1557 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1557 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Architecture-specific unaligned trap handling.
 | |
|  *
 | |
|  * Copyright (C) 1999-2002, 2004 Hewlett-Packard Co
 | |
|  *	Stephane Eranian <eranian@hpl.hp.com>
 | |
|  *	David Mosberger-Tang <davidm@hpl.hp.com>
 | |
|  *
 | |
|  * 2002/12/09   Fix rotating register handling (off-by-1 error, missing fr-rotation).  Fix
 | |
|  *		get_rse_reg() to not leak kernel bits to user-level (reading an out-of-frame
 | |
|  *		stacked register returns an undefined value; it does NOT trigger a
 | |
|  *		"rsvd register fault").
 | |
|  * 2001/10/11	Fix unaligned access to rotating registers in s/w pipelined loops.
 | |
|  * 2001/08/13	Correct size of extended floats (float_fsz) from 16 to 10 bytes.
 | |
|  * 2001/01/17	Add support emulation of unaligned kernel accesses.
 | |
|  */
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/tty.h>
 | |
| 
 | |
| #include <asm/intrinsics.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/rse.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/unaligned.h>
 | |
| 
 | |
| extern int die_if_kernel(char *str, struct pt_regs *regs, long err);
 | |
| 
 | |
| #undef DEBUG_UNALIGNED_TRAP
 | |
| 
 | |
| #ifdef DEBUG_UNALIGNED_TRAP
 | |
| # define DPRINT(a...)	do { printk("%s %u: ", __func__, __LINE__); printk (a); } while (0)
 | |
| # define DDUMP(str,vp,len)	dump(str, vp, len)
 | |
| 
 | |
| static void
 | |
| dump (const char *str, void *vp, size_t len)
 | |
| {
 | |
| 	unsigned char *cp = vp;
 | |
| 	int i;
 | |
| 
 | |
| 	printk("%s", str);
 | |
| 	for (i = 0; i < len; ++i)
 | |
| 		printk (" %02x", *cp++);
 | |
| 	printk("\n");
 | |
| }
 | |
| #else
 | |
| # define DPRINT(a...)
 | |
| # define DDUMP(str,vp,len)
 | |
| #endif
 | |
| 
 | |
| #define IA64_FIRST_STACKED_GR	32
 | |
| #define IA64_FIRST_ROTATING_FR	32
 | |
| #define SIGN_EXT9		0xffffffffffffff00ul
 | |
| 
 | |
| /*
 | |
|  *  sysctl settable hook which tells the kernel whether to honor the
 | |
|  *  IA64_THREAD_UAC_NOPRINT prctl.  Because this is user settable, we want
 | |
|  *  to allow the super user to enable/disable this for security reasons
 | |
|  *  (i.e. don't allow attacker to fill up logs with unaligned accesses).
 | |
|  */
 | |
| int no_unaligned_warning;
 | |
| int unaligned_dump_stack;
 | |
| 
 | |
| /*
 | |
|  * For M-unit:
 | |
|  *
 | |
|  *  opcode |   m  |   x6    |
 | |
|  * --------|------|---------|
 | |
|  * [40-37] | [36] | [35:30] |
 | |
|  * --------|------|---------|
 | |
|  *     4   |   1  |    6    | = 11 bits
 | |
|  * --------------------------
 | |
|  * However bits [31:30] are not directly useful to distinguish between
 | |
|  * load/store so we can use [35:32] instead, which gives the following
 | |
|  * mask ([40:32]) using 9 bits. The 'e' comes from the fact that we defer
 | |
|  * checking the m-bit until later in the load/store emulation.
 | |
|  */
 | |
| #define IA64_OPCODE_MASK	0x1ef
 | |
| #define IA64_OPCODE_SHIFT	32
 | |
| 
 | |
| /*
 | |
|  * Table C-28 Integer Load/Store
 | |
|  *
 | |
|  * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
 | |
|  *
 | |
|  * ld8.fill, st8.fill  MUST be aligned because the RNATs are based on
 | |
|  * the address (bits [8:3]), so we must failed.
 | |
|  */
 | |
| #define LD_OP            0x080
 | |
| #define LDS_OP           0x081
 | |
| #define LDA_OP           0x082
 | |
| #define LDSA_OP          0x083
 | |
| #define LDBIAS_OP        0x084
 | |
| #define LDACQ_OP         0x085
 | |
| /* 0x086, 0x087 are not relevant */
 | |
| #define LDCCLR_OP        0x088
 | |
| #define LDCNC_OP         0x089
 | |
| #define LDCCLRACQ_OP     0x08a
 | |
| #define ST_OP            0x08c
 | |
| #define STREL_OP         0x08d
 | |
| /* 0x08e,0x8f are not relevant */
 | |
| 
 | |
| /*
 | |
|  * Table C-29 Integer Load +Reg
 | |
|  *
 | |
|  * we use the ld->m (bit [36:36]) field to determine whether or not we have
 | |
|  * a load/store of this form.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Table C-30 Integer Load/Store +Imm
 | |
|  *
 | |
|  * We ignore [35:32]= 0x6, 0x7, 0xE, 0xF
 | |
|  *
 | |
|  * ld8.fill, st8.fill  must be aligned because the Nat register are based on
 | |
|  * the address, so we must fail and the program must be fixed.
 | |
|  */
 | |
| #define LD_IMM_OP            0x0a0
 | |
| #define LDS_IMM_OP           0x0a1
 | |
| #define LDA_IMM_OP           0x0a2
 | |
| #define LDSA_IMM_OP          0x0a3
 | |
| #define LDBIAS_IMM_OP        0x0a4
 | |
| #define LDACQ_IMM_OP         0x0a5
 | |
| /* 0x0a6, 0xa7 are not relevant */
 | |
| #define LDCCLR_IMM_OP        0x0a8
 | |
| #define LDCNC_IMM_OP         0x0a9
 | |
| #define LDCCLRACQ_IMM_OP     0x0aa
 | |
| #define ST_IMM_OP            0x0ac
 | |
| #define STREL_IMM_OP         0x0ad
 | |
| /* 0x0ae,0xaf are not relevant */
 | |
| 
 | |
| /*
 | |
|  * Table C-32 Floating-point Load/Store
 | |
|  */
 | |
| #define LDF_OP           0x0c0
 | |
| #define LDFS_OP          0x0c1
 | |
| #define LDFA_OP          0x0c2
 | |
| #define LDFSA_OP         0x0c3
 | |
| /* 0x0c6 is irrelevant */
 | |
| #define LDFCCLR_OP       0x0c8
 | |
| #define LDFCNC_OP        0x0c9
 | |
| /* 0x0cb is irrelevant  */
 | |
| #define STF_OP           0x0cc
 | |
| 
 | |
| /*
 | |
|  * Table C-33 Floating-point Load +Reg
 | |
|  *
 | |
|  * we use the ld->m (bit [36:36]) field to determine whether or not we have
 | |
|  * a load/store of this form.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * Table C-34 Floating-point Load/Store +Imm
 | |
|  */
 | |
| #define LDF_IMM_OP       0x0e0
 | |
| #define LDFS_IMM_OP      0x0e1
 | |
| #define LDFA_IMM_OP      0x0e2
 | |
| #define LDFSA_IMM_OP     0x0e3
 | |
| /* 0x0e6 is irrelevant */
 | |
| #define LDFCCLR_IMM_OP   0x0e8
 | |
| #define LDFCNC_IMM_OP    0x0e9
 | |
| #define STF_IMM_OP       0x0ec
 | |
| 
 | |
| typedef struct {
 | |
| 	unsigned long	 qp:6;	/* [0:5]   */
 | |
| 	unsigned long    r1:7;	/* [6:12]  */
 | |
| 	unsigned long   imm:7;	/* [13:19] */
 | |
| 	unsigned long    r3:7;	/* [20:26] */
 | |
| 	unsigned long     x:1;  /* [27:27] */
 | |
| 	unsigned long  hint:2;	/* [28:29] */
 | |
| 	unsigned long x6_sz:2;	/* [30:31] */
 | |
| 	unsigned long x6_op:4;	/* [32:35], x6 = x6_sz|x6_op */
 | |
| 	unsigned long     m:1;	/* [36:36] */
 | |
| 	unsigned long    op:4;	/* [37:40] */
 | |
| 	unsigned long   pad:23; /* [41:63] */
 | |
| } load_store_t;
 | |
| 
 | |
| 
 | |
| typedef enum {
 | |
| 	UPD_IMMEDIATE,	/* ldXZ r1=[r3],imm(9) */
 | |
| 	UPD_REG		/* ldXZ r1=[r3],r2     */
 | |
| } update_t;
 | |
| 
 | |
| /*
 | |
|  * We use tables to keep track of the offsets of registers in the saved state.
