520 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			520 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * This file contains an ECC algorithm that detects and corrects 1 bit
 | 
						|
 * errors in a 256 byte block of data.
 | 
						|
 *
 | 
						|
 * drivers/mtd/nand/nand_ecc.c
 | 
						|
 *
 | 
						|
 * Copyright © 2008 Koninklijke Philips Electronics NV.
 | 
						|
 *                  Author: Frans Meulenbroeks
 | 
						|
 *
 | 
						|
 * Completely replaces the previous ECC implementation which was written by:
 | 
						|
 *   Steven J. Hill (sjhill@realitydiluted.com)
 | 
						|
 *   Thomas Gleixner (tglx@linutronix.de)
 | 
						|
 *
 | 
						|
 * Information on how this algorithm works and how it was developed
 | 
						|
 * can be found in Documentation/mtd/nand_ecc.txt
 | 
						|
 *
 | 
						|
 * This file is free software; you can redistribute it and/or modify it
 | 
						|
 * under the terms of the GNU General Public License as published by the
 | 
						|
 * Free Software Foundation; either version 2 or (at your option) any
 | 
						|
 * later version.
 | 
						|
 *
 | 
						|
 * This file is distributed in the hope that it will be useful, but WITHOUT
 | 
						|
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | 
						|
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | 
						|
 * for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License along
 | 
						|
 * with this file; if not, write to the Free Software Foundation, Inc.,
 | 
						|
 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
/*
 | 
						|
 * The STANDALONE macro is useful when running the code outside the kernel
 | 
						|
 * e.g. when running the code in a testbed or a benchmark program.
 | 
						|
 * When STANDALONE is used, the module related macros are commented out
 | 
						|
 * as well as the linux include files.
 | 
						|
 * Instead a private definition of mtd_info is given to satisfy the compiler
 | 
						|
 * (the code does not use mtd_info, so the code does not care)
 | 
						|
 */
 | 
						|
#ifndef STANDALONE
 | 
						|
#include <linux/types.h>
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/mtd/mtd.h>
 | 
						|
#include <linux/mtd/nand.h>
 | 
						|
#include <linux/mtd/nand_ecc.h>
 | 
						|
#include <asm/byteorder.h>
 | 
						|
#else
 | 
						|
#include <stdint.h>
 | 
						|
struct mtd_info;
 | 
						|
#define EXPORT_SYMBOL(x)  /* x */
 | 
						|
 | 
						|
#define MODULE_LICENSE(x)	/* x */
 | 
						|
#define MODULE_AUTHOR(x)	/* x */
 | 
						|
#define MODULE_DESCRIPTION(x)	/* x */
 | 
						|
 | 
						|
#define printk printf
 | 
						|
#define KERN_ERR		""
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * invparity is a 256 byte table that contains the odd parity
 | 
						|
 * for each byte. So if the number of bits in a byte is even,
 | 
						|
 * the array element is 1, and when the number of bits is odd
 | 
						|
 * the array eleemnt is 0.
 | 
						|
 */
 | 
						|
static const char invparity[256] = {
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
 | 
						|
	1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * bitsperbyte contains the number of bits per byte
 | 
						|
 * this is only used for testing and repairing parity
 | 
						|
 * (a precalculated value slightly improves performance)
 | 
						|
 */
 | 
						|
static const char bitsperbyte[256] = {
 | 
						|
	0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
 | 
						|
	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | 
						|
	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | 
						|
	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | 
						|
	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | 
						|
	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | 
						|
	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | 
						|
	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | 
						|
	1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
 | 
						|
	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | 
						|
	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | 
						|
	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | 
						|
	2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
 | 
						|
	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | 
						|
	3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
 | 
						|
	4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
 | 
						|
};
 | 
						|
 | 
						|
/*
 | 
						|
 * addressbits is a lookup table to filter out the bits from the xor-ed
 | 
						|
 * ecc data that identify the faulty location.
