324 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
			
		
		
	
	
			324 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			ArmAsm
		
	
	
	
	
	
| /*
 | |
|  *
 | |
|  * Optmized version of the standard do_csum() function
 | |
|  *
 | |
|  * Return: a 64bit quantity containing the 16bit Internet checksum
 | |
|  *
 | |
|  * Inputs:
 | |
|  *	in0: address of buffer to checksum (char *)
 | |
|  *	in1: length of the buffer (int)
 | |
|  *
 | |
|  * Copyright (C) 1999, 2001-2002 Hewlett-Packard Co
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  *
 | |
|  * 02/04/22	Ken Chen <kenneth.w.chen@intel.com>
 | |
|  *		Data locality study on the checksum buffer.
 | |
|  *		More optimization cleanup - remove excessive stop bits.
 | |
|  * 02/04/08	David Mosberger <davidm@hpl.hp.com>
 | |
|  *		More cleanup and tuning.
 | |
|  * 01/04/18	Jun Nakajima <jun.nakajima@intel.com>
 | |
|  *		Clean up and optimize and the software pipeline, loading two
 | |
|  *		back-to-back 8-byte words per loop. Clean up the initialization
 | |
|  *		for the loop. Support the cases where load latency = 1 or 2.
 | |
|  *		Set CONFIG_IA64_LOAD_LATENCY to 1 or 2 (default).
 | |
|  */
 | |
| 
 | |
| #include <asm/asmmacro.h>
 | |
| 
 | |
| //
 | |
| // Theory of operations:
 | |
| //	The goal is to go as quickly as possible to the point where
 | |
| //	we can checksum 16 bytes/loop. Before reaching that point we must
 | |
| //	take care of incorrect alignment of first byte.
 | |
| //
 | |
| //	The code hereafter also takes care of the "tail" part of the buffer
 | |
| //	before entering the core loop, if any. The checksum is a sum so it
 | |
| //	allows us to commute operations. So we do the "head" and "tail"
 | |
| //	first to finish at full speed in the body. Once we get the head and
 | |
| //	tail values, we feed them into the pipeline, very handy initialization.
 | |
| //
 | |
| //	Of course we deal with the special case where the whole buffer fits
 | |
| //	into one 8 byte word. In this case we have only one entry in the pipeline.
 | |
| //
 | |
| //	We use a (LOAD_LATENCY+2)-stage pipeline in the loop to account for
 | |
| //	possible load latency and also to accommodate for head and tail.
 | |
| //
 | |
| //	The end of the function deals with folding the checksum from 64bits
 | |
| //	down to 16bits taking care of the carry.
 | |
| //
 | |
| //	This version avoids synchronization in the core loop by also using a
 | |
| //	pipeline for the accumulation of the checksum in resultx[] (x=1,2).
 | |
| //
 | |
| //	 wordx[] (x=1,2)
 | |
| //	|---|
 | |
| //      |   | 0			: new value loaded in pipeline
 | |
| //	|---|
 | |
| //      |   | -			: in transit data
 | |
| //	|---|
 | |
| //      |   | LOAD_LATENCY	: current value to add to checksum
 | |
| //	|---|
 | |
| //      |   | LOAD_LATENCY+1	: previous value added to checksum
 | |
| //      |---|			(previous iteration)
 | |
| //
 | |
| //	resultx[] (x=1,2)
 | |
| //	|---|
 | |
| //      |   | 0			: initial value
 | |
| //	|---|
 | |
| //      |   | LOAD_LATENCY-1	: new checksum
 | |
| //	|---|
 | |
| //      |   | LOAD_LATENCY	: previous value of checksum
 | |
| //	|---|
 | |
| //      |   | LOAD_LATENCY+1	: final checksum when out of the loop
 | |
| //      |---|
 | |
| //
 | |
| //
 | |
| //	See RFC1071 "Computing the Internet Checksum" for various techniques for
 | |
| //	calculating the Internet checksum.
 | |
| //
 | |
| // NOT YET DONE:
 | |
| //	- Maybe another algorithm which would take care of the folding at the
 | |
| //	  end in a different manner
 | |
| //	- Work with people more knowledgeable than me on the network stack
 | |
| //	  to figure out if we could not split the function depending on the
 | |
| //	  type of packet or alignment we get. Like the ip_fast_csum() routine
 | |
| //	  where we know we have at least 20bytes worth of data to checksum.
 | |
| //	- Do a better job of handling small packets.