 | |
|  * This way we save having big switch/case statements.
 | |
|  *
 | |
|  * We use bit 0 to indicate switch_stack or pt_regs.
 | |
|  * The offset is simply shifted by 1 bit.
 | |
|  * A 2-byte value should be enough to hold any kind of offset
 | |
|  *
 | |
|  * In case the calling convention changes (and thus pt_regs/switch_stack)
 | |
|  * simply use RSW instead of RPT or vice-versa.
 | |
|  */
 | |
| 
 | |
| #define RPO(x)	((size_t) &((struct pt_regs *)0)->x)
 | |
| #define RSO(x)	((size_t) &((struct switch_stack *)0)->x)
 | |
| 
 | |
| #define RPT(x)		(RPO(x) << 1)
 | |
| #define RSW(x)		(1| RSO(x)<<1)
 | |
| 
 | |
| #define GR_OFFS(x)	(gr_info[x]>>1)
 | |
| #define GR_IN_SW(x)	(gr_info[x] & 0x1)
 | |
| 
 | |
| #define FR_OFFS(x)	(fr_info[x]>>1)
 | |
| #define FR_IN_SW(x)	(fr_info[x] & 0x1)
 | |
| 
 | |
| static u16 gr_info[32]={
 | |
| 	0,			/* r0 is read-only : WE SHOULD NEVER GET THIS */
 | |
| 
 | |
| 	RPT(r1), RPT(r2), RPT(r3),
 | |
| 
 | |
| 	RSW(r4), RSW(r5), RSW(r6), RSW(r7),
 | |
| 
 | |
| 	RPT(r8), RPT(r9), RPT(r10), RPT(r11),
 | |
| 	RPT(r12), RPT(r13), RPT(r14), RPT(r15),
 | |
| 
 | |
| 	RPT(r16), RPT(r17), RPT(r18), RPT(r19),
 | |
| 	RPT(r20), RPT(r21), RPT(r22), RPT(r23),
 | |
| 	RPT(r24), RPT(r25), RPT(r26), RPT(r27),
 | |
| 	RPT(r28), RPT(r29), RPT(r30), RPT(r31)
 | |
| };
 | |
| 
 | |
| static u16 fr_info[32]={
 | |
| 	0,			/* constant : WE SHOULD NEVER GET THIS */
 | |
| 	0,			/* constant : WE SHOULD NEVER GET THIS */
 | |
| 
 | |
| 	RSW(f2), RSW(f3), RSW(f4), RSW(f5),
 | |
| 
 | |
| 	RPT(f6), RPT(f7), RPT(f8), RPT(f9),
 | |
| 	RPT(f10), RPT(f11),
 | |
| 
 | |
| 	RSW(f12), RSW(f13), RSW(f14),
 | |
| 	RSW(f15), RSW(f16), RSW(f17), RSW(f18), RSW(f19),
 | |
| 	RSW(f20), RSW(f21), RSW(f22), RSW(f23), RSW(f24),
 | |
| 	RSW(f25), RSW(f26), RSW(f27), RSW(f28), RSW(f29),
 | |
| 	RSW(f30), RSW(f31)
 | |
| };
 | |
| 
 | |
| /* Invalidate ALAT entry for integer register REGNO.  */
 | |
| static void
 | |
| invala_gr (int regno)
 | |
| {
 | |
| #	define F(reg)	case reg: ia64_invala_gr(reg); break
 | |
| 
 | |
| 	switch (regno) {
 | |
| 		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
 | |
| 		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
 | |
| 		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
 | |
| 		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
 | |
| 		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
 | |
| 		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
 | |
| 		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
 | |
| 		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
 | |
| 		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
 | |
| 		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
 | |
| 		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
 | |
| 		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
 | |
| 		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
 | |
| 		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
 | |
| 		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
 | |
| 		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
 | |
| 	}
 | |
| #	undef F
 | |
| }
 | |
| 
 | |
| /* Invalidate ALAT entry for floating-point register REGNO.  */
 | |
| static void
 | |
| invala_fr (int regno)
 | |
| {
 | |
| #	define F(reg)	case reg: ia64_invala_fr(reg); break
 | |
| 
 | |
| 	switch (regno) {
 | |
| 		F(  0); F(  1); F(  2); F(  3); F(  4); F(  5); F(  6); F(  7);
 | |
| 		F(  8); F(  9); F( 10); F( 11); F( 12); F( 13); F( 14); F( 15);
 | |
| 		F( 16); F( 17); F( 18); F( 19); F( 20); F( 21); F( 22); F( 23);
 | |
| 		F( 24); F( 25); F( 26); F( 27); F( 28); F( 29); F( 30); F( 31);
 | |
| 		F( 32); F( 33); F( 34); F( 35); F( 36); F( 37); F( 38); F( 39);
 | |
| 		F( 40); F( 41); F( 42); F( 43); F( 44); F( 45); F( 46); F( 47);
 | |
| 		F( 48); F( 49); F( 50); F( 51); F( 52); F( 53); F( 54); F( 55);
 | |
| 		F( 56); F( 57); F( 58); F( 59); F( 60); F( 61); F( 62); F( 63);
 | |
| 		F( 64); F( 65); F( 66); F( 67); F( 68); F( 69); F( 70); F( 71);
 | |
| 		F( 72); F( 73); F( 74); F( 75); F( 76); F( 77); F( 78); F( 79);
 | |
| 		F( 80); F( 81); F( 82); F( 83); F( 84); F( 85); F( 86); F( 87);
 | |
| 		F( 88); F( 89); F( 90); F( 91); F( 92); F( 93); F( 94); F( 95);
 | |
| 		F( 96); F( 97); F( 98); F( 99); F(100); F(101); F(102); F(103);
 | |
| 		F(104); F(105); F(106); F(107); F(108); F(109); F(110); F(111);
 | |
| 		F(112); F(113); F(114); F(115); F(116); F(117); F(118); F(119);
 | |
| 		F(120); F(121); F(122); F(123); F(124); F(125); F(126); F(127);
 | |
| 	}
 | |
| #	undef F
 | |
| }
 | |
| 
 | |
| static inline unsigned long
 | |
| rotate_reg (unsigned long sor, unsigned long rrb, unsigned long reg)
 | |
| {
 | |
| 	reg += rrb;
 | |
| 	if (reg >= sor)
 | |
| 		reg -= sor;
 | |
| 	return reg;
 | |
| }
 | |
| 
 | |
| static void
 | |
| set_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long val, int nat)
 | |
| {
 | |
| 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
 | |
| 	unsigned long *bsp, *bspstore, *addr, *rnat_addr, *ubs_end;
 | |
| 	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
 | |
| 	unsigned long rnats, nat_mask;
 | |
| 	unsigned long on_kbs;
 | |
| 	long sof = (regs->cr_ifs) & 0x7f;
 | |
| 	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
 | |
| 	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
 | |
| 	long ridx = r1 - 32;
 | |
| 
 | |
| 	if (ridx >= sof) {
 | |
| 		/* this should never happen, as the "rsvd register fault" has higher priority */
 | |
| 		DPRINT("ignoring write to r%lu; only %lu registers are allocated!\n", r1, sof);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (ridx < sor)
 | |
| 		ridx = rotate_reg(sor, rrb_gr, ridx);
 | |
| 
 | |
| 	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
 | |
| 	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
 | |
| 
 | |
| 	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
 | |
| 	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
 | |
| 	if (addr >= kbs) {
 | |
| 		/* the register is on the kernel backing store: easy... */
 | |
| 		rnat_addr = ia64_rse_rnat_addr(addr);
 | |
| 		if ((unsigned long) rnat_addr >= sw->ar_bspstore)
 | |
| 			rnat_addr = &sw->ar_rnat;
 | |
| 		nat_mask = 1UL << ia64_rse_slot_num(addr);
 | |
| 
 | |
| 		*addr = val;
 | |
| 		if (nat)
 | |
| 			*rnat_addr |=  nat_mask;
 | |
| 		else
 | |
| 			*rnat_addr &= ~nat_mask;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!user_stack(current, regs)) {
 | |
| 		DPRINT("ignoring kernel write to r%lu; register isn't on the kernel RBS!", r1);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	bspstore = (unsigned long *)regs->ar_bspstore;