 | 
						|
 * this is only used for repairing parity
 | 
						|
 * see the comments in nand_correct_data for more details
 | 
						|
 */
 | 
						|
static const char addressbits[256] = {
 | 
						|
	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | 
						|
	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | 
						|
	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | 
						|
	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | 
						|
	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | 
						|
	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | 
						|
	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | 
						|
	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | 
						|
	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | 
						|
	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | 
						|
	0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
 | 
						|
	0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
 | 
						|
	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | 
						|
	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | 
						|
	0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
 | 
						|
	0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
 | 
						|
	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | 
						|
	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | 
						|
	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | 
						|
	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | 
						|
	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | 
						|
	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | 
						|
	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | 
						|
	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | 
						|
	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | 
						|
	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | 
						|
	0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
 | 
						|
	0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
 | 
						|
	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | 
						|
	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
 | 
						|
	0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
 | 
						|
	0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
 | 
						|
};
 | 
						|
 | 
						|
/**
 | 
						|
 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
 | 
						|
 *			 block
 | 
						|
 * @mtd:	MTD block structure
 | 
						|
 * @buf:	input buffer with raw data
 | 
						|
 * @code:	output buffer with ECC
 | 
						|
 */
 | 
						|
int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
 | 
						|
		       unsigned char *code)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	const uint32_t *bp = (uint32_t *)buf;
 | 
						|
	/* 256 or 512 bytes/ecc  */
 | 
						|
	const uint32_t eccsize_mult =
 | 
						|
			(((struct nand_chip *)mtd->priv)->ecc.size) >> 8;
 | 
						|
	uint32_t cur;		/* current value in buffer */
 | 
						|
	/* rp0..rp15..rp17 are the various accumulated parities (per byte) */
 | 
						|
	uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
 | 
						|
	uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
 | 
						|
	uint32_t uninitialized_var(rp17);	/* to make compiler happy */
 | 
						|
	uint32_t par;		/* the cumulative parity for all data */
 | 
						|
	uint32_t tmppar;	/* the cumulative parity for this iteration;
 | 
						|
				   for rp12, rp14 and rp16 at the end of the
 | 
						|
				   loop */
 | 
						|
 | 
						|
	par = 0;
 | 
						|
	rp4 = 0;
 | 
						|
	rp6 = 0;
 | 
						|
	rp8 = 0;
 | 
						|
	rp10 = 0;
 | 
						|
	rp12 = 0;
 | 
						|
	rp14 = 0;
 | 
						|
	rp16 = 0;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * The loop is unrolled a number of times;
 | 
						|
	 * This avoids if statements to decide on which rp value to update
 | 
						|
	 * Also we process the data by longwords.
 | 
						|
	 * Note: passing unaligned data might give a performance penalty.
 | 
						|
	 * It is assumed that the buffers are aligned.
 | 
						|
	 * tmppar is the cumulative sum of this iteration.
 | 
						|
	 * needed for calculating rp12, rp14, rp16 and par
 | 
						|
	 * also used as a performance improvement for rp6, rp8 and rp10
 | 
						|
	 */
 | 
						|
	for (i = 0; i < eccsize_mult << 2; i++) {
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar = cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp6 ^= tmppar;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp8 ^= tmppar;
 | 
						|
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		rp6 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp6 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp10 ^= tmppar;
 | 
						|
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		rp6 ^= cur;
 | 
						|
		rp8 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp6 ^= cur;
 | 
						|
		rp8 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		rp8 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp8 ^= cur;
 | 
						|
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		rp6 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp6 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
		rp4 ^= cur;
 | 
						|
		cur = *bp++;
 | 
						|
		tmppar ^= cur;
 | 
						|
 | 
						|
		par ^= tmppar;
 | 
						|
		if ((i & 0x1) == 0)
 | 
						|
			rp12 ^= tmppar;
 | 
						|
		if ((i & 0x2) == 0)
 | 
						|
			rp14 ^= tmppar;
 | 
						|
		if (eccsize_mult == 2 && (i & 0x4) == 0)
 | 
						|
			rp16 ^= tmppar;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * handle the fact that we use longword operations
 | 
						|
	 * we'll bring rp4..rp14..rp16 back to single byte entities by
 | 
						|
	 * shifting and xoring first fold the upper and lower 16 bits,
 | 
						|
	 * then the upper and lower 8 bits.