 | |
| //	- Note on prefetching: it was found that under various load, i.e. ftp read/write,
 | |
| //	  nfs read/write, the L1 cache hit rate is at 60% and L2 cache hit rate is at 99.8%
 | |
| //	  on the data that buffer points to (partly because the checksum is often preceded by
 | |
| //	  a copy_from_user()).  This finding indiate that lfetch will not be beneficial since
 | |
| //	  the data is already in the cache.
 | |
| //
 | |
| 
 | |
| #define saved_pfs	r11
 | |
| #define hmask		r16
 | |
| #define tmask		r17
 | |
| #define first1		r18
 | |
| #define firstval	r19
 | |
| #define firstoff	r20
 | |
| #define last		r21
 | |
| #define lastval		r22
 | |
| #define lastoff		r23
 | |
| #define saved_lc	r24
 | |
| #define saved_pr	r25
 | |
| #define tmp1		r26
 | |
| #define tmp2		r27
 | |
| #define tmp3		r28
 | |
| #define carry1		r29
 | |
| #define carry2		r30
 | |
| #define first2		r31
 | |
| 
 | |
| #define buf		in0
 | |
| #define len		in1
 | |
| 
 | |
| #define LOAD_LATENCY	2	// XXX fix me
 | |
| 
 | |
| #if (LOAD_LATENCY != 1) && (LOAD_LATENCY != 2)
 | |
| # error "Only 1 or 2 is supported/tested for LOAD_LATENCY."
 | |
| #endif
 | |
| 
 | |
| #define PIPE_DEPTH			(LOAD_LATENCY+2)
 | |
| #define ELD	p[LOAD_LATENCY]		// end of load
 | |
| #define ELD_1	p[LOAD_LATENCY+1]	// and next stage
 | |
| 
 | |
| // unsigned long do_csum(unsigned char *buf,long len)
 | |
| 
 | |
| GLOBAL_ENTRY(do_csum)
 | |
| 	.prologue
 | |
| 	.save ar.pfs, saved_pfs
 | |
| 	alloc saved_pfs=ar.pfs,2,16,0,16
 | |
| 	.rotr word1[4], word2[4],result1[LOAD_LATENCY+2],result2[LOAD_LATENCY+2]
 | |
| 	.rotp p[PIPE_DEPTH], pC1[2], pC2[2]
 | |
| 	mov ret0=r0		// in case we have zero length
 | |
| 	cmp.lt p0,p6=r0,len	// check for zero length or negative (32bit len)
 | |
| 	;;
 | |
| 	add tmp1=buf,len	// last byte's address
 | |
| 	.save pr, saved_pr
 | |
| 	mov saved_pr=pr		// preserve predicates (rotation)
 | |
| (p6)	br.ret.spnt.many rp	// return if zero or negative length
 | |
| 
 | |
| 	mov hmask=-1		// initialize head mask
 | |
| 	tbit.nz p15,p0=buf,0	// is buf an odd address?
 | |
| 	and first1=-8,buf	// 8-byte align down address of first1 element
 | |
| 
 | |
| 	and firstoff=7,buf	// how many bytes off for first1 element
 | |
| 	mov tmask=-1		// initialize tail mask
 | |
| 
 | |
| 	;;
 | |
| 	adds tmp2=-1,tmp1	// last-1
 | |
| 	and lastoff=7,tmp1	// how many bytes off for last element
 | |
| 	;;
 | |
| 	sub tmp1=8,lastoff	// complement to lastoff
 | |
| 	and last=-8,tmp2	// address of word containing last byte
 | |
| 	;;
 | |
| 	sub tmp3=last,first1	// tmp3=distance from first1 to last
 | |
| 	.save ar.lc, saved_lc
 | |
| 	mov saved_lc=ar.lc	// save lc
 | |
| 	cmp.eq p8,p9=last,first1	// everything fits in one word ?