 | |
| 	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
 | |
| 	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
 | |
| 	addr    = ia64_rse_skip_regs(bsp, ridx);
 | |
| 
 | |
| 	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
 | |
| 
 | |
| 	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
 | |
| 
 | |
| 	rnat_addr = ia64_rse_rnat_addr(addr);
 | |
| 
 | |
| 	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
 | |
| 	DPRINT("rnat @%p = 0x%lx nat=%d old nat=%ld\n",
 | |
| 	       (void *) rnat_addr, rnats, nat, (rnats >> ia64_rse_slot_num(addr)) & 1);
 | |
| 
 | |
| 	nat_mask = 1UL << ia64_rse_slot_num(addr);
 | |
| 	if (nat)
 | |
| 		rnats |=  nat_mask;
 | |
| 	else
 | |
| 		rnats &= ~nat_mask;
 | |
| 	ia64_poke(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, rnats);
 | |
| 
 | |
| 	DPRINT("rnat changed to @%p = 0x%lx\n", (void *) rnat_addr, rnats);
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| get_rse_reg (struct pt_regs *regs, unsigned long r1, unsigned long *val, int *nat)
 | |
| {
 | |
| 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
 | |
| 	unsigned long *bsp, *addr, *rnat_addr, *ubs_end, *bspstore;
 | |
| 	unsigned long *kbs = (void *) current + IA64_RBS_OFFSET;
 | |
| 	unsigned long rnats, nat_mask;
 | |
| 	unsigned long on_kbs;
 | |
| 	long sof = (regs->cr_ifs) & 0x7f;
 | |
| 	long sor = 8 * ((regs->cr_ifs >> 14) & 0xf);
 | |
| 	long rrb_gr = (regs->cr_ifs >> 18) & 0x7f;
 | |
| 	long ridx = r1 - 32;
 | |
| 
 | |
| 	if (ridx >= sof) {
 | |
| 		/* read of out-of-frame register returns an undefined value; 0 in our case.  */
 | |
| 		DPRINT("ignoring read from r%lu; only %lu registers are allocated!\n", r1, sof);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	if (ridx < sor)
 | |
| 		ridx = rotate_reg(sor, rrb_gr, ridx);
 | |
| 
 | |
| 	DPRINT("r%lu, sw.bspstore=%lx pt.bspstore=%lx sof=%ld sol=%ld ridx=%ld\n",
 | |
| 	       r1, sw->ar_bspstore, regs->ar_bspstore, sof, (regs->cr_ifs >> 7) & 0x7f, ridx);
 | |
| 
 | |
| 	on_kbs = ia64_rse_num_regs(kbs, (unsigned long *) sw->ar_bspstore);
 | |
| 	addr = ia64_rse_skip_regs((unsigned long *) sw->ar_bspstore, -sof + ridx);
 | |
| 	if (addr >= kbs) {
 | |
| 		/* the register is on the kernel backing store: easy... */
 | |
| 		*val = *addr;
 | |
| 		if (nat) {
 | |
| 			rnat_addr = ia64_rse_rnat_addr(addr);
 | |
| 			if ((unsigned long) rnat_addr >= sw->ar_bspstore)
 | |
| 				rnat_addr = &sw->ar_rnat;
 | |
| 			nat_mask = 1UL << ia64_rse_slot_num(addr);
 | |
| 			*nat = (*rnat_addr & nat_mask) != 0;
 | |
| 		}
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!user_stack(current, regs)) {
 | |
| 		DPRINT("ignoring kernel read of r%lu; register isn't on the RBS!", r1);
 | |
| 		goto fail;
 | |
| 	}
 | |
| 
 | |
| 	bspstore = (unsigned long *)regs->ar_bspstore;
 | |
| 	ubs_end = ia64_rse_skip_regs(bspstore, on_kbs);
 | |
| 	bsp     = ia64_rse_skip_regs(ubs_end, -sof);
 | |
| 	addr    = ia64_rse_skip_regs(bsp, ridx);
 | |
| 
 | |
| 	DPRINT("ubs_end=%p bsp=%p addr=%p\n", (void *) ubs_end, (void *) bsp, (void *) addr);
 | |
| 
 | |
| 	ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) addr, val);
 | |
| 
 | |
| 	if (nat) {
 | |
| 		rnat_addr = ia64_rse_rnat_addr(addr);
 | |
| 		nat_mask = 1UL << ia64_rse_slot_num(addr);
 | |
| 
 | |
| 		DPRINT("rnat @%p = 0x%lx\n", (void *) rnat_addr, rnats);
 | |
| 
 | |
| 		ia64_peek(current, sw, (unsigned long) ubs_end, (unsigned long) rnat_addr, &rnats);
 | |
| 		*nat = (rnats & nat_mask) != 0;
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
|   fail:
 | |
| 	*val = 0;
 | |
| 	if (nat)
 | |
| 		*nat = 0;
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| setreg (unsigned long regnum, unsigned long val, int nat, struct pt_regs *regs)
 | |
| {
 | |
| 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
 | |
| 	unsigned long addr;
 | |
| 	unsigned long bitmask;
 | |
| 	unsigned long *unat;
 | |
| 
 | |
| 	/*
 | |
| 	 * First takes care of stacked registers
 | |
| 	 */
 | |
| 	if (regnum >= IA64_FIRST_STACKED_GR) {
 | |
| 		set_rse_reg(regs, regnum, val, nat);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Using r0 as a target raises a General Exception fault which has higher priority
 | |
| 	 * than the Unaligned Reference fault.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * Now look at registers in [0-31] range and init correct UNAT
 | |
| 	 */
 | |
| 	if (GR_IN_SW(regnum)) {
 | |
| 		addr = (unsigned long)sw;
 | |
| 		unat = &sw->ar_unat;
 | |
| 	} else {
 | |
| 		addr = (unsigned long)regs;
 | |
| 		unat = &sw->caller_unat;
 | |
| 	}
 | |
| 	DPRINT("tmp_base=%lx switch_stack=%s offset=%d\n",
 | |
| 	       addr, unat==&sw->ar_unat ? "yes":"no", GR_OFFS(regnum));
 | |
| 	/*
 | |
| 	 * add offset from base of struct
 | |
| 	 * and do it !
 | |
| 	 */
 | |
| 	addr += GR_OFFS(regnum);
 | |
| 
 | |
| 	*(unsigned long *)addr = val;
 | |
| 
 | |
| 	/*
 | |
| 	 * We need to clear the corresponding UNAT bit to fully emulate the load
 | |
| 	 * UNAT bit_pos = GR[r3]{8:3} form EAS-2.4
 | |
| 	 */
 | |
| 	bitmask   = 1UL << (addr >> 3 & 0x3f);
 | |
| 	DPRINT("*0x%lx=0x%lx NaT=%d prev_unat @%p=%lx\n", addr, val, nat, (void *) unat, *unat);
 | |
| 	if (nat) {
 | |
| 		*unat |= bitmask;
 | |
| 	} else {
 | |
| 		*unat &= ~bitmask;
 | |
| 	}
 | |
| 	DPRINT("*0x%lx=0x%lx NaT=%d new unat: %p=%lx\n", addr, val, nat, (void *) unat,*unat);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the (rotated) index for floating point register REGNUM (REGNUM must be in the
 | |
|  * range from 32-127, result is in the range from 0-95.
 | |
|  */
 | |
| static inline unsigned long
 | |
| fph_index (struct pt_regs *regs, long regnum)
 | |
| {
 | |
| 	unsigned long rrb_fr = (regs->cr_ifs >> 25) & 0x7f;
 | |
| 	return rotate_reg(96, rrb_fr, (regnum - IA64_FIRST_ROTATING_FR));
 | |
| }
 | |
| 
 | |
| static void
 | |
| setfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
 | |
| {
 | |
| 	struct switch_stack *sw = (struct switch_stack *)regs - 1;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * From EAS-2.5: FPDisableFault has higher priority than Unaligned
 | |
| 	 * Fault. Thus, when we get here, we know the partition is enabled.
 | |
| 	 * To update f32-f127, there are three choices:
 | |
| 	 *
 | |
| 	 *	(1) save f32-f127 to thread.fph and update the values there
 | |
| 	 *	(2) use a gigantic switch statement to directly access the registers
 | |
| 	 *	(3) generate code on the fly to update the desired register
 | |
| 	 *
 | |
| 	 * For now, we are using approach (1).
