2245 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2245 lines
		
	
	
		
			62 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*******************************************************************************
 | |
| 
 | |
|   Intel 10 Gigabit PCI Express Linux driver
 | |
|   Copyright(c) 1999 - 2009 Intel Corporation.
 | |
| 
 | |
|   This program is free software; you can redistribute it and/or modify it
 | |
|   under the terms and conditions of the GNU General Public License,
 | |
|   version 2, as published by the Free Software Foundation.
 | |
| 
 | |
|   This program is distributed in the hope it will be useful, but WITHOUT
 | |
|   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|   more details.
 | |
| 
 | |
|   You should have received a copy of the GNU General Public License along with
 | |
|   this program; if not, write to the Free Software Foundation, Inc.,
 | |
|   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
 | |
| 
 | |
|   The full GNU General Public License is included in this distribution in
 | |
|   the file called "COPYING".
 | |
| 
 | |
|   Contact Information:
 | |
|   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
 | |
|   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
 | |
| 
 | |
| *******************************************************************************/
 | |
| 
 | |
| #include <linux/pci.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/list.h>
 | |
| #include <linux/netdevice.h>
 | |
| 
 | |
| #include "ixgbe.h"
 | |
| #include "ixgbe_common.h"
 | |
| #include "ixgbe_phy.h"
 | |
| 
 | |
| static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
 | |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
 | |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
 | |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
 | |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
 | |
|                                         u16 count);
 | |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
 | |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
 | |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
 | |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
 | |
| static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw);
 | |
| 
 | |
| static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index);
 | |
| static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index);
 | |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
 | |
| static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq);
 | |
| static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Starts the hardware by filling the bus info structure and media type, clears
 | |
|  *  all on chip counters, initializes receive address registers, multicast
 | |
|  *  table, VLAN filter table, calls routine to set up link and flow control
 | |
|  *  settings, and leaves transmit and receive units disabled and uninitialized
 | |
|  **/
 | |
| s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 ctrl_ext;
 | |
| 
 | |
| 	/* Set the media type */
 | |
| 	hw->phy.media_type = hw->mac.ops.get_media_type(hw);
 | |
| 
 | |
| 	/* Identify the PHY */
 | |
| 	hw->phy.ops.identify(hw);
 | |
| 
 | |
| 	/* Clear the VLAN filter table */
 | |
| 	hw->mac.ops.clear_vfta(hw);
 | |
| 
 | |
| 	/* Clear statistics registers */
 | |
| 	hw->mac.ops.clear_hw_cntrs(hw);
 | |
| 
 | |
| 	/* Set No Snoop Disable */
 | |
| 	ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
 | |
| 	ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	/* Setup flow control */
 | |
| 	ixgbe_setup_fc(hw, 0);
 | |
| 
 | |
| 	/* Clear adapter stopped flag */
 | |
| 	hw->adapter_stopped = false;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_hw_generic - Generic hardware initialization
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Initialize the hardware by resetting the hardware, filling the bus info
 | |
|  *  structure and media type, clears all on chip counters, initializes receive
 | |
|  *  address registers, multicast table, VLAN filter table, calls routine to set
 | |
|  *  up link and flow control settings, and leaves transmit and receive units
 | |
|  *  disabled and uninitialized
 | |
|  **/
 | |
| s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status;
 | |
| 
 | |
| 	/* Reset the hardware */
 | |
| 	status = hw->mac.ops.reset_hw(hw);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		/* Start the HW */
 | |
| 		status = hw->mac.ops.start_hw(hw);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Clears all hardware statistics counters by reading them from the hardware
 | |
|  *  Statistics counters are clear on read.
 | |
|  **/
 | |
| s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u16 i = 0;
 | |
| 
 | |
| 	IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_ERRBC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MSPDC);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		IXGBE_READ_REG(hw, IXGBE_MPC(i));
 | |
| 
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MLFC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MRFC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RLEC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 | |
| 
 | |
| 	for (i = 0; i < 8; i++) {
 | |
| 		IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 | |
| 	}
 | |
| 
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC64);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC127);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC255);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC511);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC1023);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PRC1522);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_BPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GPTC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GORCL);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GORCH);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GOTCL);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_GOTCH);
 | |
| 	for (i = 0; i < 8; i++)
 | |
| 		IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RUC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RFC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_ROC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_RJC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TORL);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TORH);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TPR);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_TPT);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC64);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC127);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC255);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC511);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC1023);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_PTC1522);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_MPTC);
 | |
| 	IXGBE_READ_REG(hw, IXGBE_BPTC);
 | |
| 	for (i = 0; i < 16; i++) {
 | |
| 		IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 | |
| 		IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_read_pba_num_generic - Reads part number from EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @pba_num: stores the part number from the EEPROM
 | |
|  *
 | |
|  *  Reads the part number from the EEPROM.
 | |
|  **/
 | |
| s32 ixgbe_read_pba_num_generic(struct ixgbe_hw *hw, u32 *pba_num)
 | |
| {
 | |
| 	s32 ret_val;
 | |
| 	u16 data;
 | |
| 
 | |
| 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg(hw, "NVM Read Error\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	*pba_num = (u32)(data << 16);
 | |
| 
 | |
| 	ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &data);
 | |
| 	if (ret_val) {
 | |
| 		hw_dbg(hw, "NVM Read Error\n");
 | |
| 		return ret_val;
 | |
| 	}
 | |
| 	*pba_num |= data;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_mac_addr_generic - Generic get MAC address
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mac_addr: Adapter MAC address
 | |
|  *
 | |
|  *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 | |
|  *  A reset of the adapter must be performed prior to calling this function
 | |
|  *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 | |
|  **/
 | |
| s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 | |
| {
 | |
| 	u32 rar_high;
 | |
| 	u32 rar_low;
 | |
| 	u16 i;
 | |
| 
 | |
| 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 | |
| 	rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 | |
| 
 | |
| 	for (i = 0; i < 4; i++)
 | |
| 		mac_addr[i] = (u8)(rar_low >> (i*8));
 | |
| 
 | |
| 	for (i = 0; i < 2; i++)
 | |
| 		mac_addr[i+4] = (u8)(rar_high >> (i*8));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 | |
|  **/
 | |
| s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_adapter *adapter = hw->back;
 | |
| 	struct ixgbe_mac_info *mac = &hw->mac;
 | |
| 	u16 link_status;
 | |
| 
 | |
| 	hw->bus.type = ixgbe_bus_type_pci_express;
 | |
| 
 | |
| 	/* Get the negotiated link width and speed from PCI config space */
 | |
| 	pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 | |
| 	                     &link_status);
 | |
| 
 | |
| 	switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 | |
| 	case IXGBE_PCI_LINK_WIDTH_1:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x1;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_WIDTH_2:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x2;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_WIDTH_4:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x4;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_WIDTH_8:
 | |
| 		hw->bus.width = ixgbe_bus_width_pcie_x8;
 | |
| 		break;
 | |
| 	default:
 | |
| 		hw->bus.width = ixgbe_bus_width_unknown;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	switch (link_status & IXGBE_PCI_LINK_SPEED) {
 | |
| 	case IXGBE_PCI_LINK_SPEED_2500:
 | |
| 		hw->bus.speed = ixgbe_bus_speed_2500;
 | |
| 		break;
 | |
| 	case IXGBE_PCI_LINK_SPEED_5000:
 | |
| 		hw->bus.speed = ixgbe_bus_speed_5000;
 | |
| 		break;
 | |
| 	default:
 | |
| 		hw->bus.speed = ixgbe_bus_speed_unknown;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	mac->ops.set_lan_id(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 | |
|  *  @hw: pointer to the HW structure
 | |
|  *
 | |
|  *  Determines the LAN function id by reading memory-mapped registers
 | |
|  *  and swaps the port value if requested.
 | |
|  **/
 | |
| void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_bus_info *bus = &hw->bus;
 | |
| 	u32 reg;
 | |
| 
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 | |
| 	bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 | |
| 	bus->lan_id = bus->func;
 | |
| 
 | |
| 	/* check for a port swap */
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 | |
| 	if (reg & IXGBE_FACTPS_LFS)
 | |
| 		bus->func ^= 0x1;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 | |
|  *  disables transmit and receive units. The adapter_stopped flag is used by
 | |
|  *  the shared code and drivers to determine if the adapter is in a stopped
 | |
|  *  state and should not touch the hardware.