 | 
						|
	 */
 | 
						|
	rp4 ^= (rp4 >> 16);
 | 
						|
	rp4 ^= (rp4 >> 8);
 | 
						|
	rp4 &= 0xff;
 | 
						|
	rp6 ^= (rp6 >> 16);
 | 
						|
	rp6 ^= (rp6 >> 8);
 | 
						|
	rp6 &= 0xff;
 | 
						|
	rp8 ^= (rp8 >> 16);
 | 
						|
	rp8 ^= (rp8 >> 8);
 | 
						|
	rp8 &= 0xff;
 | 
						|
	rp10 ^= (rp10 >> 16);
 | 
						|
	rp10 ^= (rp10 >> 8);
 | 
						|
	rp10 &= 0xff;
 | 
						|
	rp12 ^= (rp12 >> 16);
 | 
						|
	rp12 ^= (rp12 >> 8);
 | 
						|
	rp12 &= 0xff;
 | 
						|
	rp14 ^= (rp14 >> 16);
 | 
						|
	rp14 ^= (rp14 >> 8);
 | 
						|
	rp14 &= 0xff;
 | 
						|
	if (eccsize_mult == 2) {
 | 
						|
		rp16 ^= (rp16 >> 16);
 | 
						|
		rp16 ^= (rp16 >> 8);
 | 
						|
		rp16 &= 0xff;
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * we also need to calculate the row parity for rp0..rp3
 | 
						|
	 * This is present in par, because par is now
 | 
						|
	 * rp3 rp3 rp2 rp2 in little endian and
 | 
						|
	 * rp2 rp2 rp3 rp3 in big endian
 | 
						|
	 * as well as
 | 
						|
	 * rp1 rp0 rp1 rp0 in little endian and
 | 
						|
	 * rp0 rp1 rp0 rp1 in big endian
 | 
						|
	 * First calculate rp2 and rp3
 | 
						|
	 */
 | 
						|
#ifdef __BIG_ENDIAN
 | 
						|
	rp2 = (par >> 16);
 | 
						|
	rp2 ^= (rp2 >> 8);
 | 
						|
	rp2 &= 0xff;
 | 
						|
	rp3 = par & 0xffff;
 | 
						|
	rp3 ^= (rp3 >> 8);
 | 
						|
	rp3 &= 0xff;
 | 
						|
#else
 | 
						|
	rp3 = (par >> 16);
 | 
						|
	rp3 ^= (rp3 >> 8);
 | 
						|
	rp3 &= 0xff;
 | 
						|
	rp2 = par & 0xffff;
 | 
						|
	rp2 ^= (rp2 >> 8);
 | 
						|
	rp2 &= 0xff;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* reduce par to 16 bits then calculate rp1 and rp0 */
 | 
						|
	par ^= (par >> 16);
 | 
						|
#ifdef __BIG_ENDIAN
 | 
						|
	rp0 = (par >> 8) & 0xff;
 | 
						|
	rp1 = (par & 0xff);
 | 
						|
#else
 | 
						|
	rp1 = (par >> 8) & 0xff;
 | 
						|
	rp0 = (par & 0xff);
 | 
						|
#endif
 | 
						|
 | 
						|
	/* finally reduce par to 8 bits */
 | 
						|
	par ^= (par >> 8);
 | 
						|
	par &= 0xff;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * and calculate rp5..rp15..rp17
 | 
						|
	 * note that par = rp4 ^ rp5 and due to the commutative property
 | 
						|
	 * of the ^ operator we can say:
 | 
						|
	 * rp5 = (par ^ rp4);
 | 
						|
	 * The & 0xff seems superfluous, but benchmarking learned that
 | 
						|
	 * leaving it out gives slightly worse results. No idea why, probably
 | 
						|
	 * it has to do with the way the pipeline in pentium is organized.
 | 
						|
	 */
 | 
						|
	rp5 = (par ^ rp4) & 0xff;
 | 
						|
	rp7 = (par ^ rp6) & 0xff;
 | 
						|
	rp9 = (par ^ rp8) & 0xff;
 | 
						|
	rp11 = (par ^ rp10) & 0xff;
 | 
						|
	rp13 = (par ^ rp12) & 0xff;
 | 
						|
	rp15 = (par ^ rp14) & 0xff;
 | 
						|
	if (eccsize_mult == 2)
 | 
						|
		rp17 = (par ^ rp16) & 0xff;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Finally calculate the ecc bits.