 | |
| 
 | |
| 	ld8 firstval=[first1],8	// load, ahead of time, "first1" word
 | |
| 	and tmp1=7, tmp1	// make sure that if tmp1==8 -> tmp1=0
 | |
| 	shl tmp2=firstoff,3	// number of bits
 | |
| 	;;
 | |
| (p9)	ld8 lastval=[last]	// load, ahead of time, "last" word, if needed
 | |
| 	shl tmp1=tmp1,3		// number of bits
 | |
| (p9)	adds tmp3=-8,tmp3	// effectively loaded
 | |
| 	;;
 | |
| (p8)	mov lastval=r0		// we don't need lastval if first1==last
 | |
| 	shl hmask=hmask,tmp2	// build head mask, mask off [0,first1off[
 | |
| 	shr.u tmask=tmask,tmp1	// build tail mask, mask off ]8,lastoff]
 | |
| 	;;
 | |
| 	.body
 | |
| #define count tmp3
 | |
| 
 | |
| (p8)	and hmask=hmask,tmask	// apply tail mask to head mask if 1 word only
 | |
| (p9)	and word2[0]=lastval,tmask	// mask last it as appropriate
 | |
| 	shr.u count=count,3	// how many 8-byte?
 | |
| 	;;
 | |
| 	// If count is odd, finish this 8-byte word so that we can
 | |
| 	// load two back-to-back 8-byte words per loop thereafter.
 | |
| 	and word1[0]=firstval,hmask	// and mask it as appropriate
 | |
| 	tbit.nz p10,p11=count,0		// if (count is odd)
 | |
| 	;;
 | |
| (p8)	mov result1[0]=word1[0]
 | |
| (p9)	add result1[0]=word1[0],word2[0]
 | |
| 	;;
 | |
| 	cmp.ltu p6,p0=result1[0],word1[0]	// check the carry
 | |
| 	cmp.eq.or.andcm p8,p0=0,count		// exit if zero 8-byte
 | |
| 	;;
 | |
| (p6)	adds result1[0]=1,result1[0]
 | |
| (p8)	br.cond.dptk .do_csum_exit	// if (within an 8-byte word)
 | |
| (p11)	br.cond.dptk .do_csum16		// if (count is even)
 | |
| 
 | |
| 	// Here count is odd.
 | |
| 	ld8 word1[1]=[first1],8		// load an 8-byte word
 | |
| 	cmp.eq p9,p10=1,count		// if (count == 1)
 | |
| 	adds count=-1,count		// loaded an 8-byte word
 | |
| 	;;
 | |
| 	add result1[0]=result1[0],word1[1]
 | |
| 	;;
 | |
| 	cmp.ltu p6,p0=result1[0],word1[1]
 | |
| 	;;
 | |
| (p6)	adds result1[0]=1,result1[0]
 | |
| (p9)	br.cond.sptk .do_csum_exit	// if (count == 1) exit
 | |
| 	// Fall through to caluculate the checksum, feeding result1[0] as
 | |
| 	// the initial value in result1[0].
 | |
| 	//
 | |
| 	// Calculate the checksum loading two 8-byte words per loop.
 | |
| 	//
 | |
| .do_csum16:
 | |
| 	add first2=8,first1
 | |
| 	shr.u count=count,1	// we do 16 bytes per loop
 | |
| 	;;
 | |
| 	adds count=-1,count
 | |
| 	mov carry1=r0
 | |
| 	mov carry2=r0
 | |
| 	brp.loop.imp 1f,2f
 | |
| 	;;
 | |
| 	mov ar.ec=PIPE_DEPTH
 | |
| 	mov ar.lc=count	// set lc
 | |
| 	mov pr.rot=1<<16
 | |
| 	// result1[0] must be initialized in advance.
 | |
| 	mov result2[0]=r0
 | |
| 	;;
 | |
| 	.align 32
 | |
| 1:
 | |
| (ELD_1)	cmp.ltu pC1[0],p0=result1[LOAD_LATENCY],word1[LOAD_LATENCY+1]
 | |
| (pC1[1])adds carry1=1,carry1
 | |
| (ELD_1)	cmp.ltu pC2[0],p0=result2[LOAD_LATENCY],word2[LOAD_LATENCY+1]
 | |
| (pC2[1])adds carry2=1,carry2
 | |
| (ELD)	add result1[LOAD_LATENCY-1]=result1[LOAD_LATENCY],word1[LOAD_LATENCY]
 | |
| (ELD)	add result2[LOAD_LATENCY-1]=result2[LOAD_LATENCY],word2[LOAD_LATENCY]
 | |
| 2:
 | |
| (p[0])	ld8 word1[0]=[first1],16
 | |
| (p[0])	ld8 word2[0]=[first2],16
 | |
| 	br.ctop.sptk 1b
 | |
| 	;;
 | |
| 	// Since len is a 32-bit value, carry cannot be larger than a 64-bit value.
