = 0;
 | |
| 			mod_timer(&pcpu->cpu_timer, jiffies + 2);
 | |
| 			dbgpr("idle: enter at %d, set timer for %lu exit=%llu\n",
 | |
| 			      pcpu->target_freq, pcpu->cpu_timer.expires,
 | |
| 			      pcpu->idle_exit_time);
 | |
| 		}
 | |
| #endif
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * If at min speed and entering idle after load has
 | |
| 		 * already been evaluated, and a timer has been set just in
 | |
| 		 * case the CPU suddenly goes busy, cancel that timer.  The
 | |
| 		 * CPU didn't go busy; we'll recheck things upon idle exit.
 | |
| 		 */
 | |
| 		if (pending && pcpu->timer_idlecancel) {
 | |
| 			dbgpr("idle: cancel timer for %lu\n", pcpu->cpu_timer.expires);
 | |
| 			del_timer(&pcpu->cpu_timer);
 | |
| 			/*
 | |
| 			 * Ensure last timer run time is after current idle
 | |
| 			 * sample start time, so next idle exit will always
 | |
| 			 * start a new idle sampling period.
 | |
| 			 */
 | |
| 			pcpu->idle_exit_time = 0;
 | |
| 			pcpu->timer_idlecancel = 0;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	pm_idle_old();
 | |
| 	pcpu->idling = 0;
 | |
| 	smp_wmb();
 | |
| 
 | |
| 	/*
 | |
| 	 * Arm the timer for 1-2 ticks later if not already, and if the timer
 | |
| 	 * function has already processed the previous load sampling
 | |
| 	 * interval.  (If the timer is not pending but has not processed
 | |
| 	 * the previous interval, it is probably racing with us on another
 | |
| 	 * CPU.  Let it compute load based on the previous sample and then
 | |
| 	 * re-arm the timer for another interval when it's done, rather
 | |
| 	 * than updating the interval start time to be "now", which doesn't
 | |
| 	 * give the timer function enough time to make a decision on this
 | |
| 	 * run.)
 | |
| 	 */
 | |
| 	if (timer_pending(&pcpu->cpu_timer) == 0 &&
 | |
| 	    pcpu->timer_run_time >= pcpu->idle_exit_time) {
 | |
| 		pcpu->time_in_idle =
 | |
| 			get_cpu_idle_time_us(smp_processor_id(),
 | |
| 					     &pcpu->idle_exit_time);
 | |
| 		pcpu->timer_idlecancel = 0;
 | |
| 		mod_timer(&pcpu->cpu_timer, jiffies + 2);
 | |
| 		dbgpr("idle: exit, set timer for %lu exit=%llu\n", pcpu->cpu_timer.expires, pcpu->idle_exit_time);
 | |
| #if DEBUG
 | |
| 	} else if (timer_pending(&pcpu->cpu_timer) == 0 &&
 | |
| 		   pcpu->timer_run_time < pcpu->idle_exit_time) {
 | |
| 		dbgpr("idle: timer not run yet: exit=%llu tmrrun=%llu\n",
 | |
| 		      pcpu->idle_exit_time, pcpu->timer_run_time);
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| static int cpufreq_interactive_up_task(void *data)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	cpumask_t tmp_mask;
 | |
| 	struct cpufreq_interactive_cpuinfo *pcpu;
 | |
| 
 | |
| #if DEBUG
 | |
| 	u64 now;
 | |
| 	u64 then;
 | |
| 	unsigned int lat;
 | |
| #endif
 | |
| 
 | |
| 	while (1) {
 | |
| 		set_current_state(TASK_INTERRUPTIBLE);
 | |
| 
 | |
| 		if (cpumask_empty(&up_cpumask))
 | |
| 			schedule();
 | |
| 
 | |
| 		set_current_state(TASK_RUNNING);
 | |
| 
 | |
| 		if (kthread_should_stop())
 | |
| 			break;
 | |
| #if DEBUG
 | |
| 		then = up_request_time;
 | |
| 		now = ktime_to_us(ktime_get());