 | 
						|
	 * Again here it might seem that there are performance optimisations
 | 
						|
	 * possible, but benchmarks showed that on the system this is developed
 | 
						|
	 * the code below is the fastest
 | 
						|
	 */
 | 
						|
#ifdef CONFIG_MTD_NAND_ECC_SMC
 | 
						|
	code[0] =
 | 
						|
	    (invparity[rp7] << 7) |
 | 
						|
	    (invparity[rp6] << 6) |
 | 
						|
	    (invparity[rp5] << 5) |
 | 
						|
	    (invparity[rp4] << 4) |
 | 
						|
	    (invparity[rp3] << 3) |
 | 
						|
	    (invparity[rp2] << 2) |
 | 
						|
	    (invparity[rp1] << 1) |
 | 
						|
	    (invparity[rp0]);
 | 
						|
	code[1] =
 | 
						|
	    (invparity[rp15] << 7) |
 | 
						|
	    (invparity[rp14] << 6) |
 | 
						|
	    (invparity[rp13] << 5) |
 | 
						|
	    (invparity[rp12] << 4) |
 | 
						|
	    (invparity[rp11] << 3) |
 | 
						|
	    (invparity[rp10] << 2) |
 | 
						|
	    (invparity[rp9] << 1)  |
 | 
						|
	    (invparity[rp8]);
 | 
						|
#else
 | 
						|
	code[1] =
 | 
						|
	    (invparity[rp7] << 7) |
 | 
						|
	    (invparity[rp6] << 6) |
 | 
						|
	    (invparity[rp5] << 5) |
 | 
						|
	    (invparity[rp4] << 4) |
 | 
						|
	    (invparity[rp3] << 3) |
 | 
						|
	    (invparity[rp2] << 2) |
 | 
						|
	    (invparity[rp1] << 1) |
 | 
						|
	    (invparity[rp0]);
 | 
						|
	code[0] =
 | 
						|
	    (invparity[rp15] << 7) |
 | 
						|
	    (invparity[rp14] << 6) |
 | 
						|
	    (invparity[rp13] << 5) |
 | 
						|
	    (invparity[rp12] << 4) |
 | 
						|
	    (invparity[rp11] << 3) |
 | 
						|
	    (invparity[rp10] << 2) |
 | 
						|
	    (invparity[rp9] << 1)  |
 | 
						|
	    (invparity[rp8]);
 | 
						|
#endif
 | 
						|
	if (eccsize_mult == 1)
 | 
						|
		code[2] =
 | 
						|
		    (invparity[par & 0xf0] << 7) |
 | 
						|
		    (invparity[par & 0x0f] << 6) |
 | 
						|
		    (invparity[par & 0xcc] << 5) |
 | 
						|
		    (invparity[par & 0x33] << 4) |
 | 
						|
		    (invparity[par & 0xaa] << 3) |
 | 
						|
		    (invparity[par & 0x55] << 2) |
 | 
						|
		    3;
 | 
						|
	else
 | 
						|
		code[2] =
 | 
						|
		    (invparity[par & 0xf0] << 7) |
 | 
						|
		    (invparity[par & 0x0f] << 6) |
 | 
						|
		    (invparity[par & 0xcc] << 5) |
 | 
						|
		    (invparity[par & 0x33] << 4) |
 | 
						|
		    (invparity[par & 0xaa] << 3) |
 | 
						|
		    (invparity[par & 0x55] << 2) |
 | 
						|
		    (invparity[rp17] << 1) |
 | 
						|
		    (invparity[rp16] << 0);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(nand_calculate_ecc);
 | 
						|
 | 
						|
/**
 | 
						|
 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
 | 
						|
 * @buf:	raw data read from the chip
 | 
						|
 * @read_ecc:	ECC from the chip
 | 
						|
 * @calc_ecc:	the ECC calculated from raw data
 | 
						|
 * @eccsize:	data bytes per ecc step (256 or 512)
 | 
						|
 *
 | 
						|
 * Detect and correct a 1 bit error for eccsize byte block
 | 
						|
 */
 | 
						|
int __nand_correct_data(unsigned char *buf,
 | 
						|
			unsigned char *read_ecc, unsigned char *calc_ecc,
 | 
						|
			unsigned int eccsize)
 | 
						|
{
 | 
						|
	unsigned char b0, b1, b2, bit_addr;
 | 
						|
	unsigned int byte_addr;
 | 
						|
	/* 256 or 512 bytes/ecc  */
 | 
						|
	const uint32_t eccsize_mult = eccsize >> 8;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * b0 to b2 indicate which bit is faulty (if any)
 | 
						|
	 * we might need the xor result  more than once,
 | 
						|
	 * so keep them in a local var