 | |
| (pC1[1])adds carry1=1,carry1	// since we miss the last one
 | |
| (pC2[1])adds carry2=1,carry2
 | |
| 	;;
 | |
| 	add result1[LOAD_LATENCY+1]=result1[LOAD_LATENCY+1],carry1
 | |
| 	add result2[LOAD_LATENCY+1]=result2[LOAD_LATENCY+1],carry2
 | |
| 	;;
 | |
| 	cmp.ltu p6,p0=result1[LOAD_LATENCY+1],carry1
 | |
| 	cmp.ltu p7,p0=result2[LOAD_LATENCY+1],carry2
 | |
| 	;;
 | |
| (p6)	adds result1[LOAD_LATENCY+1]=1,result1[LOAD_LATENCY+1]
 | |
| (p7)	adds result2[LOAD_LATENCY+1]=1,result2[LOAD_LATENCY+1]
 | |
| 	;;
 | |
| 	add result1[0]=result1[LOAD_LATENCY+1],result2[LOAD_LATENCY+1]
 | |
| 	;;
 | |
| 	cmp.ltu p6,p0=result1[0],result2[LOAD_LATENCY+1]
 | |
| 	;;
 | |
| (p6)	adds result1[0]=1,result1[0]
 | |
| 	;;
 | |
| .do_csum_exit:
 | |
| 	//
 | |
| 	// now fold 64 into 16 bits taking care of carry
 | |
| 	// that's not very good because it has lots of sequentiality
 | |
| 	//
 | |
| 	mov tmp3=0xffff
 | |
| 	zxt4 tmp1=result1[0]
 | |
| 	shr.u tmp2=result1[0],32
 | |
| 	;;
 | |
| 	add result1[0]=tmp1,tmp2
 | |
| 	;;
 | |
| 	and tmp1=result1[0],tmp3
 | |
| 	shr.u tmp2=result1[0],16
 | |
| 	;;
 | |
| 	add result1[0]=tmp1,tmp2
 | |
| 	;;
 | |
| 	and tmp1=result1[0],tmp3
 | |
| 	shr.u tmp2=result1[0],16
 | |
| 	;;
 | |
| 	add result1[0]=tmp1,tmp2
 | |
| 	;;
 | |
| 	and tmp1=result1[0],tmp3
 | |
| 	shr.u tmp2=result1[0],16
 | |
| 	;;
 | |
| 	add ret0=tmp1,tmp2
 | |
| 	mov pr=saved_pr,0xffffffffffff0000
 | |
| 	;;
 | |
| 	// if buf was odd then swap bytes
 | |
| 	mov ar.pfs=saved_pfs		// restore ar.ec
 | |
| (p15)	mux1 ret0=ret0,@rev		// reverse word
 | |
| 	;;
 | |
| 	mov ar.lc=saved_lc
 | |
| (p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
 | |
| 	br.ret.sptk.many rp
 | |
| 
 | |
| //	I (Jun Nakajima) wrote an equivalent code (see below), but it was
 | |
| //	not much better than the original. So keep the original there so that
 | |
| //	someone else can challenge.
 | |
| //
 | |
| //	shr.u word1[0]=result1[0],32
 | |
| //	zxt4 result1[0]=result1[0]
 | |
| //	;;
 | |
| //	add result1[0]=result1[0],word1[0]
 | |
| //	;;
 | |
| //	zxt2 result2[0]=result1[0]
 | |
| //	extr.u word1[0]=result1[0],16,16
 | |
| //	shr.u carry1=result1[0],32
 | |
| //	;;
 | |
| //	add result2[0]=result2[0],word1[0]
 | |
| //	;;
 | |
| //	add result2[0]=result2[0],carry1
 | |
| //	;;
 | |
| //	extr.u ret0=result2[0],16,16
 | |
| //	;;
 | |
| //	add ret0=ret0,result2[0]
 | |
| //	;;
 | |
| //	zxt2 ret0=ret0
 | |
| //	mov ar.pfs=saved_pfs		 // restore ar.ec
 | |
| //	mov pr=saved_pr,0xffffffffffff0000
 | |
| //	;;
 | |
| //	// if buf was odd then swap bytes
 | |
| //	mov ar.lc=saved_lc
 | |
| //(p15)	mux1 ret0=ret0,@rev		// reverse word
 | |
| //	;;
 | |
| //(p15)	shr.u ret0=ret0,64-16	// + shift back to position = swap bytes
 | |
| //	br.ret.sptk.many rp
 | |
| 
 | |
| END(do_csum)
 |