 | |
| 
 | |
| 		if (now > then) {
 | |
| 			lat = ktime_to_us(ktime_get()) - then;
 | |
| 
 | |
| 			if (lat > up_max_latency)
 | |
| 				up_max_latency = lat;
 | |
| 		}
 | |
| #endif
 | |
| 
 | |
| 		tmp_mask = up_cpumask;
 | |
| 
 | |
| 		for_each_cpu(cpu, &tmp_mask) {
 | |
| 			cpumask_clear_cpu(cpu, &up_cpumask);
 | |
| 			pcpu = &per_cpu(cpuinfo, cpu);
 | |
| 
 | |
| 			if (nr_running() == 1) {
 | |
| 				dbgpr("up %d: tgt=%d nothing else running\n", cpu,
 | |
| 				      pcpu->target_freq);
 | |
| 			}
 | |
| 
 | |
| 			__cpufreq_driver_target(pcpu->policy,
 | |
| 						pcpu->target_freq,
 | |
| 						CPUFREQ_RELATION_H);
 | |
| 			pcpu->freq_change_time_in_idle =
 | |
| 				get_cpu_idle_time_us(cpu,
 | |
| 						     &pcpu->freq_change_time);
 | |
| 			dbgpr("up %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void cpufreq_interactive_freq_down(struct work_struct *work)
 | |
| {
 | |
| 	unsigned int cpu;
 | |
| 	cpumask_t tmp_mask = down_cpumask;
 | |
| 	struct cpufreq_interactive_cpuinfo *pcpu;
 | |
| 
 | |
| 	for_each_cpu(cpu, &tmp_mask) {
 | |
| 		cpumask_clear_cpu(cpu, &down_cpumask);
 | |
| 		pcpu = &per_cpu(cpuinfo, cpu);
 | |
| 
 | |
| 		__cpufreq_driver_target(pcpu->policy,
 | |
| 					pcpu->target_freq,
 | |
| 					CPUFREQ_RELATION_H);
 | |
| 
 | |
| 		pcpu->freq_change_time_in_idle =
 | |
| 			get_cpu_idle_time_us(cpu,
 | |
| 					     &pcpu->freq_change_time);
 | |
| 		dbgpr("down %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static ssize_t show_min_sample_time(struct kobject *kobj,
 | |
| 				struct attribute *attr, char *buf)
 | |
| {
 | |
| 	return sprintf(buf, "%lu\n", min_sample_time);
 | |
| }
 | |
| 
 | |
| static ssize_t store_min_sample_time(struct kobject *kobj,
 | |
| 			struct attribute *attr, const char *buf, size_t count)
 | |
| {
 | |
| 	return strict_strtoul(buf, 0, &min_sample_time);
 | |
| }
 | |
| 
 | |
| static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
 | |
| 		show_min_sample_time, store_min_sample_time);
 | |
| 
 | |
| static struct attribute *interactive_attributes[] = {
 | |
| 	&min_sample_time_attr.attr,
 | |
| 	NULL,
 | |
| };
 | |
| 
 | |
| static struct attribute_group interactive_attr_group = {
 | |
| 	.attrs = interactive_attributes,
 | |
| 	.name = "interactive",
 | |
| };
 | |
| 
 | |
| static int cpufreq_governor_interactive(struct cpufreq_policy *new_policy,
 | |
| 		unsigned int event)
 | |
| {
 | |
| 	int rc;
 | |
| 	struct cpufreq_interactive_cpuinfo *pcpu =
 | |
| 		&per_cpu(cpuinfo, new_policy->cpu);
 | |
| 
 | |
| 	switch (event) {
 | |
| 	case CPUFREQ_GOV_START:
 | |
| 		if (!cpu_online(new_policy->cpu))
 | |
| 			return -EINVAL;
 | |
| 
 | |
| 		pcpu->policy = new_policy;
 | |
| 		pcpu->freq_table = cpufreq_frequency_get_table(new_policy->cpu);
 | |
| 		pcpu->target_freq = new_policy->cur;
 | |
| 		pcpu->freq_change_time_in_idle =
 | |
| 			get_cpu_idle_time_us(new_policy->cpu,
 | |
| 					     &pcpu->freq_change_time);
 | |
| 		pcpu->governor_enabled = 1;
 | |
| 		/*
 | |
| 		 * Do not register the idle hook and create sysfs
 | |
| 		 * entries if we have already done so.