 | |
| 	 */
 | |
| 	if (regnum >= IA64_FIRST_ROTATING_FR) {
 | |
| 		ia64_sync_fph(current);
 | |
| 		current->thread.fph[fph_index(regs, regnum)] = *fpval;
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * pt_regs or switch_stack ?
 | |
| 		 */
 | |
| 		if (FR_IN_SW(regnum)) {
 | |
| 			addr = (unsigned long)sw;
 | |
| 		} else {
 | |
| 			addr = (unsigned long)regs;
 | |
| 		}
 | |
| 
 | |
| 		DPRINT("tmp_base=%lx offset=%d\n", addr, FR_OFFS(regnum));
 | |
| 
 | |
| 		addr += FR_OFFS(regnum);
 | |
| 		*(struct ia64_fpreg *)addr = *fpval;
 | |
| 
 | |
| 		/*
 | |
| 		 * mark the low partition as being used now
 | |
| 		 *
 | |
| 		 * It is highly unlikely that this bit is not already set, but
 | |
| 		 * let's do it for safety.
 | |
| 		 */
 | |
| 		regs->cr_ipsr |= IA64_PSR_MFL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Those 2 inline functions generate the spilled versions of the constant floating point
 | |
|  * registers which can be used with stfX
 | |
|  */
 | |
| static inline void
 | |
| float_spill_f0 (struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_stf_spill(final, 0);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| float_spill_f1 (struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_stf_spill(final, 1);
 | |
| }
 | |
| 
 | |
| static void
 | |
| getfpreg (unsigned long regnum, struct ia64_fpreg *fpval, struct pt_regs *regs)
 | |
| {
 | |
| 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
 | |
| 	unsigned long addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * From EAS-2.5: FPDisableFault has higher priority than
 | |
| 	 * Unaligned Fault. Thus, when we get here, we know the partition is
 | |
| 	 * enabled.
 | |
| 	 *
 | |
| 	 * When regnum > 31, the register is still live and we need to force a save
 | |
| 	 * to current->thread.fph to get access to it.  See discussion in setfpreg()
 | |
| 	 * for reasons and other ways of doing this.
 | |
| 	 */
 | |
| 	if (regnum >= IA64_FIRST_ROTATING_FR) {
 | |
| 		ia64_flush_fph(current);
 | |
| 		*fpval = current->thread.fph[fph_index(regs, regnum)];
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * f0 = 0.0, f1= 1.0. Those registers are constant and are thus
 | |
| 		 * not saved, we must generate their spilled form on the fly
 | |
| 		 */
 | |
| 		switch(regnum) {
 | |
| 		case 0:
 | |
| 			float_spill_f0(fpval);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			float_spill_f1(fpval);
 | |
| 			break;
 | |
| 		default:
 | |
| 			/*
 | |
| 			 * pt_regs or switch_stack ?
 | |
| 			 */
 | |
| 			addr =  FR_IN_SW(regnum) ? (unsigned long)sw
 | |
| 						 : (unsigned long)regs;
 | |
| 
 | |
| 			DPRINT("is_sw=%d tmp_base=%lx offset=0x%x\n",
 | |
| 			       FR_IN_SW(regnum), addr, FR_OFFS(regnum));
 | |
| 
 | |
| 			addr  += FR_OFFS(regnum);
 | |
| 			*fpval = *(struct ia64_fpreg *)addr;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static void
 | |
| getreg (unsigned long regnum, unsigned long *val, int *nat, struct pt_regs *regs)
 | |
| {
 | |
| 	struct switch_stack *sw = (struct switch_stack *) regs - 1;
 | |
| 	unsigned long addr, *unat;
 | |
| 
 | |
| 	if (regnum >= IA64_FIRST_STACKED_GR) {
 | |
| 		get_rse_reg(regs, regnum, val, nat);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * take care of r0 (read-only always evaluate to 0)
 | |
| 	 */
 | |
| 	if (regnum == 0) {
 | |
| 		*val = 0;
 | |
| 		if (nat)
 | |
| 			*nat = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Now look at registers in [0-31] range and init correct UNAT
 | |
| 	 */
 | |
| 	if (GR_IN_SW(regnum)) {
 | |
| 		addr = (unsigned long)sw;
 | |
| 		unat = &sw->ar_unat;
 | |
| 	} else {
 | |
| 		addr = (unsigned long)regs;
 | |
| 		unat = &sw->caller_unat;
 | |
| 	}
 | |
| 
 | |
| 	DPRINT("addr_base=%lx offset=0x%x\n", addr,  GR_OFFS(regnum));
 | |
| 
 | |
| 	addr += GR_OFFS(regnum);
 | |
| 
 | |
| 	*val  = *(unsigned long *)addr;
 | |
| 
 | |
| 	/*
 | |
| 	 * do it only when requested
 | |
| 	 */
 | |
| 	if (nat)
 | |
| 		*nat  = (*unat >> (addr >> 3 & 0x3f)) & 0x1UL;
 | |
| }
 | |
| 
 | |
| static void
 | |
| emulate_load_updates (update_t type, load_store_t ld, struct pt_regs *regs, unsigned long ifa)
 | |
| {
 | |
| 	/*
 | |
| 	 * IMPORTANT:
 | |
| 	 * Given the way we handle unaligned speculative loads, we should
 | |
| 	 * not get to this point in the code but we keep this sanity check,
 | |
| 	 * just in case.
 | |
| 	 */
 | |
| 	if (ld.x6_op == 1 || ld.x6_op == 3) {
 | |
| 		printk(KERN_ERR "%s: register update on speculative load, error\n", __func__);
 | |
| 		if (die_if_kernel("unaligned reference on speculative load with register update\n",
 | |
| 				  regs, 30))
 | |
| 			return;
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * at this point, we know that the base register to update is valid i.e.,
 | |
| 	 * it's not r0
 | |
| 	 */
 | |
| 	if (type == UPD_IMMEDIATE) {
 | |
| 		unsigned long imm;
 | |
| 
 | |
| 		/*
 | |
| 		 * Load +Imm: ldXZ r1=[r3],imm(9)
 | |
| 		 *
 | |
| 		 *
 | |
| 		 * form imm9: [13:19] contain the first 7 bits
 | |
| 		 */
 | |
| 		imm = ld.x << 7 | ld.imm;
 | |
| 
 | |
| 		/*
 | |
| 		 * sign extend (1+8bits) if m set
 | |
| 		 */
 | |
| 		if (ld.m) imm |= SIGN_EXT9;
 | |
| 
 | |
| 		/*
 | |
| 		 * ifa == r3 and we know that the NaT bit on r3 was clear so
 | |
| 		 * we can directly use ifa.
 | |
| 		 */
 | |
| 		ifa += imm;
 | |
| 
 | |
| 		setreg(ld.r3, ifa, 0, regs);
 | |
| 
 | |
| 		DPRINT("ld.x=%d ld.m=%d imm=%ld r3=0x%lx\n", ld.x, ld.m, imm, ifa);
 | |
| 
 | |
| 	} else if (ld.m) {
 | |
| 		unsigned long r2;
 | |
| 		int nat_r2;
 | |
| 
 | |
| 		/*
 | |
| 		 * Load +Reg Opcode: ldXZ r1=[r3],r2
 | |
| 		 *
 | |
| 		 * Note: that we update r3 even in the case of ldfX.a
 | |
| 		 * (where the load does not happen)
 | |
| 		 *
 | |
| 		 * The way the load algorithm works, we know that r3 does not
 | |
| 		 * have its NaT bit set (would have gotten NaT consumption
 | |
| 		 * before getting the unaligned fault). So we can use ifa
 | |
| 		 * which equals r3 at this point.
 | |
| 		 *
 | |
| 		 * IMPORTANT:
 | |
| 		 * The above statement holds ONLY because we know that we
 | |
| 		 * never reach this code when trying to do a ldX.s.
 | |
| 		 * If we ever make it to here on an ldfX.s then
 | |
| 		 */
 | |
| 		getreg(ld.imm, &r2, &nat_r2, regs);
 | |
| 
 | |
| 		ifa += r2;
 | |
| 
 | |
| 		/*
 | |
| 		 * propagate Nat r2 -> r3
 | |
| 		 */
 | |
| 		setreg(ld.r3, ifa, nat_r2, regs);
 | |
| 
 | |
| 		DPRINT("imm=%d r2=%ld r3=0x%lx nat_r2=%d\n",ld.imm, r2, ifa, nat_r2);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| emulate_load_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned int len = 1 << ld.x6_sz;
 | |
| 	unsigned long val = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * r0, as target, doesn't need to be checked because Illegal Instruction
 | |
| 	 * faults have higher priority than unaligned faults.