 | |
|  **/
 | |
| s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 number_of_queues;
 | |
| 	u32 reg_val;
 | |
| 	u16 i;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the adapter_stopped flag so other driver functions stop touching
 | |
| 	 * the hardware
 | |
| 	 */
 | |
| 	hw->adapter_stopped = true;
 | |
| 
 | |
| 	/* Disable the receive unit */
 | |
| 	reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
 | |
| 	reg_val &= ~(IXGBE_RXCTRL_RXEN);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	msleep(2);
 | |
| 
 | |
| 	/* Clear interrupt mask to stop from interrupts being generated */
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 | |
| 
 | |
| 	/* Clear any pending interrupts */
 | |
| 	IXGBE_READ_REG(hw, IXGBE_EICR);
 | |
| 
 | |
| 	/* Disable the transmit unit.  Each queue must be disabled. */
 | |
| 	number_of_queues = hw->mac.max_tx_queues;
 | |
| 	for (i = 0; i < number_of_queues; i++) {
 | |
| 		reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
 | |
| 		if (reg_val & IXGBE_TXDCTL_ENABLE) {
 | |
| 			reg_val &= ~IXGBE_TXDCTL_ENABLE;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 | |
| 	 * access and verify no pending requests
 | |
| 	 */
 | |
| 	if (ixgbe_disable_pcie_master(hw) != 0)
 | |
| 		hw_dbg(hw, "PCI-E Master disable polling has failed.\n");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to turn on
 | |
|  **/
 | |
| s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	/* To turn on the LED, set mode to ON. */
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to turn off
 | |
|  **/
 | |
| s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	/* To turn off the LED, set mode to OFF. */
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 | |
|  *  ixgbe_hw struct in order to set up EEPROM access.
 | |
|  **/
 | |
| s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 | |
| 	u32 eec;
 | |
| 	u16 eeprom_size;
 | |
| 
 | |
| 	if (eeprom->type == ixgbe_eeprom_uninitialized) {
 | |
| 		eeprom->type = ixgbe_eeprom_none;
 | |
| 		/* Set default semaphore delay to 10ms which is a well
 | |
| 		 * tested value */
 | |
| 		eeprom->semaphore_delay = 10;
 | |
| 
 | |
| 		/*
 | |
| 		 * Check for EEPROM present first.
 | |
| 		 * If not present leave as none
 | |
| 		 */
 | |
| 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 		if (eec & IXGBE_EEC_PRES) {
 | |
| 			eeprom->type = ixgbe_eeprom_spi;
 | |
| 
 | |
| 			/*
 | |
| 			 * SPI EEPROM is assumed here.  This code would need to
 | |
| 			 * change if a future EEPROM is not SPI.
 | |
| 			 */
 | |
| 			eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 | |
| 					    IXGBE_EEC_SIZE_SHIFT);
 | |
| 			eeprom->word_size = 1 << (eeprom_size +
 | |
| 						  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 | |
| 		}
 | |
| 
 | |
| 		if (eec & IXGBE_EEC_ADDR_SIZE)
 | |
| 			eeprom->address_bits = 16;
 | |
| 		else
 | |
| 			eeprom->address_bits = 8;
 | |
| 		hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 | |
| 			  "%d\n", eeprom->type, eeprom->word_size,
 | |
| 			  eeprom->address_bits);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @offset: offset within the EEPROM to be written to
 | |
|  *  @data: 16 bit word to be written to the EEPROM
 | |
|  *
 | |
|  *  If ixgbe_eeprom_update_checksum is not called after this function, the
 | |
|  *  EEPROM will most likely contain an invalid checksum.
 | |
|  **/
 | |
| s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 | |
| 
 | |
| 	hw->eeprom.ops.init_params(hw);
 | |
| 
 | |
| 	if (offset >= hw->eeprom.word_size) {
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the EEPROM for writing  */
 | |
| 	status = ixgbe_acquire_eeprom(hw);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		if (ixgbe_ready_eeprom(hw) != 0) {
 | |
| 			ixgbe_release_eeprom(hw);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/*  Send the WRITE ENABLE command (8 bit opcode )  */
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_WREN_OPCODE_SPI,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some SPI eeproms use the 8th address bit embedded in the
 | |
| 		 * opcode
 | |
| 		 */
 | |
| 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
 | |
| 			write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 | |
| 
 | |
| 		/* Send the Write command (8-bit opcode + addr) */
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
 | |
| 		                            hw->eeprom.address_bits);
 | |
| 
 | |
| 		/* Send the data */
 | |
| 		data = (data >> 8) | (data << 8);
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, data, 16);
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		msleep(hw->eeprom.semaphore_delay);
 | |
| 		/* Done with writing - release the EEPROM */
 | |
| 		ixgbe_release_eeprom(hw);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @offset: offset within the EEPROM to be read
 | |
|  *  @data: read 16 bit value from EEPROM
 | |
|  *
 | |
|  *  Reads 16 bit value from EEPROM through bit-bang method
 | |
|  **/
 | |
| s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 | |
|                                        u16 *data)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u16 word_in;
 | |
| 	u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
 | |
| 
 | |
| 	hw->eeprom.ops.init_params(hw);
 | |
| 
 | |
| 	if (offset >= hw->eeprom.word_size) {
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* Prepare the EEPROM for reading  */
 | |
| 	status = ixgbe_acquire_eeprom(hw);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		if (ixgbe_ready_eeprom(hw) != 0) {
 | |
| 			ixgbe_release_eeprom(hw);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 
 | |
| 		/*
 | |
| 		 * Some SPI eeproms use the 8th address bit embedded in the
 | |
| 		 * opcode
 | |
| 		 */
 | |
| 		if ((hw->eeprom.address_bits == 8) && (offset >= 128))
 | |
| 			read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 | |
| 
 | |
| 		/* Send the READ command (opcode + addr) */
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, read_opcode,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, (u16)(offset*2),
 | |
| 		                            hw->eeprom.address_bits);
 | |
| 
 | |
| 		/* Read the data. */
 | |
| 		word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
 | |
| 		*data = (word_in >> 8) | (word_in << 8);
 | |
| 
 | |
| 		/* End this read operation */
 | |
| 		ixgbe_release_eeprom(hw);
 | |
| 	}
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_read_eeprom_generic - Read EEPROM word using EERD
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @offset: offset of  word in the EEPROM to read
 | |
|  *  @data: word read from the EEPROM
 | |
|  *
 | |
|  *  Reads a 16 bit word from the EEPROM using the EERD register.
 | |
|  **/
 | |
| s32 ixgbe_read_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
 | |
| {
 | |
| 	u32 eerd;
 | |
| 	s32 status;
 | |
| 
 | |
| 	hw->eeprom.ops.init_params(hw);
 | |
| 
 | |
| 	if (offset >= hw->eeprom.word_size) {
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	eerd = (offset << IXGBE_EEPROM_READ_ADDR_SHIFT) +
 | |
| 	       IXGBE_EEPROM_READ_REG_START;
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
 | |
| 	status = ixgbe_poll_eeprom_eerd_done(hw);
 | |
| 
 | |
| 	if (status == 0)
 | |
| 		*data = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
 | |
| 		         IXGBE_EEPROM_READ_REG_DATA);
 | |
| 	else
 | |
| 		hw_dbg(hw, "Eeprom read timed out\n");
 | |
| 
 | |
| out:
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_poll_eeprom_eerd_done - Poll EERD status
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Polls the status bit (bit 1) of the EERD to determine when the read is done.
 | |
|  **/
 | |
| static s32 ixgbe_poll_eeprom_eerd_done(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 reg;
 | |
| 	s32 status = IXGBE_ERR_EEPROM;
 | |
| 
 | |
| 	for (i = 0; i < IXGBE_EERD_ATTEMPTS; i++) {
 | |
| 		reg = IXGBE_READ_REG(hw, IXGBE_EERD);
 | |
| 		if (reg & IXGBE_EEPROM_READ_REG_DONE) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(5);
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Prepares EEPROM for access using bit-bang method. This function should
 | |
|  *  be called before issuing a command to the EEPROM.