 | |
| 		 */
 | |
| 		if (atomic_inc_return(&active_count) > 1)
 | |
| 			return 0;
 | |
| 
 | |
| 		rc = sysfs_create_group(cpufreq_global_kobject,
 | |
| 				&interactive_attr_group);
 | |
| 		if (rc)
 | |
| 			return rc;
 | |
| 
 | |
| 		pm_idle_old = pm_idle;
 | |
| 		pm_idle = cpufreq_interactive_idle;
 | |
| 		break;
 | |
| 
 | |
| 	case CPUFREQ_GOV_STOP:
 | |
| 		pcpu->governor_enabled = 0;
 | |
| 
 | |
| 		if (atomic_dec_return(&active_count) > 0)
 | |
| 			return 0;
 | |
| 
 | |
| 		sysfs_remove_group(cpufreq_global_kobject,
 | |
| 				&interactive_attr_group);
 | |
| 
 | |
| 		pm_idle = pm_idle_old;
 | |
| 		del_timer(&pcpu->cpu_timer);
 | |
| 		break;
 | |
| 
 | |
| 	case CPUFREQ_GOV_LIMITS:
 | |
| 		if (new_policy->max < new_policy->cur)
 | |
| 			__cpufreq_driver_target(new_policy,
 | |
| 					new_policy->max, CPUFREQ_RELATION_H);
 | |
| 		else if (new_policy->min > new_policy->cur)
 | |
| 			__cpufreq_driver_target(new_policy,
 | |
| 					new_policy->min, CPUFREQ_RELATION_L);
 | |
| 		break;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int __init cpufreq_interactive_init(void)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct cpufreq_interactive_cpuinfo *pcpu;
 | |
| 	struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
 | |
| 
 | |
| 	min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
 | |
| 
 | |
| 	/* Initalize per-cpu timers */
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		pcpu = &per_cpu(cpuinfo, i);
 | |
| 		init_timer(&pcpu->cpu_timer);
 | |
| 		pcpu->cpu_timer.function = cpufreq_interactive_timer;
 | |
| 		pcpu->cpu_timer.data = i;
 | |
| 	}
 | |
| 
 | |
| 	up_task = kthread_create(cpufreq_interactive_up_task, NULL,
 | |
| 				 "kinteractiveup");
 | |
| 	if (IS_ERR(up_task))
 | |
| 		return PTR_ERR(up_task);
 | |
| 
 | |
| 	sched_setscheduler_nocheck(up_task, SCHED_FIFO, ¶m);
 | |
| 	get_task_struct(up_task);
 | |
| 
 | |
| 	/* No rescuer thread, bind to CPU queuing the work for possibly
 | |
| 	   warm cache (probably doesn't matter much). */
 | |
| 	down_wq = create_workqueue("knteractive_down");
 | |
| 
 | |
| 	if (! down_wq)
 | |
| 		goto err_freeuptask;
 | |
| 
 | |
| 	INIT_WORK(&freq_scale_down_work,
 | |
| 		  cpufreq_interactive_freq_down);
 | |
| 
 | |
| #if DEBUG
 | |
| 	spin_lock_init(&dbgpr_lock);
 | |
| 	dbg_proc = create_proc_entry("igov", S_IWUSR | S_IRUGO, NULL);
 | |
| 	dbg_proc->read_proc = dbg_proc_read;
 | |
| #endif
 | |
| 
 | |
| 	return cpufreq_register_governor(&cpufreq_gov_interactive);
 | |
| 
 | |
| err_freeuptask:
 | |
| 	put_task_struct(up_task);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
 | |
| fs_initcall(cpufreq_interactive_init);
 | |
| #else
 | |
| module_init(cpufreq_interactive_init);
 | |
| #endif
 | |
| 
 | |
| static void __exit cpufreq_interactive_exit(void)
 | |
| {
 | |
| 	cpufreq_unregister_governor(&cpufreq_gov_interactive);
 | |
| 	kthread_stop(up_task);
 | |
| 	put_task_struct(up_task);
 | |
| 	destroy_workqueue(down_wq);
 | |
| }
 | |
| 
 | |
| module_exit(cpufreq_interactive_exit);
 | |
| 
 | |
| MODULE_AUTHOR("Mike Chan <mike@android.com>");
 | |
| MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
 | |
| 	"Latency sensitive workloads");
 | |
| MODULE_LICENSE("GPL");
 | |
| 
 |