 | |
| 	 *
 | |
| 	 * r0 cannot be found as the base as it would never generate an
 | |
| 	 * unaligned reference.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * ldX.a we will emulate load and also invalidate the ALAT entry.
 | |
| 	 * See comment below for explanation on how we handle ldX.a
 | |
| 	 */
 | |
| 
 | |
| 	if (len != 2 && len != 4 && len != 8) {
 | |
| 		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
 | |
| 		return -1;
 | |
| 	}
 | |
| 	/* this assumes little-endian byte-order: */
 | |
| 	if (copy_from_user(&val, (void __user *) ifa, len))
 | |
| 		return -1;
 | |
| 	setreg(ld.r1, val, 0, regs);
 | |
| 
 | |
| 	/*
 | |
| 	 * check for updates on any kind of loads
 | |
| 	 */
 | |
| 	if (ld.op == 0x5 || ld.m)
 | |
| 		emulate_load_updates(ld.op == 0x5 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
 | |
| 
 | |
| 	/*
 | |
| 	 * handling of various loads (based on EAS2.4):
 | |
| 	 *
 | |
| 	 * ldX.acq (ordered load):
 | |
| 	 *	- acquire semantics would have been used, so force fence instead.
 | |
| 	 *
 | |
| 	 * ldX.c.clr (check load and clear):
 | |
| 	 *	- if we get to this handler, it's because the entry was not in the ALAT.
 | |
| 	 *	  Therefore the operation reverts to a normal load
 | |
| 	 *
 | |
| 	 * ldX.c.nc (check load no clear):
 | |
| 	 *	- same as previous one
 | |
| 	 *
 | |
| 	 * ldX.c.clr.acq (ordered check load and clear):
 | |
| 	 *	- same as above for c.clr part. The load needs to have acquire semantics. So
 | |
| 	 *	  we use the fence semantics which is stronger and thus ensures correctness.
 | |
| 	 *
 | |
| 	 * ldX.a (advanced load):
 | |
| 	 *	- suppose ldX.a r1=[r3]. If we get to the unaligned trap it's because the
 | |
| 	 *	  address doesn't match requested size alignment. This means that we would
 | |
| 	 *	  possibly need more than one load to get the result.
 | |
| 	 *
 | |
| 	 *	  The load part can be handled just like a normal load, however the difficult
 | |
| 	 *	  part is to get the right thing into the ALAT. The critical piece of information
 | |
| 	 *	  in the base address of the load & size. To do that, a ld.a must be executed,
 | |
| 	 *	  clearly any address can be pushed into the table by using ld1.a r1=[r3]. Now
 | |
| 	 *	  if we use the same target register, we will be okay for the check.a instruction.
 | |
| 	 *	  If we look at the store, basically a stX [r3]=r1 checks the ALAT  for any entry
 | |
| 	 *	  which would overlap within [r3,r3+X] (the size of the load was store in the
 | |
| 	 *	  ALAT). If such an entry is found the entry is invalidated. But this is not good
 | |
| 	 *	  enough, take the following example:
 | |
| 	 *		r3=3
 | |
| 	 *		ld4.a r1=[r3]
 | |
| 	 *
 | |
| 	 *	  Could be emulated by doing:
 | |
| 	 *		ld1.a r1=[r3],1
 | |
| 	 *		store to temporary;
 | |
| 	 *		ld1.a r1=[r3],1
 | |
| 	 *		store & shift to temporary;
 | |
| 	 *		ld1.a r1=[r3],1
 | |
| 	 *		store & shift to temporary;
 | |
| 	 *		ld1.a r1=[r3]
 | |
| 	 *		store & shift to temporary;
 | |
| 	 *		r1=temporary
 | |
| 	 *
 | |
| 	 *	  So in this case, you would get the right value is r1 but the wrong info in
 | |
| 	 *	  the ALAT.  Notice that you could do it in reverse to finish with address 3
 | |
| 	 *	  but you would still get the size wrong.  To get the size right, one needs to
 | |
| 	 *	  execute exactly the same kind of load. You could do it from a aligned
 | |
| 	 *	  temporary location, but you would get the address wrong.
 | |
| 	 *
 | |
| 	 *	  So no matter what, it is not possible to emulate an advanced load
 | |
| 	 *	  correctly. But is that really critical ?
 | |
| 	 *
 | |
| 	 *	  We will always convert ld.a into a normal load with ALAT invalidated.  This
 | |
| 	 *	  will enable compiler to do optimization where certain code path after ld.a
 | |
| 	 *	  is not required to have ld.c/chk.a, e.g., code path with no intervening stores.
 | |
| 	 *
 | |
| 	 *	  If there is a store after the advanced load, one must either do a ld.c.* or
 | |
| 	 *	  chk.a.* to reuse the value stored in the ALAT. Both can "fail" (meaning no
 | |
| 	 *	  entry found in ALAT), and that's perfectly ok because:
 | |
| 	 *
 | |
| 	 *		- ld.c.*, if the entry is not present a  normal load is executed
 | |
| 	 *		- chk.a.*, if the entry is not present, execution jumps to recovery code
 | |
| 	 *
 | |
| 	 *	  In either case, the load can be potentially retried in another form.
 | |
| 	 *
 | |
| 	 *	  ALAT must be invalidated for the register (so that chk.a or ld.c don't pick
 | |
| 	 *	  up a stale entry later). The register base update MUST also be performed.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * when the load has the .acq completer then
 | |
| 	 * use ordering fence.
 | |
| 	 */
 | |
| 	if (ld.x6_op == 0x5 || ld.x6_op == 0xa)
 | |
| 		mb();
 | |
| 
 | |
| 	/*
 | |
| 	 * invalidate ALAT entry in case of advanced load
 | |
| 	 */
 | |
| 	if (ld.x6_op == 0x2)
 | |
| 		invala_gr(ld.r1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int
 | |
| emulate_store_int (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long r2;
 | |
| 	unsigned int len = 1 << ld.x6_sz;
 | |
| 
 | |
| 	/*
 | |
| 	 * if we get to this handler, Nat bits on both r3 and r2 have already
 | |
| 	 * been checked. so we don't need to do it
 | |
| 	 *
 | |
| 	 * extract the value to be stored
 | |
| 	 */
 | |
| 	getreg(ld.imm, &r2, NULL, regs);
 | |
| 
 | |
| 	/*
 | |
| 	 * we rely on the macros in unaligned.h for now i.e.,
 | |
| 	 * we let the compiler figure out how to read memory gracefully.
 | |
| 	 *
 | |
| 	 * We need this switch/case because the way the inline function
 | |
| 	 * works. The code is optimized by the compiler and looks like
 | |
| 	 * a single switch/case.
 | |
| 	 */
 | |
| 	DPRINT("st%d [%lx]=%lx\n", len, ifa, r2);
 | |
| 
 | |
| 	if (len != 2 && len != 4 && len != 8) {
 | |
| 		DPRINT("unknown size: x6=%d\n", ld.x6_sz);
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* this assumes little-endian byte-order: */
 | |
| 	if (copy_to_user((void __user *) ifa, &r2, len))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * stX [r3]=r2,imm(9)
 | |
| 	 *
 | |
| 	 * NOTE:
 | |
| 	 * ld.r3 can never be r0, because r0 would not generate an
 | |
| 	 * unaligned access.