 | |
|  **/
 | |
| static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 	u32 eec = 0;
 | |
| 	u32 i;
 | |
| 
 | |
| 	if (ixgbe_acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
 | |
| 		status = IXGBE_ERR_SWFW_SYNC;
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 		/* Request EEPROM Access */
 | |
| 		eec |= IXGBE_EEC_REQ;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 
 | |
| 		for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
 | |
| 			eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 			if (eec & IXGBE_EEC_GNT)
 | |
| 				break;
 | |
| 			udelay(5);
 | |
| 		}
 | |
| 
 | |
| 		/* Release if grant not acquired */
 | |
| 		if (!(eec & IXGBE_EEC_GNT)) {
 | |
| 			eec &= ~IXGBE_EEC_REQ;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 			hw_dbg(hw, "Could not acquire EEPROM grant\n");
 | |
| 
 | |
| 			ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Setup EEPROM for Read/Write */
 | |
| 	if (status == 0) {
 | |
| 		/* Clear CS and SK */
 | |
| 		eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 		IXGBE_WRITE_FLUSH(hw);
 | |
| 		udelay(1);
 | |
| 	}
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
 | |
|  **/
 | |
| static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status = IXGBE_ERR_EEPROM;
 | |
| 	u32 timeout;
 | |
| 	u32 i;
 | |
| 	u32 swsm;
 | |
| 
 | |
| 	/* Set timeout value based on size of EEPROM */
 | |
| 	timeout = hw->eeprom.word_size + 1;
 | |
| 
 | |
| 	/* Get SMBI software semaphore between device drivers first */
 | |
| 	for (i = 0; i < timeout; i++) {
 | |
| 		/*
 | |
| 		 * If the SMBI bit is 0 when we read it, then the bit will be
 | |
| 		 * set and we have the semaphore
 | |
| 		 */
 | |
| 		swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 		if (!(swsm & IXGBE_SWSM_SMBI)) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		msleep(1);
 | |
| 	}
 | |
| 
 | |
| 	/* Now get the semaphore between SW/FW through the SWESMBI bit */
 | |
| 	if (status == 0) {
 | |
| 		for (i = 0; i < timeout; i++) {
 | |
| 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 
 | |
| 			/* Set the SW EEPROM semaphore bit to request access */
 | |
| 			swsm |= IXGBE_SWSM_SWESMBI;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 | |
| 
 | |
| 			/*
 | |
| 			 * If we set the bit successfully then we got the
 | |
| 			 * semaphore.
 | |
| 			 */
 | |
| 			swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 			if (swsm & IXGBE_SWSM_SWESMBI)
 | |
| 				break;
 | |
| 
 | |
| 			udelay(50);
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * Release semaphores and return error if SW EEPROM semaphore
 | |
| 		 * was not granted because we don't have access to the EEPROM
 | |
| 		 */
 | |
| 		if (i >= timeout) {
 | |
| 			hw_dbg(hw, "Driver can't access the Eeprom - Semaphore "
 | |
| 			       "not granted.\n");
 | |
| 			ixgbe_release_eeprom_semaphore(hw);
 | |
| 			status = IXGBE_ERR_EEPROM;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  This function clears hardware semaphore bits.
 | |
|  **/
 | |
| static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 swsm;
 | |
| 
 | |
| 	swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
 | |
| 
 | |
| 	/* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
 | |
| 	swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_ready_eeprom - Polls for EEPROM ready
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 	u16 i;
 | |
| 	u8 spi_stat_reg;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read "Status Register" repeatedly until the LSB is cleared.  The
 | |
| 	 * EEPROM will signal that the command has been completed by clearing
 | |
| 	 * bit 0 of the internal status register.  If it's not cleared within
 | |
| 	 * 5 milliseconds, then error out.
 | |
| 	 */
 | |
| 	for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
 | |
| 		ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
 | |
| 		                            IXGBE_EEPROM_OPCODE_BITS);
 | |
| 		spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
 | |
| 		if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
 | |
| 			break;
 | |
| 
 | |
| 		udelay(5);
 | |
| 		ixgbe_standby_eeprom(hw);
 | |
| 	};
 | |
| 
 | |
| 	/*
 | |
| 	 * On some parts, SPI write time could vary from 0-20mSec on 3.3V
 | |
| 	 * devices (and only 0-5mSec on 5V devices)
 | |
| 	 */
 | |
| 	if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
 | |
| 		hw_dbg(hw, "SPI EEPROM Status error\n");
 | |
| 		status = IXGBE_ERR_EEPROM;
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 eec;
 | |
| 
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	/* Toggle CS to flush commands */
 | |
| 	eec |= IXGBE_EEC_CS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| 	eec &= ~IXGBE_EEC_CS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @data: data to send to the EEPROM
 | |
|  *  @count: number of bits to shift out
 | |
|  **/
 | |
| static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
 | |
|                                         u16 count)
 | |
| {
 | |
| 	u32 eec;
 | |
| 	u32 mask;
 | |
| 	u32 i;
 | |
| 
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	/*
 | |
| 	 * Mask is used to shift "count" bits of "data" out to the EEPROM
 | |
| 	 * one bit at a time.  Determine the starting bit based on count
 | |
| 	 */
 | |
| 	mask = 0x01 << (count - 1);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		/*
 | |
| 		 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
 | |
| 		 * "1", and then raising and then lowering the clock (the SK
 | |
| 		 * bit controls the clock input to the EEPROM).  A "0" is
 | |
| 		 * shifted out to the EEPROM by setting "DI" to "0" and then
 | |
| 		 * raising and then lowering the clock.
 | |
| 		 */
 | |
| 		if (data & mask)
 | |
| 			eec |= IXGBE_EEC_DI;
 | |
| 		else
 | |
| 			eec &= ~IXGBE_EEC_DI;
 | |
| 
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 		IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 		udelay(1);
 | |
| 
 | |
| 		ixgbe_raise_eeprom_clk(hw, &eec);
 | |
| 		ixgbe_lower_eeprom_clk(hw, &eec);
 | |
| 
 | |
| 		/*
 | |
| 		 * Shift mask to signify next bit of data to shift in to the
 | |
| 		 * EEPROM
 | |
| 		 */
 | |
| 		mask = mask >> 1;
 | |
| 	};
 | |
| 
 | |
| 	/* We leave the "DI" bit set to "0" when we leave this routine. */
 | |
| 	eec &= ~IXGBE_EEC_DI;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
 | |
| {
 | |
| 	u32 eec;
 | |
| 	u32 i;
 | |
| 	u16 data = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * In order to read a register from the EEPROM, we need to shift
 | |
| 	 * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
 | |
| 	 * the clock input to the EEPROM (setting the SK bit), and then reading
 | |
| 	 * the value of the "DO" bit.  During this "shifting in" process the
 | |
| 	 * "DI" bit should always be clear.
 | |
| 	 */
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
 | |
| 
 | |
| 	for (i = 0; i < count; i++) {
 | |
| 		data = data << 1;
 | |
| 		ixgbe_raise_eeprom_clk(hw, &eec);
 | |
| 
 | |
| 		eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 		eec &= ~(IXGBE_EEC_DI);
 | |
| 		if (eec & IXGBE_EEC_DO)
 | |
| 			data |= 1;
 | |
| 
 | |
| 		ixgbe_lower_eeprom_clk(hw, &eec);
 | |
| 	}
 | |
| 
 | |
| 	return data;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @eec: EEC register's current value
 | |
|  **/
 | |
| static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
 | |
| {
 | |
| 	/*
 | |
| 	 * Raise the clock input to the EEPROM
 | |
| 	 * (setting the SK bit), then delay
 | |
| 	 */
 | |
| 	*eec = *eec | IXGBE_EEC_SK;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @eecd: EECD's current value
 | |
|  **/
 | |
| static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
 | |
| {
 | |
| 	/*
 | |
| 	 * Lower the clock input to the EEPROM (clearing the SK bit), then
 | |
| 	 * delay
 | |
| 	 */
 | |
| 	*eec = *eec & ~IXGBE_EEC_SK;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 	udelay(1);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_release_eeprom - Release EEPROM, release semaphores
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 eec;
 | |
| 
 | |
| 	eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 | |
| 
 | |
| 	eec |= IXGBE_EEC_CS;  /* Pull CS high */
 | |
| 	eec &= ~IXGBE_EEC_SK; /* Lower SCK */
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	udelay(1);
 | |
| 
 | |
| 	/* Stop requesting EEPROM access */
 | |
| 	eec &= ~IXGBE_EEC_REQ;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
 | |
| 
 | |
| 	ixgbe_release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_calc_eeprom_checksum - Calculates and returns the checksum
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| static u16 ixgbe_calc_eeprom_checksum(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u16 i;
 | |
| 	u16 j;
 | |
| 	u16 checksum = 0;
 | |
| 	u16 length = 0;
 | |
| 	u16 pointer = 0;
 | |
| 	u16 word = 0;
 | |
| 
 | |
| 	/* Include 0x0-0x3F in the checksum */
 | |
| 	for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
 | |
| 		if (hw->eeprom.ops.read(hw, i, &word) != 0) {
 | |
| 			hw_dbg(hw, "EEPROM read failed\n");
 | |
| 			break;
 | |
| 		}
 | |
| 		checksum += word;
 | |
| 	}
 | |
| 
 | |
| 	/* Include all data from pointers except for the fw pointer */
 | |
| 	for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
 | |
| 		hw->eeprom.ops.read(hw, i, &pointer);
 | |
| 
 | |
| 		/* Make sure the pointer seems valid */
 | |
| 		if (pointer != 0xFFFF && pointer != 0) {
 | |
| 			hw->eeprom.ops.read(hw, pointer, &length);
 | |
| 
 | |
| 			if (length != 0xFFFF && length != 0) {
 | |
| 				for (j = pointer+1; j <= pointer+length; j++) {
 | |
| 					hw->eeprom.ops.read(hw, j, &word);
 | |
| 					checksum += word;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	checksum = (u16)IXGBE_EEPROM_SUM - checksum;
 | |
| 
 | |
| 	return checksum;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @checksum_val: calculated checksum
 | |
|  *
 | |
|  *  Performs checksum calculation and validates the EEPROM checksum.  If the
 | |
|  *  caller does not need checksum_val, the value can be NULL.