 | 
						|
	*/
 | 
						|
#ifdef CONFIG_MTD_NAND_ECC_SMC
 | 
						|
	b0 = read_ecc[0] ^ calc_ecc[0];
 | 
						|
	b1 = read_ecc[1] ^ calc_ecc[1];
 | 
						|
#else
 | 
						|
	b0 = read_ecc[1] ^ calc_ecc[1];
 | 
						|
	b1 = read_ecc[0] ^ calc_ecc[0];
 | 
						|
#endif
 | 
						|
	b2 = read_ecc[2] ^ calc_ecc[2];
 | 
						|
 | 
						|
	/* check if there are any bitfaults */
 | 
						|
 | 
						|
	/* repeated if statements are slightly more efficient than switch ... */
 | 
						|
	/* ordered in order of likelihood */
 | 
						|
 | 
						|
	if ((b0 | b1 | b2) == 0)
 | 
						|
		return 0;	/* no error */
 | 
						|
 | 
						|
	if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
 | 
						|
	    (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
 | 
						|
	    ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
 | 
						|
	     (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
 | 
						|
	/* single bit error */
 | 
						|
		/*
 | 
						|
		 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
 | 
						|
		 * byte, cp 5/3/1 indicate the faulty bit.
 | 
						|
		 * A lookup table (called addressbits) is used to filter
 | 
						|
		 * the bits from the byte they are in.
 | 
						|
		 * A marginal optimisation is possible by having three
 | 
						|
		 * different lookup tables.
 | 
						|
		 * One as we have now (for b0), one for b2
 | 
						|
		 * (that would avoid the >> 1), and one for b1 (with all values
 | 
						|
		 * << 4). However it was felt that introducing two more tables
 | 
						|
		 * hardly justify the gain.
 | 
						|
		 *
 | 
						|
		 * The b2 shift is there to get rid of the lowest two bits.
 | 
						|
		 * We could also do addressbits[b2] >> 1 but for the
 | 
						|
		 * performace it does not make any difference
 | 
						|
		 */
 | 
						|
		if (eccsize_mult == 1)
 | 
						|
			byte_addr = (addressbits[b1] << 4) + addressbits[b0];
 | 
						|
		else
 | 
						|
			byte_addr = (addressbits[b2 & 0x3] << 8) +
 | 
						|
				    (addressbits[b1] << 4) + addressbits[b0];
 | 
						|
		bit_addr = addressbits[b2 >> 2];
 | 
						|
		/* flip the bit */
 | 
						|
		buf[byte_addr] ^= (1 << bit_addr);
 | 
						|
		return 1;
 | 
						|
 | 
						|
	}
 | 
						|
	/* count nr of bits; use table lookup, faster than calculating it */
 | 
						|
	if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
 | 
						|
		return 1;	/* error in ecc data; no action needed */
 | 
						|
 | 
						|
	printk(KERN_ERR "uncorrectable error : ");
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(__nand_correct_data);
 | 
						|
 | 
						|
/**
 | 
						|
 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
 | 
						|
 * @mtd:	MTD block structure
 | 
						|
 * @buf:	raw data read from the chip
 | 
						|
 * @read_ecc:	ECC from the chip
 | 
						|
 * @calc_ecc:	the ECC calculated from raw data
 | 
						|
 *
 | 
						|
 * Detect and correct a 1 bit error for 256/512 byte block
 | 
						|
 */
 | 
						|
int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
 | 
						|
		      unsigned char *read_ecc, unsigned char *calc_ecc)
 | 
						|
{
 | 
						|
	return __nand_correct_data(buf, read_ecc, calc_ecc,
 | 
						|
				   ((struct nand_chip *)mtd->priv)->ecc.size);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(nand_correct_data);
 | 
						|
 | 
						|
MODULE_LICENSE("GPL");
 | 
						|
MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
 | 
						|
MODULE_DESCRIPTION("Generic NAND ECC support");
 |