 | |
| 	 */
 | |
| 	if (ld.op == 0x5) {
 | |
| 		unsigned long imm;
 | |
| 
 | |
| 		/*
 | |
| 		 * form imm9: [12:6] contain first 7bits
 | |
| 		 */
 | |
| 		imm = ld.x << 7 | ld.r1;
 | |
| 		/*
 | |
| 		 * sign extend (8bits) if m set
 | |
| 		 */
 | |
| 		if (ld.m) imm |= SIGN_EXT9;
 | |
| 		/*
 | |
| 		 * ifa == r3 (NaT is necessarily cleared)
 | |
| 		 */
 | |
| 		ifa += imm;
 | |
| 
 | |
| 		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
 | |
| 
 | |
| 		setreg(ld.r3, ifa, 0, regs);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * we don't have alat_invalidate_multiple() so we need
 | |
| 	 * to do the complete flush :-<<
 | |
| 	 */
 | |
| 	ia64_invala();
 | |
| 
 | |
| 	/*
 | |
| 	 * stX.rel: use fence instead of release
 | |
| 	 */
 | |
| 	if (ld.x6_op == 0xd)
 | |
| 		mb();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * floating point operations sizes in bytes
 | |
|  */
 | |
| static const unsigned char float_fsz[4]={
 | |
| 	10, /* extended precision (e) */
 | |
| 	8,  /* integer (8)            */
 | |
| 	4,  /* single precision (s)   */
 | |
| 	8   /* double precision (d)   */
 | |
| };
 | |
| 
 | |
| static inline void
 | |
| mem2float_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldfe(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stf_spill(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| mem2float_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldf8(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stf_spill(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| mem2float_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldfs(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stf_spill(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| mem2float_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldfd(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stf_spill(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| float2mem_extended (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldf_fill(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stfe(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| float2mem_integer (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldf_fill(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stf8(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| float2mem_single (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldf_fill(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stfs(final, 6);
 | |
| }
 | |
| 
 | |
| static inline void
 | |
| float2mem_double (struct ia64_fpreg *init, struct ia64_fpreg *final)
 | |
| {
 | |
| 	ia64_ldf_fill(6, init);
 | |
| 	ia64_stop();
 | |
| 	ia64_stfd(final, 6);
 | |
| }
 | |
| 
 | |
| static int
 | |
| emulate_load_floatpair (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ia64_fpreg fpr_init[2];
 | |
| 	struct ia64_fpreg fpr_final[2];
 | |
| 	unsigned long len = float_fsz[ld.x6_sz];
 | |
| 
 | |
| 	/*
 | |
| 	 * fr0 & fr1 don't need to be checked because Illegal Instruction faults have
 | |
| 	 * higher priority than unaligned faults.
 | |
| 	 *
 | |
| 	 * r0 cannot be found as the base as it would never generate an unaligned
 | |
| 	 * reference.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we get clean buffers
 | |
| 	 */
 | |
| 	memset(&fpr_init, 0, sizeof(fpr_init));
 | |
| 	memset(&fpr_final, 0, sizeof(fpr_final));
 | |
| 
 | |
| 	/*
 | |
| 	 * ldfpX.a: we don't try to emulate anything but we must
 | |
| 	 * invalidate the ALAT entry and execute updates, if any.
 | |
| 	 */
 | |
| 	if (ld.x6_op != 0x2) {
 | |
| 		/*
 | |
| 		 * This assumes little-endian byte-order.  Note that there is no "ldfpe"
 | |
| 		 * instruction:
 | |
| 		 */
 | |
| 		if (copy_from_user(&fpr_init[0], (void __user *) ifa, len)
 | |
| 		    || copy_from_user(&fpr_init[1], (void __user *) (ifa + len), len))
 | |
| 			return -1;
 | |
| 
 | |
| 		DPRINT("ld.r1=%d ld.imm=%d x6_sz=%d\n", ld.r1, ld.imm, ld.x6_sz);
 | |
| 		DDUMP("frp_init =", &fpr_init, 2*len);
 | |
| 		/*
 | |
| 		 * XXX fixme
 | |
| 		 * Could optimize inlines by using ldfpX & 2 spills
 | |
| 		 */
 | |
| 		switch( ld.x6_sz ) {
 | |
| 			case 0:
 | |
| 				mem2float_extended(&fpr_init[0], &fpr_final[0]);
 | |
| 				mem2float_extended(&fpr_init[1], &fpr_final[1]);
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				mem2float_integer(&fpr_init[0], &fpr_final[0]);
 | |
| 				mem2float_integer(&fpr_init[1], &fpr_final[1]);
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				mem2float_single(&fpr_init[0], &fpr_final[0]);
 | |
| 				mem2float_single(&fpr_init[1], &fpr_final[1]);
 | |
| 				break;
 | |
| 			case 3:
 | |
| 				mem2float_double(&fpr_init[0], &fpr_final[0]);
 | |
| 				mem2float_double(&fpr_init[1], &fpr_final[1]);
 | |
| 				break;
 | |
| 		}
 | |
| 		DDUMP("fpr_final =", &fpr_final, 2*len);
 | |
| 		/*
 | |
| 		 * XXX fixme
 | |
| 		 *
 | |
| 		 * A possible optimization would be to drop fpr_final and directly
 | |
| 		 * use the storage from the saved context i.e., the actual final
 | |
| 		 * destination (pt_regs, switch_stack or thread structure).
 | |
| 		 */
 | |
| 		setfpreg(ld.r1, &fpr_final[0], regs);
 | |
| 		setfpreg(ld.imm, &fpr_final[1], regs);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Check for updates: only immediate updates are available for this
 | |
| 	 * instruction.
 | |
| 	 */
 | |
| 	if (ld.m) {
 | |
| 		/*
 | |
| 		 * the immediate is implicit given the ldsz of the operation:
 | |
| 		 * single: 8 (2x4) and for  all others it's 16 (2x8)
 | |
| 		 */
 | |
| 		ifa += len<<1;
 | |
| 
 | |
| 		/*
 | |
| 		 * IMPORTANT:
 | |
| 		 * the fact that we force the NaT of r3 to zero is ONLY valid
 | |
| 		 * as long as we don't come here with a ldfpX.s.
 | |
| 		 * For this reason we keep this sanity check
 | |
| 		 */
 | |
| 		if (ld.x6_op == 1 || ld.x6_op == 3)
 | |
| 			printk(KERN_ERR "%s: register update on speculative load pair, error\n",
 | |
| 			       __func__);
 | |
| 
 | |
| 		setreg(ld.r3, ifa, 0, regs);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Invalidate ALAT entries, if any, for both registers.
 | |
| 	 */
 | |
| 	if (ld.x6_op == 0x2) {
 | |
| 		invala_fr(ld.r1);
 | |
| 		invala_fr(ld.imm);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| emulate_load_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ia64_fpreg fpr_init;
 | |
| 	struct ia64_fpreg fpr_final;
 | |
| 	unsigned long len = float_fsz[ld.x6_sz];
 | |
| 
 | |
| 	/*
 | |
| 	 * fr0 & fr1 don't need to be checked because Illegal Instruction
 | |
| 	 * faults have higher priority than unaligned faults.
 | |
| 	 *
 | |
| 	 * r0 cannot be found as the base as it would never generate an
 | |
| 	 * unaligned reference.
 | |
| 	 */
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we get clean buffers
 | |
| 	 */
 | |
| 	memset(&fpr_init,0, sizeof(fpr_init));
 | |
| 	memset(&fpr_final,0, sizeof(fpr_final));
 | |
| 
 | |
| 	/*
 | |
| 	 * ldfX.a we don't try to emulate anything but we must
 | |
| 	 * invalidate the ALAT entry.
 | |
| 	 * See comments in ldX for descriptions on how the various loads are handled.
 | |
| 	 */
 | |
| 	if (ld.x6_op != 0x2) {
 | |
| 		if (copy_from_user(&fpr_init, (void __user *) ifa, len))
 | |
| 			return -1;
 | |
| 
 | |
| 		DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
 | |
| 		DDUMP("fpr_init =", &fpr_init, len);
 | |
| 		/*
 | |
| 		 * we only do something for x6_op={0,8,9}
 | |
| 		 */
 | |
| 		switch( ld.x6_sz ) {
 | |
| 			case 0:
 | |
| 				mem2float_extended(&fpr_init, &fpr_final);
 | |
| 				break;
 | |
| 			case 1:
 | |
| 				mem2float_integer(&fpr_init, &fpr_final);
 | |
| 				break;
 | |
| 			case 2:
 | |
| 				mem2float_single(&fpr_init, &fpr_final);
 | |
| 				break;
 | |
| 			case 3:
 | |
| 				mem2float_double(&fpr_init, &fpr_final);
 | |
| 				break;
 | |
| 		}
 | |
| 		DDUMP("fpr_final =", &fpr_final, len);
 | |
| 		/*
 | |
| 		 * XXX fixme
 | |
| 		 *
 | |
| 		 * A possible optimization would be to drop fpr_final and directly
 | |
| 		 * use the storage from the saved context i.e., the actual final
 | |
| 		 * destination (pt_regs, switch_stack or thread structure).