 | |
|  **/
 | |
| s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
 | |
|                                            u16 *checksum_val)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u16 checksum;
 | |
| 	u16 read_checksum = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the first word from the EEPROM. If this times out or fails, do
 | |
| 	 * not continue or we could be in for a very long wait while every
 | |
| 	 * EEPROM read fails
 | |
| 	 */
 | |
| 	status = hw->eeprom.ops.read(hw, 0, &checksum);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		checksum = ixgbe_calc_eeprom_checksum(hw);
 | |
| 
 | |
| 		hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
 | |
| 
 | |
| 		/*
 | |
| 		 * Verify read checksum from EEPROM is the same as
 | |
| 		 * calculated checksum
 | |
| 		 */
 | |
| 		if (read_checksum != checksum)
 | |
| 			status = IXGBE_ERR_EEPROM_CHECKSUM;
 | |
| 
 | |
| 		/* If the user cares, return the calculated checksum */
 | |
| 		if (checksum_val)
 | |
| 			*checksum_val = checksum;
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "EEPROM read failed\n");
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
 | |
|  *  @hw: pointer to hardware structure
 | |
|  **/
 | |
| s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 status;
 | |
| 	u16 checksum;
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the first word from the EEPROM. If this times out or fails, do
 | |
| 	 * not continue or we could be in for a very long wait while every
 | |
| 	 * EEPROM read fails
 | |
| 	 */
 | |
| 	status = hw->eeprom.ops.read(hw, 0, &checksum);
 | |
| 
 | |
| 	if (status == 0) {
 | |
| 		checksum = ixgbe_calc_eeprom_checksum(hw);
 | |
| 		status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
 | |
| 		                            checksum);
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "EEPROM read failed\n");
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_validate_mac_addr - Validate MAC address
 | |
|  *  @mac_addr: pointer to MAC address.
 | |
|  *
 | |
|  *  Tests a MAC address to ensure it is a valid Individual Address
 | |
|  **/
 | |
| s32 ixgbe_validate_mac_addr(u8 *mac_addr)
 | |
| {
 | |
| 	s32 status = 0;
 | |
| 
 | |
| 	/* Make sure it is not a multicast address */
 | |
| 	if (IXGBE_IS_MULTICAST(mac_addr))
 | |
| 		status = IXGBE_ERR_INVALID_MAC_ADDR;
 | |
| 	/* Not a broadcast address */
 | |
| 	else if (IXGBE_IS_BROADCAST(mac_addr))
 | |
| 		status = IXGBE_ERR_INVALID_MAC_ADDR;
 | |
| 	/* Reject the zero address */
 | |
| 	else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
 | |
| 	         mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
 | |
| 		status = IXGBE_ERR_INVALID_MAC_ADDR;
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_rar_generic - Set Rx address register
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: Receive address register to write
 | |
|  *  @addr: Address to put into receive address register
 | |
|  *  @vmdq: VMDq "set" or "pool" index
 | |
|  *  @enable_addr: set flag that address is active
 | |
|  *
 | |
|  *  Puts an ethernet address into a receive address register.
 | |
|  **/
 | |
| s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
 | |
|                           u32 enable_addr)
 | |
| {
 | |
| 	u32 rar_low, rar_high;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/* setup VMDq pool selection before this RAR gets enabled */
 | |
| 	hw->mac.ops.set_vmdq(hw, index, vmdq);
 | |
| 
 | |
| 	/* Make sure we are using a valid rar index range */
 | |
| 	if (index < rar_entries) {
 | |
| 		/*
 | |
| 		 * HW expects these in little endian so we reverse the byte
 | |
| 		 * order from network order (big endian) to little endian
 | |
| 		 */
 | |
| 		rar_low = ((u32)addr[0] |
 | |
| 		           ((u32)addr[1] << 8) |
 | |
| 		           ((u32)addr[2] << 16) |
 | |
| 		           ((u32)addr[3] << 24));
 | |
| 		/*
 | |
| 		 * Some parts put the VMDq setting in the extra RAH bits,
 | |
| 		 * so save everything except the lower 16 bits that hold part
 | |
| 		 * of the address and the address valid bit.
 | |
| 		 */
 | |
| 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
 | |
| 		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
 | |
| 		rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
 | |
| 
 | |
| 		if (enable_addr != 0)
 | |
| 			rar_high |= IXGBE_RAH_AV;
 | |
| 
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_clear_rar_generic - Remove Rx address register
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: Receive address register to write
 | |
|  *
 | |
|  *  Clears an ethernet address from a receive address register.
 | |
|  **/
 | |
| s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 rar_high;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/* Make sure we are using a valid rar index range */
 | |
| 	if (index < rar_entries) {
 | |
| 		/*
 | |
| 		 * Some parts put the VMDq setting in the extra RAH bits,
 | |
| 		 * so save everything except the lower 16 bits that hold part
 | |
| 		 * of the address and the address valid bit.
 | |
| 		 */
 | |
| 		rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
 | |
| 		rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
 | |
| 
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 | |
| 	} else {
 | |
| 		hw_dbg(hw, "RAR index %d is out of range.\n", index);
 | |
| 	}
 | |
| 
 | |
| 	/* clear VMDq pool/queue selection for this RAR */
 | |
| 	hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_enable_rar - Enable Rx address register
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: index into the RAR table
 | |
|  *
 | |
|  *  Enables the select receive address register.
 | |
|  **/
 | |
| static void ixgbe_enable_rar(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 rar_high;
 | |
| 
 | |
| 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
 | |
| 	rar_high |= IXGBE_RAH_AV;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_disable_rar - Disable Rx address register
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: index into the RAR table
 | |
|  *
 | |
|  *  Disables the select receive address register.
 | |
|  **/
 | |
| static void ixgbe_disable_rar(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 rar_high;
 | |
| 
 | |
| 	rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
 | |
| 	rar_high &= (~IXGBE_RAH_AV);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Places the MAC address in receive address register 0 and clears the rest
 | |
|  *  of the receive address registers. Clears the multicast table. Assumes
 | |
|  *  the receiver is in reset when the routine is called.
 | |
|  **/
 | |
| s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 
 | |
| 	/*
 | |
| 	 * If the current mac address is valid, assume it is a software override
 | |
| 	 * to the permanent address.
 | |
| 	 * Otherwise, use the permanent address from the eeprom.
 | |
| 	 */
 | |
| 	if (ixgbe_validate_mac_addr(hw->mac.addr) ==
 | |
| 	    IXGBE_ERR_INVALID_MAC_ADDR) {
 | |
| 		/* Get the MAC address from the RAR0 for later reference */
 | |
| 		hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
 | |
| 
 | |
| 		hw_dbg(hw, " Keeping Current RAR0 Addr =%.2X %.2X %.2X ",
 | |
| 		       hw->mac.addr[0], hw->mac.addr[1],
 | |
| 		       hw->mac.addr[2]);
 | |
| 		hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
 | |
| 		       hw->mac.addr[4], hw->mac.addr[5]);
 | |
| 	} else {
 | |
| 		/* Setup the receive address. */
 | |
| 		hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
 | |
| 		hw_dbg(hw, " New MAC Addr =%.2X %.2X %.2X ",
 | |
| 		       hw->mac.addr[0], hw->mac.addr[1],
 | |
| 		       hw->mac.addr[2]);
 | |
| 		hw_dbg(hw, "%.2X %.2X %.2X\n", hw->mac.addr[3],
 | |
| 		       hw->mac.addr[4], hw->mac.addr[5]);
 | |
| 
 | |
| 		hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
 | |
| 	}
 | |
| 	hw->addr_ctrl.overflow_promisc = 0;
 | |
| 
 | |
| 	hw->addr_ctrl.rar_used_count = 1;
 | |
| 
 | |
| 	/* Zero out the other receive addresses. */
 | |
| 	hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
 | |
| 	for (i = 1; i < rar_entries; i++) {
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Clear the MTA */
 | |
| 	hw->addr_ctrl.mc_addr_in_rar_count = 0;
 | |
| 	hw->addr_ctrl.mta_in_use = 0;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
 | |
| 
 | |
| 	hw_dbg(hw, " Clearing MTA\n");
 | |
| 	for (i = 0; i < hw->mac.mcft_size; i++)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
 | |
| 
 | |
| 	if (hw->mac.ops.init_uta_tables)
 | |
| 		hw->mac.ops.init_uta_tables(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_add_uc_addr - Adds a secondary unicast address.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @addr: new address
 | |
|  *
 | |
|  *  Adds it to unused receive address register or goes into promiscuous mode.
 | |
|  **/
 | |
| static void ixgbe_add_uc_addr(struct ixgbe_hw *hw, u8 *addr, u32 vmdq)
 | |
| {
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 	u32 rar;
 | |
| 
 | |
| 	hw_dbg(hw, " UC Addr = %.2X %.2X %.2X %.2X %.2X %.2X\n",
 | |
| 	          addr[0], addr[1], addr[2], addr[3], addr[4], addr[5]);
 | |
| 
 | |
| 	/*
 | |
| 	 * Place this address in the RAR if there is room,
 | |
| 	 * else put the controller into promiscuous mode
 | |
| 	 */
 | |
| 	if (hw->addr_ctrl.rar_used_count < rar_entries) {
 | |
| 		rar = hw->addr_ctrl.rar_used_count -
 | |
| 		      hw->addr_ctrl.mc_addr_in_rar_count;
 | |
| 		hw->mac.ops.set_rar(hw, rar, addr, vmdq, IXGBE_RAH_AV);
 | |
| 		hw_dbg(hw, "Added a secondary address to RAR[%d]\n", rar);
 | |
| 		hw->addr_ctrl.rar_used_count++;
 | |
| 	} else {
 | |
| 		hw->addr_ctrl.overflow_promisc++;
 | |
| 	}
 | |
| 
 | |
| 	hw_dbg(hw, "ixgbe_add_uc_addr Complete\n");
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_update_uc_addr_list_generic - Updates MAC list of secondary addresses
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @uc_list: the list of new addresses
 | |
|  *
 | |
|  *  The given list replaces any existing list.  Clears the secondary addrs from
 | |
|  *  receive address registers.  Uses unused receive address registers for the
 | |
|  *  first secondary addresses, and falls back to promiscuous mode as needed.
 | |
|  *
 | |
|  *  Drivers using secondary unicast addresses must set user_set_promisc when
 | |
|  *  manually putting the device into promiscuous mode.
 | |
|  **/
 | |
| s32 ixgbe_update_uc_addr_list_generic(struct ixgbe_hw *hw,
 | |
| 				      struct list_head *uc_list)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 old_promisc_setting = hw->addr_ctrl.overflow_promisc;
 | |
| 	u32 uc_addr_in_use;
 | |
| 	u32 fctrl;
 | |
| 	struct netdev_hw_addr *ha;
 | |
| 
 | |
| 	/*
 | |
| 	 * Clear accounting of old secondary address list,
 | |
| 	 * don't count RAR[0]
 | |
| 	 */
 | |
| 	uc_addr_in_use = hw->addr_ctrl.rar_used_count - 1;
 | |
| 	hw->addr_ctrl.rar_used_count -= uc_addr_in_use;
 | |
| 	hw->addr_ctrl.overflow_promisc = 0;
 | |
| 
 | |
| 	/* Zero out the other receive addresses */
 | |
| 	hw_dbg(hw, "Clearing RAR[1-%d]\n", uc_addr_in_use);
 | |
| 	for (i = 1; i <= uc_addr_in_use; i++) {
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
 | |
| 	}
 | |
| 
 | |
| 	/* Add the new addresses */
 | |
| 	list_for_each_entry(ha, uc_list, list) {
 | |
| 		hw_dbg(hw, " Adding the secondary addresses:\n");
 | |
| 		ixgbe_add_uc_addr(hw, ha->addr, 0);
 | |
| 	}
 | |
| 
 | |
| 	if (hw->addr_ctrl.overflow_promisc) {
 | |
| 		/* enable promisc if not already in overflow or set by user */
 | |
| 		if (!old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
 | |
| 			hw_dbg(hw, " Entering address overflow promisc mode\n");
 | |
| 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
 | |
| 			fctrl |= IXGBE_FCTRL_UPE;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* only disable if set by overflow, not by user */
 | |
| 		if (old_promisc_setting && !hw->addr_ctrl.user_set_promisc) {
 | |
| 			hw_dbg(hw, " Leaving address overflow promisc mode\n");
 | |
| 			fctrl = IXGBE_READ_REG(hw, IXGBE_FCTRL);
 | |
| 			fctrl &= ~IXGBE_FCTRL_UPE;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_FCTRL, fctrl);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	hw_dbg(hw, "ixgbe_update_uc_addr_list_generic Complete\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mc_addr: the multicast address
 | |
|  *
 | |
|  *  Extracts the 12 bits, from a multicast address, to determine which
 | |
|  *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
 | |
|  *  incoming rx multicast addresses, to determine the bit-vector to check in
 | |
|  *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
 | |
|  *  by the MO field of the MCSTCTRL. The MO field is set during initialization
 | |
|  *  to mc_filter_type.
 | |
|  **/
 | |
| static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
 | |
| {
 | |
| 	u32 vector = 0;
 | |
| 
 | |
| 	switch (hw->mac.mc_filter_type) {
 | |
| 	case 0:   /* use bits [47:36] of the address */
 | |
| 		vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
 | |
| 		break;
 | |
| 	case 1:   /* use bits [46:35] of the address */
 | |
| 		vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
 | |
| 		break;
 | |
| 	case 2:   /* use bits [45:34] of the address */
 | |
| 		vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
 | |
| 		break;
 | |
| 	case 3:   /* use bits [43:32] of the address */
 | |
| 		vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
 | |
| 		break;
 | |
| 	default:  /* Invalid mc_filter_type */
 | |
| 		hw_dbg(hw, "MC filter type param set incorrectly\n");
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* vector can only be 12-bits or boundary will be exceeded */
 | |
| 	vector &= 0xFFF;
 | |
| 	return vector;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_set_mta - Set bit-vector in multicast table
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @hash_value: Multicast address hash value
 | |
|  *
 | |
|  *  Sets the bit-vector in the multicast table.
 | |
|  **/
 | |
| static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
 | |
| {
 | |
| 	u32 vector;
 | |
| 	u32 vector_bit;
 | |
| 	u32 vector_reg;
 | |
| 	u32 mta_reg;
 | |
| 
 | |
| 	hw->addr_ctrl.mta_in_use++;
 | |
| 
 | |
| 	vector = ixgbe_mta_vector(hw, mc_addr);
 | |
| 	hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
 | |
| 
 | |
| 	/*
 | |
| 	 * The MTA is a register array of 128 32-bit registers. It is treated
 | |
| 	 * like an array of 4096 bits.  We want to set bit
 | |
| 	 * BitArray[vector_value]. So we figure out what register the bit is
 | |
| 	 * in, read it, OR in the new bit, then write back the new value.  The
 | |
| 	 * register is determined by the upper 7 bits of the vector value and
 | |
| 	 * the bit within that register are determined by the lower 5 bits of
 | |
| 	 * the value.
 | |
| 	 */
 | |
| 	vector_reg = (vector >> 5) & 0x7F;
 | |
| 	vector_bit = vector & 0x1F;
 | |
| 	mta_reg = IXGBE_READ_REG(hw, IXGBE_MTA(vector_reg));
 | |
| 	mta_reg |= (1 << vector_bit);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_MTA(vector_reg), mta_reg);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mc_addr_list: the list of new multicast addresses
 | |
|  *  @mc_addr_count: number of addresses
 | |
|  *  @next: iterator function to walk the multicast address list
 | |
|  *
 | |
|  *  The given list replaces any existing list. Clears the MC addrs from receive
 | |
|  *  address registers and the multicast table. Uses unused receive address
 | |
|  *  registers for the first multicast addresses, and hashes the rest into the
 | |
|  *  multicast table.
 | |
|  **/
 | |
| s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw, u8 *mc_addr_list,
 | |
|                                       u32 mc_addr_count, ixgbe_mc_addr_itr next)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 vmdq;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set the new number of MC addresses that we are being requested to
 | |
| 	 * use.