 | |
| 		 */
 | |
| 		setfpreg(ld.r1, &fpr_final, regs);
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * check for updates on any loads
 | |
| 	 */
 | |
| 	if (ld.op == 0x7 || ld.m)
 | |
| 		emulate_load_updates(ld.op == 0x7 ? UPD_IMMEDIATE: UPD_REG, ld, regs, ifa);
 | |
| 
 | |
| 	/*
 | |
| 	 * invalidate ALAT entry in case of advanced floating point loads
 | |
| 	 */
 | |
| 	if (ld.x6_op == 0x2)
 | |
| 		invala_fr(ld.r1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int
 | |
| emulate_store_float (unsigned long ifa, load_store_t ld, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ia64_fpreg fpr_init;
 | |
| 	struct ia64_fpreg fpr_final;
 | |
| 	unsigned long len = float_fsz[ld.x6_sz];
 | |
| 
 | |
| 	/*
 | |
| 	 * make sure we get clean buffers
 | |
| 	 */
 | |
| 	memset(&fpr_init,0, sizeof(fpr_init));
 | |
| 	memset(&fpr_final,0, sizeof(fpr_final));
 | |
| 
 | |
| 	/*
 | |
| 	 * if we get to this handler, Nat bits on both r3 and r2 have already
 | |
| 	 * been checked. so we don't need to do it
 | |
| 	 *
 | |
| 	 * extract the value to be stored
 | |
| 	 */
 | |
| 	getfpreg(ld.imm, &fpr_init, regs);
 | |
| 	/*
 | |
| 	 * during this step, we extract the spilled registers from the saved
 | |
| 	 * context i.e., we refill. Then we store (no spill) to temporary
 | |
| 	 * aligned location
 | |
| 	 */
 | |
| 	switch( ld.x6_sz ) {
 | |
| 		case 0:
 | |
| 			float2mem_extended(&fpr_init, &fpr_final);
 | |
| 			break;
 | |
| 		case 1:
 | |
| 			float2mem_integer(&fpr_init, &fpr_final);
 | |
| 			break;
 | |
| 		case 2:
 | |
| 			float2mem_single(&fpr_init, &fpr_final);
 | |
| 			break;
 | |
| 		case 3:
 | |
| 			float2mem_double(&fpr_init, &fpr_final);
 | |
| 			break;
 | |
| 	}
 | |
| 	DPRINT("ld.r1=%d x6_sz=%d\n", ld.r1, ld.x6_sz);
 | |
| 	DDUMP("fpr_init =", &fpr_init, len);
 | |
| 	DDUMP("fpr_final =", &fpr_final, len);
 | |
| 
 | |
| 	if (copy_to_user((void __user *) ifa, &fpr_final, len))
 | |
| 		return -1;
 | |
| 
 | |
| 	/*
 | |
| 	 * stfX [r3]=r2,imm(9)
 | |
| 	 *
 | |
| 	 * NOTE:
 | |
| 	 * ld.r3 can never be r0, because r0 would not generate an
 | |
| 	 * unaligned access.
 | |
| 	 */
 | |
| 	if (ld.op == 0x7) {
 | |
| 		unsigned long imm;
 | |
| 
 | |
| 		/*
 | |
| 		 * form imm9: [12:6] contain first 7bits
 | |
| 		 */
 | |
| 		imm = ld.x << 7 | ld.r1;
 | |
| 		/*
 | |
| 		 * sign extend (8bits) if m set
 | |
| 		 */
 | |
| 		if (ld.m)
 | |
| 			imm |= SIGN_EXT9;
 | |
| 		/*
 | |
| 		 * ifa == r3 (NaT is necessarily cleared)
 | |
| 		 */
 | |
| 		ifa += imm;
 | |
| 
 | |
| 		DPRINT("imm=%lx r3=%lx\n", imm, ifa);
 | |
| 
 | |
| 		setreg(ld.r3, ifa, 0, regs);
 | |
| 	}
 | |
| 	/*
 | |
| 	 * we don't have alat_invalidate_multiple() so we need
 | |
| 	 * to do the complete flush :-<<
 | |
| 	 */
 | |
| 	ia64_invala();
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Make sure we log the unaligned access, so that user/sysadmin can notice it and
 | |
|  * eventually fix the program.  However, we don't want to do that for every access so we
 | |
|  * pace it with jiffies.  This isn't really MP-safe, but it doesn't really have to be
 | |
|  * either...
 | |
|  */
 | |
| static int
 | |
| within_logging_rate_limit (void)
 | |
| {
 | |
| 	static unsigned long count, last_time;
 | |
| 
 | |
| 	if (time_after(jiffies, last_time + 5 * HZ))
 | |
| 		count = 0;
 | |
| 	if (count < 5) {
 | |
| 		last_time = jiffies;
 | |
| 		count++;
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| 
 | |
| }
 | |
| 
 | |
| void
 | |
| ia64_handle_unaligned (unsigned long ifa, struct pt_regs *regs)
 | |
| {
 | |
| 	struct ia64_psr *ipsr = ia64_psr(regs);
 | |
| 	mm_segment_t old_fs = get_fs();
 | |
| 	unsigned long bundle[2];
 | |
| 	unsigned long opcode;
 | |
| 	struct siginfo si;
 | |
| 	const struct exception_table_entry *eh = NULL;
 | |
| 	union {
 | |
| 		unsigned long l;
 | |
| 		load_store_t insn;
 | |
| 	} u;
 | |
| 	int ret = -1;
 | |
| 
 | |
| 	if (ia64_psr(regs)->be) {
 | |
| 		/* we don't support big-endian accesses */
 | |
| 		if (die_if_kernel("big-endian unaligned accesses are not supported", regs, 0))
 | |
| 			return;
 | |
| 		goto force_sigbus;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Treat kernel accesses for which there is an exception handler entry the same as
 | |
| 	 * user-level unaligned accesses.  Otherwise, a clever program could trick this
 | |
| 	 * handler into reading an arbitrary kernel addresses...
 | |
| 	 */
 | |
| 	if (!user_mode(regs))
 | |
| 		eh = search_exception_tables(regs->cr_iip + ia64_psr(regs)->ri);
 | |
| 	if (user_mode(regs) || eh) {
 | |
| 		if ((current->thread.flags & IA64_THREAD_UAC_SIGBUS) != 0)
 | |
| 			goto force_sigbus;
 | |
| 
 | |
| 		if (!no_unaligned_warning &&
 | |
| 		    !(current->thread.flags & IA64_THREAD_UAC_NOPRINT) &&
 | |
| 		    within_logging_rate_limit())
 | |
| 		{
 | |
| 			char buf[200];	/* comm[] is at most 16 bytes... */
 | |
| 			size_t len;
 | |
| 
 | |
| 			len = sprintf(buf, "%s(%d): unaligned access to 0x%016lx, "
 | |
| 				      "ip=0x%016lx\n\r", current->comm,
 | |
| 				      task_pid_nr(current),
 | |
| 				      ifa, regs->cr_iip + ipsr->ri);
 | |
| 			/*
 | |
| 			 * Don't call tty_write_message() if we're in the kernel; we might
 | |
| 			 * be holding locks...