 | |
| 	 */
 | |
| 	hw->addr_ctrl.num_mc_addrs = mc_addr_count;
 | |
| 	hw->addr_ctrl.mta_in_use = 0;
 | |
| 
 | |
| 	/* Clear the MTA */
 | |
| 	hw_dbg(hw, " Clearing MTA\n");
 | |
| 	for (i = 0; i < hw->mac.mcft_size; i++)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
 | |
| 
 | |
| 	/* Add the new addresses */
 | |
| 	for (i = 0; i < mc_addr_count; i++) {
 | |
| 		hw_dbg(hw, " Adding the multicast addresses:\n");
 | |
| 		ixgbe_set_mta(hw, next(hw, &mc_addr_list, &vmdq));
 | |
| 	}
 | |
| 
 | |
| 	/* Enable mta */
 | |
| 	if (hw->addr_ctrl.mta_in_use > 0)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
 | |
| 		                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
 | |
| 
 | |
| 	hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_enable_mc_generic - Enable multicast address in RAR
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Enables multicast address in RAR and the use of the multicast hash table.
 | |
|  **/
 | |
| s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
 | |
| 
 | |
| 	if (a->mc_addr_in_rar_count > 0)
 | |
| 		for (i = (rar_entries - a->mc_addr_in_rar_count);
 | |
| 		     i < rar_entries; i++)
 | |
| 			ixgbe_enable_rar(hw, i);
 | |
| 
 | |
| 	if (a->mta_in_use > 0)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
 | |
| 		                hw->mac.mc_filter_type);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_disable_mc_generic - Disable multicast address in RAR
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Disables multicast address in RAR and the use of the multicast hash table.
 | |
|  **/
 | |
| s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 rar_entries = hw->mac.num_rar_entries;
 | |
| 	struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
 | |
| 
 | |
| 	if (a->mc_addr_in_rar_count > 0)
 | |
| 		for (i = (rar_entries - a->mc_addr_in_rar_count);
 | |
| 		     i < rar_entries; i++)
 | |
| 			ixgbe_disable_rar(hw, i);
 | |
| 
 | |
| 	if (a->mta_in_use > 0)
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_enable_generic - Enable flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @packetbuf_num: packet buffer number (0-7)
 | |
|  *
 | |
|  *  Enable flow control according to the current settings.
 | |
|  **/
 | |
| s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 mflcn_reg, fccfg_reg;
 | |
| 	u32 reg;
 | |
| 	u32 rx_pba_size;
 | |
| 
 | |
| #ifdef CONFIG_DCB
 | |
| 	if (hw->fc.requested_mode == ixgbe_fc_pfc)
 | |
| 		goto out;
 | |
| 
 | |
| #endif /* CONFIG_DCB */
 | |
| 	/* Negotiate the fc mode to use */
 | |
| 	ret_val = ixgbe_fc_autoneg(hw);
 | |
| 	if (ret_val)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* Disable any previous flow control settings */
 | |
| 	mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
 | |
| 	mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
 | |
| 
 | |
| 	fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
 | |
| 	fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
 | |
| 
 | |
| 	/*
 | |
| 	 * The possible values of fc.current_mode are:
 | |
| 	 * 0: Flow control is completely disabled
 | |
| 	 * 1: Rx flow control is enabled (we can receive pause frames,
 | |
| 	 *    but not send pause frames).
 | |
| 	 * 2: Tx flow control is enabled (we can send pause frames but
 | |
| 	 *    we do not support receiving pause frames).
 | |
| 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 | |
| 	 * 4: Priority Flow Control is enabled.
 | |
| 	 * other: Invalid.
 | |
| 	 */
 | |
| 	switch (hw->fc.current_mode) {
 | |
| 	case ixgbe_fc_none:
 | |
| 		/*
 | |
| 		 * Flow control is disabled by software override or autoneg.
 | |
| 		 * The code below will actually disable it in the HW.
 | |
| 		 */
 | |
| 		break;
 | |
| 	case ixgbe_fc_rx_pause:
 | |
| 		/*
 | |
| 		 * Rx Flow control is enabled and Tx Flow control is
 | |
| 		 * disabled by software override. Since there really
 | |
| 		 * isn't a way to advertise that we are capable of RX
 | |
| 		 * Pause ONLY, we will advertise that we support both
 | |
| 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
 | |
| 		 * disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		mflcn_reg |= IXGBE_MFLCN_RFCE;
 | |
| 		break;
 | |
| 	case ixgbe_fc_tx_pause:
 | |
| 		/*
 | |
| 		 * Tx Flow control is enabled, and Rx Flow control is
 | |
| 		 * disabled by software override.
 | |
| 		 */
 | |
| 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
 | |
| 		break;
 | |
| 	case ixgbe_fc_full:
 | |
| 		/* Flow control (both Rx and Tx) is enabled by SW override. */
 | |
| 		mflcn_reg |= IXGBE_MFLCN_RFCE;
 | |
| 		fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
 | |
| 		break;
 | |
| #ifdef CONFIG_DCB
 | |
| 	case ixgbe_fc_pfc:
 | |
| 		goto out;
 | |
| 		break;
 | |
| #endif /* CONFIG_DCB */
 | |
| 	default:
 | |
| 		hw_dbg(hw, "Flow control param set incorrectly\n");
 | |
| 		ret_val = IXGBE_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* Set 802.3x based flow control settings. */
 | |
| 	mflcn_reg |= IXGBE_MFLCN_DPF;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
 | |
| 
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_MTQC);
 | |
| 	/* Thresholds are different for link flow control when in DCB mode */
 | |
| 	if (reg & IXGBE_MTQC_RT_ENA) {
 | |
| 		rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
 | |
| 
 | |
| 		/* Always disable XON for LFC when in DCB mode */
 | |
| 		reg = (rx_pba_size >> 5) & 0xFFE0;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), reg);
 | |
| 
 | |
| 		reg = (rx_pba_size >> 2) & 0xFFE0;
 | |
| 		if (hw->fc.current_mode & ixgbe_fc_tx_pause)
 | |
| 			reg |= IXGBE_FCRTH_FCEN;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), reg);
 | |
| 	} else {
 | |
| 		/*
 | |
| 		 * Set up and enable Rx high/low water mark thresholds,
 | |
| 		 * enable XON.
 | |
| 		 */
 | |
| 		if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
 | |
| 			if (hw->fc.send_xon) {
 | |
| 				IXGBE_WRITE_REG(hw,
 | |
| 				              IXGBE_FCRTL_82599(packetbuf_num),
 | |
| 			                      (hw->fc.low_water |
 | |
| 				              IXGBE_FCRTL_XONE));
 | |
| 			} else {
 | |
| 				IXGBE_WRITE_REG(hw,
 | |
| 				              IXGBE_FCRTL_82599(packetbuf_num),
 | |
| 				              hw->fc.low_water);
 | |
| 			}
 | |
| 
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num),
 | |
| 			               (hw->fc.high_water | IXGBE_FCRTH_FCEN));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Configure pause time (2 TCs per register) */
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
 | |
| 	if ((packetbuf_num & 1) == 0)
 | |
| 		reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
 | |
| 	else
 | |
| 		reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_fc_autoneg - Configure flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Compares our advertised flow control capabilities to those advertised by
 | |
|  *  our link partner, and determines the proper flow control mode to use.
 | |
|  **/
 | |
| s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	ixgbe_link_speed speed;
 | |
| 	u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
 | |
| 	u32 links2, anlp1_reg, autoc_reg, links;
 | |
| 	bool link_up;
 | |
| 
 | |
| 	/*
 | |
| 	 * AN should have completed when the cable was plugged in.
 | |
| 	 * Look for reasons to bail out.  Bail out if:
 | |
| 	 * - FC autoneg is disabled, or if
 | |
| 	 * - link is not up.
 | |
| 	 *
 | |
| 	 * Since we're being called from an LSC, link is already known to be up.
 | |
| 	 * So use link_up_wait_to_complete=false.
 | |
| 	 */
 | |
| 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
 | |
| 
 | |
| 	if (hw->fc.disable_fc_autoneg || (!link_up)) {
 | |
| 		hw->fc.fc_was_autonegged = false;
 | |
| 		hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On backplane, bail out if
 | |
| 	 * - backplane autoneg was not completed, or if
 | |
| 	 * - link partner is not AN enabled
 | |
| 	 */
 | |
| 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 | |
| 		links = IXGBE_READ_REG(hw, IXGBE_LINKS);
 | |
| 		links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
 | |
| 		if (((links & IXGBE_LINKS_KX_AN_COMP) == 0) ||
 | |
| 		    ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0)) {
 | |
| 			hw->fc.fc_was_autonegged = false;
 | |
| 			hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * On multispeed fiber at 1g, bail out if
 | |
| 	 * - link is up but AN did not complete, or if
 | |
| 	 * - link is up and AN completed but timed out
 | |
| 	 */
 | |
| 	if (hw->phy.multispeed_fiber && (speed == IXGBE_LINK_SPEED_1GB_FULL)) {
 | |
| 		linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
 | |
| 		if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
 | |
| 		    ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
 | |
| 			hw->fc.fc_was_autonegged = false;
 | |
| 			hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Read the AN advertisement and LP ability registers and resolve
 | |
| 	 * local flow control settings accordingly
 | |
| 	 */
 | |
| 	if ((speed == IXGBE_LINK_SPEED_1GB_FULL) &&
 | |
| 	    (hw->phy.media_type != ixgbe_media_type_backplane)) {
 | |
| 		pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 | |
| 		pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
 | |
| 		if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
 | |
| 		    (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE)) {
 | |
| 			/*
 | |
| 			 * Now we need to check if the user selected Rx ONLY
 | |
| 			 * of pause frames.  In this case, we had to advertise
 | |
| 			 * FULL flow control because we could not advertise RX
 | |
| 			 * ONLY. Hence, we must now check to see if we need to
 | |
| 			 * turn OFF the TRANSMISSION of PAUSE frames.
 | |
| 			 */
 | |
| 			if (hw->fc.requested_mode == ixgbe_fc_full) {
 | |
| 				hw->fc.current_mode = ixgbe_fc_full;
 | |
| 				hw_dbg(hw, "Flow Control = FULL.\n");
 | |
| 			} else {
 | |
| 				hw->fc.current_mode = ixgbe_fc_rx_pause;
 | |
| 				hw_dbg(hw, "Flow Control=RX PAUSE only\n");
 | |
| 			}
 | |
| 		} else if (!(pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
 | |
| 			   (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
 | |
| 			   (pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
 | |
| 			   (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
 | |
| 			hw->fc.current_mode = ixgbe_fc_tx_pause;
 | |
| 			hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
 | |
| 		} else if ((pcs_anadv_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
 | |
| 			   (pcs_anadv_reg & IXGBE_PCS1GANA_ASM_PAUSE) &&
 | |
| 			   !(pcs_lpab_reg & IXGBE_PCS1GANA_SYM_PAUSE) &&
 | |
| 			   (pcs_lpab_reg & IXGBE_PCS1GANA_ASM_PAUSE)) {
 | |
| 			hw->fc.current_mode = ixgbe_fc_rx_pause;
 | |
| 			hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
 | |
| 		} else {
 | |
| 			hw->fc.current_mode = ixgbe_fc_none;
 | |
| 			hw_dbg(hw, "Flow Control = NONE.\n");
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (hw->phy.media_type == ixgbe_media_type_backplane) {
 | |
| 		/*
 | |
| 		 * Read the 10g AN autoc and LP ability registers and resolve
 | |
| 		 * local flow control settings accordingly
 | |
| 		 */
 | |
| 		autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 		anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
 | |
| 
 | |
| 		if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
 | |
| 		    (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE)) {
 | |
| 			/*
 | |
| 			 * Now we need to check if the user selected Rx ONLY
 | |
| 			 * of pause frames.  In this case, we had to advertise
 | |
| 			 * FULL flow control because we could not advertise RX
 | |
| 			 * ONLY. Hence, we must now check to see if we need to
 | |
| 			 * turn OFF the TRANSMISSION of PAUSE frames.
 | |
| 			 */
 | |
| 			if (hw->fc.requested_mode == ixgbe_fc_full) {
 | |
| 				hw->fc.current_mode = ixgbe_fc_full;
 | |
| 				hw_dbg(hw, "Flow Control = FULL.\n");
 | |
| 			} else {
 | |
| 				hw->fc.current_mode = ixgbe_fc_rx_pause;
 | |
| 				hw_dbg(hw, "Flow Control=RX PAUSE only\n");
 | |
| 			}
 | |
| 		} else if (!(autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
 | |
| 			   (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
 | |
| 			   (anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
 | |
| 			   (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
 | |
| 			hw->fc.current_mode = ixgbe_fc_tx_pause;
 | |
| 			hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
 | |
| 		} else if ((autoc_reg & IXGBE_AUTOC_SYM_PAUSE) &&
 | |
| 			   (autoc_reg & IXGBE_AUTOC_ASM_PAUSE) &&
 | |
| 			   !(anlp1_reg & IXGBE_ANLP1_SYM_PAUSE) &&
 | |
| 			   (anlp1_reg & IXGBE_ANLP1_ASM_PAUSE)) {
 | |
| 			hw->fc.current_mode = ixgbe_fc_rx_pause;
 | |
| 			hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
 | |
| 		} else {
 | |
| 			hw->fc.current_mode = ixgbe_fc_none;
 | |
| 			hw_dbg(hw, "Flow Control = NONE.\n");
 | |
| 		}
 | |
| 	}
 | |
| 	/* Record that current_mode is the result of a successful autoneg */
 | |
| 	hw->fc.fc_was_autonegged = true;
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_setup_fc - Set up flow control
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Called at init time to set up flow control.
 | |
|  **/
 | |
| static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
 | |
| {
 | |
| 	s32 ret_val = 0;
 | |
| 	u32 reg;
 | |
| 
 | |
| #ifdef CONFIG_DCB
 | |
| 	if (hw->fc.requested_mode == ixgbe_fc_pfc) {
 | |
| 		hw->fc.current_mode = hw->fc.requested_mode;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| #endif
 | |
| 	/* Validate the packetbuf configuration */
 | |
| 	if (packetbuf_num < 0 || packetbuf_num > 7) {
 | |
| 		hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
 | |
| 		       "is 0-7\n", packetbuf_num);
 | |
| 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the water mark configuration.  Zero water marks are invalid
 | |
| 	 * because it causes the controller to just blast out fc packets.
 | |
| 	 */
 | |
| 	if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
 | |
| 		hw_dbg(hw, "Invalid water mark configuration\n");
 | |
| 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Validate the requested mode.  Strict IEEE mode does not allow
 | |
| 	 * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
 | |
| 	 */
 | |
| 	if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
 | |
| 		hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
 | |
| 		       "IEEE mode\n");
 | |
| 		ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * 10gig parts do not have a word in the EEPROM to determine the
 | |
| 	 * default flow control setting, so we explicitly set it to full.
 | |
| 	 */
 | |
| 	if (hw->fc.requested_mode == ixgbe_fc_default)
 | |
| 		hw->fc.requested_mode = ixgbe_fc_full;
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the 1G flow control advertisement registers so the HW will be
 | |
| 	 * able to do fc autoneg once the cable is plugged in.  If we end up
 | |
| 	 * using 10g instead, this is harmless.
 | |
| 	 */
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
 | |
| 
 | |
| 	/*
 | |
| 	 * The possible values of fc.requested_mode are:
 | |
| 	 * 0: Flow control is completely disabled
 | |
| 	 * 1: Rx flow control is enabled (we can receive pause frames,
 | |
| 	 *    but not send pause frames).
 | |
| 	 * 2: Tx flow control is enabled (we can send pause frames but
 | |
| 	 *    we do not support receiving pause frames).
 | |
| 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 | |
| #ifdef CONFIG_DCB
 | |
| 	 * 4: Priority Flow Control is enabled.
 | |
| #endif
 | |
| 	 * other: Invalid.
 | |
| 	 */
 | |
| 	switch (hw->fc.requested_mode) {
 | |
| 	case ixgbe_fc_none:
 | |
| 		/* Flow control completely disabled by software override. */
 | |
| 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_rx_pause:
 | |
| 		/*
 | |
| 		 * Rx Flow control is enabled and Tx Flow control is
 | |
| 		 * disabled by software override. Since there really
 | |
| 		 * isn't a way to advertise that we are capable of RX
 | |
| 		 * Pause ONLY, we will advertise that we support both
 | |
| 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
 | |
| 		 * disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_tx_pause:
 | |
| 		/*
 | |
| 		 * Tx Flow control is enabled, and Rx Flow control is
 | |
| 		 * disabled by software override.