 | |
| 			 */
 | |
| 			if (user_mode(regs))
 | |
| 				tty_write_message(current->signal->tty, buf);
 | |
| 			buf[len-1] = '\0';	/* drop '\r' */
 | |
| 			/* watch for command names containing %s */
 | |
| 			printk(KERN_WARNING "%s", buf);
 | |
| 		} else {
 | |
| 			if (no_unaligned_warning) {
 | |
| 				printk_once(KERN_WARNING "%s(%d) encountered an "
 | |
| 				       "unaligned exception which required\n"
 | |
| 				       "kernel assistance, which degrades "
 | |
| 				       "the performance of the application.\n"
 | |
| 				       "Unaligned exception warnings have "
 | |
| 				       "been disabled by the system "
 | |
| 				       "administrator\n"
 | |
| 				       "echo 0 > /proc/sys/kernel/ignore-"
 | |
| 				       "unaligned-usertrap to re-enable\n",
 | |
| 				       current->comm, task_pid_nr(current));
 | |
| 			}
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (within_logging_rate_limit()) {
 | |
| 			printk(KERN_WARNING "kernel unaligned access to 0x%016lx, ip=0x%016lx\n",
 | |
| 			       ifa, regs->cr_iip + ipsr->ri);
 | |
| 			if (unaligned_dump_stack)
 | |
| 				dump_stack();
 | |
| 		}
 | |
| 		set_fs(KERNEL_DS);
 | |
| 	}
 | |
| 
 | |
| 	DPRINT("iip=%lx ifa=%lx isr=%lx (ei=%d, sp=%d)\n",
 | |
| 	       regs->cr_iip, ifa, regs->cr_ipsr, ipsr->ri, ipsr->it);
 | |
| 
 | |
| 	if (__copy_from_user(bundle, (void __user *) regs->cr_iip, 16))
 | |
| 		goto failure;
 | |
| 
 | |
| 	/*
 | |
| 	 * extract the instruction from the bundle given the slot number
 | |
| 	 */
 | |
| 	switch (ipsr->ri) {
 | |
| 	      case 0: u.l = (bundle[0] >>  5); break;
 | |
| 	      case 1: u.l = (bundle[0] >> 46) | (bundle[1] << 18); break;
 | |
| 	      case 2: u.l = (bundle[1] >> 23); break;
 | |
| 	}
 | |
| 	opcode = (u.l >> IA64_OPCODE_SHIFT) & IA64_OPCODE_MASK;
 | |
| 
 | |
| 	DPRINT("opcode=%lx ld.qp=%d ld.r1=%d ld.imm=%d ld.r3=%d ld.x=%d ld.hint=%d "
 | |
| 	       "ld.x6=0x%x ld.m=%d ld.op=%d\n", opcode, u.insn.qp, u.insn.r1, u.insn.imm,
 | |
| 	       u.insn.r3, u.insn.x, u.insn.hint, u.insn.x6_sz, u.insn.m, u.insn.op);
 | |
| 
 | |
| 	/*
 | |
| 	 * IMPORTANT:
 | |
| 	 * Notice that the switch statement DOES not cover all possible instructions
 | |
| 	 * that DO generate unaligned references. This is made on purpose because for some
 | |
| 	 * instructions it DOES NOT make sense to try and emulate the access. Sometimes it
 | |
| 	 * is WRONG to try and emulate. Here is a list of instruction we don't emulate i.e.,
 | |
| 	 * the program will get a signal and die:
 | |
| 	 *
 | |
| 	 *	load/store:
 | |
| 	 *		- ldX.spill
 | |
| 	 *		- stX.spill
 | |
| 	 *	Reason: RNATs are based on addresses
 | |
| 	 *		- ld16
 | |
| 	 *		- st16
 | |
| 	 *	Reason: ld16 and st16 are supposed to occur in a single
 | |
| 	 *		memory op
 | |
| 	 *
 | |
| 	 *	synchronization:
 | |
| 	 *		- cmpxchg
 | |
| 	 *		- fetchadd
 | |
| 	 *		- xchg
 | |
| 	 *	Reason: ATOMIC operations cannot be emulated properly using multiple
 | |
| 	 *	        instructions.
 | |
| 	 *
 | |
| 	 *	speculative loads:
 | |
| 	 *		- ldX.sZ
 | |
| 	 *	Reason: side effects, code must be ready to deal with failure so simpler
 | |
| 	 *		to let the load fail.
 | |
| 	 * ---------------------------------------------------------------------------------
 | |
| 	 * XXX fixme
 | |
| 	 *
 | |
| 	 * I would like to get rid of this switch case and do something
 | |
| 	 * more elegant.
 | |
| 	 */
 | |
| 	switch (opcode) {
 | |
| 	      case LDS_OP:
 | |
| 	      case LDSA_OP:
 | |
| 		if (u.insn.x)
 | |
| 			/* oops, really a semaphore op (cmpxchg, etc) */
 | |
| 			goto failure;
 | |
| 		/* no break */
 | |
| 	      case LDS_IMM_OP:
 | |
| 	      case LDSA_IMM_OP:
 | |
| 	      case LDFS_OP:
 | |
| 	      case LDFSA_OP:
 | |
| 	      case LDFS_IMM_OP:
 | |
| 		/*
 | |
| 		 * The instruction will be retried with deferred exceptions turned on, and
 | |
| 		 * we should get Nat bit installed
 | |
| 		 *
 | |
| 		 * IMPORTANT: When PSR_ED is set, the register & immediate update forms
 | |
| 		 * are actually executed even though the operation failed. So we don't
 | |
| 		 * need to take care of this.
 | |
| 		 */
 | |
| 		DPRINT("forcing PSR_ED\n");
 | |
| 		regs->cr_ipsr |= IA64_PSR_ED;
 | |
| 		goto done;
 | |
| 
 | |
| 	      case LD_OP:
 | |
| 	      case LDA_OP:
 | |
| 	      case LDBIAS_OP:
 | |
| 	      case LDACQ_OP:
 | |
| 	      case LDCCLR_OP:
 | |
| 	      case LDCNC_OP:
 | |
| 	      case LDCCLRACQ_OP:
 | |
| 		if (u.insn.x)
 | |
| 			/* oops, really a semaphore op (cmpxchg, etc) */
 | |
| 			goto failure;
 | |
| 		/* no break */
 | |
| 	      case LD_IMM_OP:
 | |
| 	      case LDA_IMM_OP:
 | |
| 	      case LDBIAS_IMM_OP:
 | |
| 	      case LDACQ_IMM_OP:
 | |
| 	      case LDCCLR_IMM_OP:
 | |
| 	      case LDCNC_IMM_OP:
 | |
| 	      case LDCCLRACQ_IMM_OP:
 | |
| 		ret = emulate_load_int(ifa, u.insn, regs);
 | |
| 		break;
 | |
| 
 | |
| 	      case ST_OP:
 | |
| 	      case STREL_OP:
 | |
| 		if (u.insn.x)
 | |
| 			/* oops, really a semaphore op (cmpxchg, etc) */
 | |
| 			goto failure;
 | |
| 		/* no break */
 | |
| 	      case ST_IMM_OP:
 | |
| 	      case STREL_IMM_OP:
 | |
| 		ret = emulate_store_int(ifa, u.insn, regs);
 | |
| 		break;
 | |
| 
 | |
| 	      case LDF_OP:
 | |
| 	      case LDFA_OP:
 | |
| 	      case LDFCCLR_OP:
 | |
| 	      case LDFCNC_OP:
 | |
| 		if (u.insn.x)
 | |
| 			ret = emulate_load_floatpair(ifa, u.insn, regs);
 | |
| 		else
 | |
| 			ret = emulate_load_float(ifa, u.insn, regs);
 | |
| 		break;
 | |
| 
 | |
| 	      case LDF_IMM_OP:
 | |
| 	      case LDFA_IMM_OP:
 | |
| 	      case LDFCCLR_IMM_OP:
 | |
| 	      case LDFCNC_IMM_OP:
 | |
| 		ret = emulate_load_float(ifa, u.insn, regs);
 | |
| 		break;
 | |
| 
 | |
| 	      case STF_OP:
 | |
| 	      case STF_IMM_OP:
 | |
| 		ret = emulate_store_float(ifa, u.insn, regs);
 | |
| 		break;
 | |
| 
 | |
| 	      default:
 | |
| 		goto failure;
 | |
| 	}
 | |
| 	DPRINT("ret=%d\n", ret);
 | |
| 	if (ret)
 | |
| 		goto failure;
 | |
| 
 | |
| 	if (ipsr->ri == 2)
 | |
| 		/*
 | |
| 		 * given today's architecture this case is not likely to happen because a
 | |
| 		 * memory access instruction (M) can never be in the last slot of a
 | |
| 		 * bundle. But let's keep it for now.
 | |
| 		 */
 | |
| 		regs->cr_iip += 16;
 | |
| 	ipsr->ri = (ipsr->ri + 1) & 0x3;
 | |
| 
 | |
| 	DPRINT("ipsr->ri=%d iip=%lx\n", ipsr->ri, regs->cr_iip);
 | |
|   done:
 | |
| 	set_fs(old_fs);		/* restore original address limit */
 | |
| 	return;
 | |
| 
 | |
|   failure:
 | |
| 	/* something went wrong... */
 | |
| 	if (!user_mode(regs)) {
 | |
| 		if (eh) {
 | |
| 			ia64_handle_exception(regs, eh);
 | |
| 			goto done;
 | |
| 		}
 | |
| 		if (die_if_kernel("error during unaligned kernel access\n", regs, ret))
 | |
| 			return;
 | |
| 		/* NOT_REACHED */
 | |
| 	}
 | |
|   force_sigbus:
 | |
| 	si.si_signo = SIGBUS;
 | |
| 	si.si_errno = 0;
 | |
| 	si.si_code = BUS_ADRALN;
 | |
| 	si.si_addr = (void __user *) ifa;
 | |
| 	si.si_flags = 0;
 | |
| 	si.si_isr = 0;
 | |
| 	si.si_imm = 0;
 | |
| 	force_sig_info(SIGBUS, &si, current);
 | |
| 	goto done;
 | |
| }
 |