 | |
| 		 */
 | |
| 		reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_full:
 | |
| 		/* Flow control (both Rx and Tx) is enabled by SW override. */
 | |
| 		reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
 | |
| 		break;
 | |
| #ifdef CONFIG_DCB
 | |
| 	case ixgbe_fc_pfc:
 | |
| 		goto out;
 | |
| 		break;
 | |
| #endif /* CONFIG_DCB */
 | |
| 	default:
 | |
| 		hw_dbg(hw, "Flow control param set incorrectly\n");
 | |
| 		ret_val = IXGBE_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
 | |
| 
 | |
| 	/* Disable AN timeout */
 | |
| 	if (hw->fc.strict_ieee)
 | |
| 		reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
 | |
| 
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
 | |
| 	hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
 | |
| 
 | |
| 	/*
 | |
| 	 * Set up the 10G flow control advertisement registers so the HW
 | |
| 	 * can do fc autoneg once the cable is plugged in.  If we end up
 | |
| 	 * using 1g instead, this is harmless.
 | |
| 	 */
 | |
| 	reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 
 | |
| 	/*
 | |
| 	 * The possible values of fc.requested_mode are:
 | |
| 	 * 0: Flow control is completely disabled
 | |
| 	 * 1: Rx flow control is enabled (we can receive pause frames,
 | |
| 	 *    but not send pause frames).
 | |
| 	 * 2: Tx flow control is enabled (we can send pause frames but
 | |
| 	 *    we do not support receiving pause frames).
 | |
| 	 * 3: Both Rx and Tx flow control (symmetric) are enabled.
 | |
| 	 * other: Invalid.
 | |
| 	 */
 | |
| 	switch (hw->fc.requested_mode) {
 | |
| 	case ixgbe_fc_none:
 | |
| 		/* Flow control completely disabled by software override. */
 | |
| 		reg &= ~(IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_rx_pause:
 | |
| 		/*
 | |
| 		 * Rx Flow control is enabled and Tx Flow control is
 | |
| 		 * disabled by software override. Since there really
 | |
| 		 * isn't a way to advertise that we are capable of RX
 | |
| 		 * Pause ONLY, we will advertise that we support both
 | |
| 		 * symmetric and asymmetric Rx PAUSE.  Later, we will
 | |
| 		 * disable the adapter's ability to send PAUSE frames.
 | |
| 		 */
 | |
| 		reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_tx_pause:
 | |
| 		/*
 | |
| 		 * Tx Flow control is enabled, and Rx Flow control is
 | |
| 		 * disabled by software override.
 | |
| 		 */
 | |
| 		reg |= (IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		reg &= ~(IXGBE_AUTOC_SYM_PAUSE);
 | |
| 		break;
 | |
| 	case ixgbe_fc_full:
 | |
| 		/* Flow control (both Rx and Tx) is enabled by SW override. */
 | |
| 		reg |= (IXGBE_AUTOC_SYM_PAUSE | IXGBE_AUTOC_ASM_PAUSE);
 | |
| 		break;
 | |
| #ifdef CONFIG_DCB
 | |
| 	case ixgbe_fc_pfc:
 | |
| 		goto out;
 | |
| 		break;
 | |
| #endif /* CONFIG_DCB */
 | |
| 	default:
 | |
| 		hw_dbg(hw, "Flow control param set incorrectly\n");
 | |
| 		ret_val = IXGBE_ERR_CONFIG;
 | |
| 		goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	/*
 | |
| 	 * AUTOC restart handles negotiation of 1G and 10G. There is
 | |
| 	 * no need to set the PCS1GCTL register.
 | |
| 	 */
 | |
| 	reg |= IXGBE_AUTOC_AN_RESTART;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg);
 | |
| 	hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
 | |
| 
 | |
| out:
 | |
| 	return ret_val;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_disable_pcie_master - Disable PCI-express master access
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *
 | |
|  *  Disables PCI-Express master access and verifies there are no pending
 | |
|  *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
 | |
|  *  bit hasn't caused the master requests to be disabled, else 0
 | |
|  *  is returned signifying master requests disabled.
 | |
|  **/
 | |
| s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
 | |
| {
 | |
| 	u32 i;
 | |
| 	u32 reg_val;
 | |
| 	u32 number_of_queues;
 | |
| 	s32 status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
 | |
| 
 | |
| 	/* Disable the receive unit by stopping each queue */
 | |
| 	number_of_queues = hw->mac.max_rx_queues;
 | |
| 	for (i = 0; i < number_of_queues; i++) {
 | |
| 		reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
 | |
| 		if (reg_val & IXGBE_RXDCTL_ENABLE) {
 | |
| 			reg_val &= ~IXGBE_RXDCTL_ENABLE;
 | |
| 			IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
 | |
| 	reg_val |= IXGBE_CTRL_GIO_DIS;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
 | |
| 
 | |
| 	for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
 | |
| 		if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO)) {
 | |
| 			status = 0;
 | |
| 			break;
 | |
| 		}
 | |
| 		udelay(100);
 | |
| 	}
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mask: Mask to specify which semaphore to acquire
 | |
|  *
 | |
|  *  Acquires the SWFW semaphore thought the GSSR register for the specified
 | |
|  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 | |
|  **/
 | |
| s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 gssr;
 | |
| 	u32 swmask = mask;
 | |
| 	u32 fwmask = mask << 5;
 | |
| 	s32 timeout = 200;
 | |
| 
 | |
| 	while (timeout) {
 | |
| 		if (ixgbe_get_eeprom_semaphore(hw))
 | |
| 			return IXGBE_ERR_SWFW_SYNC;
 | |
| 
 | |
| 		gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
 | |
| 		if (!(gssr & (fwmask | swmask)))
 | |
| 			break;
 | |
| 
 | |
| 		/*
 | |
| 		 * Firmware currently using resource (fwmask) or other software
 | |
| 		 * thread currently using resource (swmask)
 | |
| 		 */
 | |
| 		ixgbe_release_eeprom_semaphore(hw);
 | |
| 		msleep(5);
 | |
| 		timeout--;
 | |
| 	}
 | |
| 
 | |
| 	if (!timeout) {
 | |
| 		hw_dbg(hw, "Driver can't access resource, GSSR timeout.\n");
 | |
| 		return IXGBE_ERR_SWFW_SYNC;
 | |
| 	}
 | |
| 
 | |
| 	gssr |= swmask;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
 | |
| 
 | |
| 	ixgbe_release_eeprom_semaphore(hw);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_release_swfw_sync - Release SWFW semaphore
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @mask: Mask to specify which semaphore to release
 | |
|  *
 | |
|  *  Releases the SWFW semaphore thought the GSSR register for the specified
 | |
|  *  function (CSR, PHY0, PHY1, EEPROM, Flash)
 | |
|  **/
 | |
| void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
 | |
| {
 | |
| 	u32 gssr;
 | |
| 	u32 swmask = mask;
 | |
| 
 | |
| 	ixgbe_get_eeprom_semaphore(hw);
 | |
| 
 | |
| 	gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
 | |
| 	gssr &= ~swmask;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
 | |
| 
 | |
| 	ixgbe_release_eeprom_semaphore(hw);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @regval: register value to write to RXCTRL
 | |
|  *
 | |
|  *  Enables the Rx DMA unit
 | |
|  **/
 | |
| s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
 | |
| {
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_blink_led_start_generic - Blink LED based on index.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to blink
 | |
|  **/
 | |
| s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	ixgbe_link_speed speed = 0;
 | |
| 	bool link_up = 0;
 | |
| 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	/*
 | |
| 	 * Link must be up to auto-blink the LEDs;
 | |
| 	 * Force it if link is down.
 | |
| 	 */
 | |
| 	hw->mac.ops.check_link(hw, &speed, &link_up, false);
 | |
| 
 | |
| 	if (!link_up) {
 | |
| 		autoc_reg |= IXGBE_AUTOC_AN_RESTART;
 | |
| 		autoc_reg |= IXGBE_AUTOC_FLU;
 | |
| 		IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
 | |
| 		msleep(10);
 | |
| 	}
 | |
| 
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg |= IXGBE_LED_BLINK(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
 | |
|  *  @hw: pointer to hardware structure
 | |
|  *  @index: led number to stop blinking
 | |
|  **/
 | |
| s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
 | |
| {
 | |
| 	u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
 | |
| 	u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 | |
| 
 | |
| 	autoc_reg &= ~IXGBE_AUTOC_FLU;
 | |
| 	autoc_reg |= IXGBE_AUTOC_AN_RESTART;
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
 | |
| 
 | |
| 	led_reg &= ~IXGBE_LED_MODE_MASK(index);
 | |
| 	led_reg &= ~IXGBE_LED_BLINK(index);
 | |
| 	led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
 | |
| 	IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 | |
| 	IXGBE_WRITE_FLUSH(hw);
 | |
| 
 | |
| 	return 0;
 | |
| }
 |