1063 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1063 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or modify it
 | |
|  * under the terms of the GNU General Public License as published by the Free
 | |
|  * Software Foundation; either version 2 of the License, or (at your option)
 | |
|  * any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful, but WITHOUT
 | |
|  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
 | |
|  * more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License along with
 | |
|  * this program; if not, write to the Free Software Foundation, Inc., 59
 | |
|  * Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The full GNU General Public License is included in this distribution in the
 | |
|  * file called COPYING.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * This code implements the DMA subsystem. It provides a HW-neutral interface
 | |
|  * for other kernel code to use asynchronous memory copy capabilities,
 | |
|  * if present, and allows different HW DMA drivers to register as providing
 | |
|  * this capability.
 | |
|  *
 | |
|  * Due to the fact we are accelerating what is already a relatively fast
 | |
|  * operation, the code goes to great lengths to avoid additional overhead,
 | |
|  * such as locking.
 | |
|  *
 | |
|  * LOCKING:
 | |
|  *
 | |
|  * The subsystem keeps a global list of dma_device structs it is protected by a
 | |
|  * mutex, dma_list_mutex.
 | |
|  *
 | |
|  * A subsystem can get access to a channel by calling dmaengine_get() followed
 | |
|  * by dma_find_channel(), or if it has need for an exclusive channel it can call
 | |
|  * dma_request_channel().  Once a channel is allocated a reference is taken
 | |
|  * against its corresponding driver to disable removal.
 | |
|  *
 | |
|  * Each device has a channels list, which runs unlocked but is never modified
 | |
|  * once the device is registered, it's just setup by the driver.
 | |
|  *
 | |
|  * See Documentation/dmaengine.txt for more details
 | |
|  */
 | |
| 
 | |
| #include <linux/init.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/device.h>
 | |
| #include <linux/dmaengine.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/rcupdate.h>
 | |
| #include <linux/mutex.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/rculist.h>
 | |
| #include <linux/idr.h>
 | |
| 
 | |
| static DEFINE_MUTEX(dma_list_mutex);
 | |
| static LIST_HEAD(dma_device_list);
 | |
| static long dmaengine_ref_count;
 | |
| static struct idr dma_idr;
 | |
| 
 | |
| /* --- sysfs implementation --- */
 | |
| 
 | |
| /**
 | |
|  * dev_to_dma_chan - convert a device pointer to the its sysfs container object
 | |
|  * @dev - device node
 | |
|  *
 | |
|  * Must be called under dma_list_mutex
 | |
|  */
 | |
| static struct dma_chan *dev_to_dma_chan(struct device *dev)
 | |
| {
 | |
| 	struct dma_chan_dev *chan_dev;
 | |
| 
 | |
| 	chan_dev = container_of(dev, typeof(*chan_dev), device);
 | |
| 	return chan_dev->chan;
 | |
| }
 | |
| 
 | |
| static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 	unsigned long count = 0;
 | |
| 	int i;
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	chan = dev_to_dma_chan(dev);
 | |
| 	if (chan) {
 | |
| 		for_each_possible_cpu(i)
 | |
| 			count += per_cpu_ptr(chan->local, i)->memcpy_count;
 | |
| 		err = sprintf(buf, "%lu\n", count);
 | |
| 	} else
 | |
| 		err = -ENODEV;
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
 | |
| 				      char *buf)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 	unsigned long count = 0;
 | |
| 	int i;
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	chan = dev_to_dma_chan(dev);
 | |
| 	if (chan) {
 | |
| 		for_each_possible_cpu(i)
 | |
| 			count += per_cpu_ptr(chan->local, i)->bytes_transferred;
 | |
| 		err = sprintf(buf, "%lu\n", count);
 | |
| 	} else
 | |
| 		err = -ENODEV;
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	chan = dev_to_dma_chan(dev);
 | |
| 	if (chan)
 | |
| 		err = sprintf(buf, "%d\n", chan->client_count);
 | |
| 	else
 | |
| 		err = -ENODEV;
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| static struct device_attribute dma_attrs[] = {
 | |
| 	__ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
 | |
| 	__ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
 | |
| 	__ATTR(in_use, S_IRUGO, show_in_use, NULL),
 | |
| 	__ATTR_NULL
 | |
| };
 | |
| 
 | |
| static void chan_dev_release(struct device *dev)
 | |
| {
 | |
| 	struct dma_chan_dev *chan_dev;
 | |
| 
 | |
| 	chan_dev = container_of(dev, typeof(*chan_dev), device);
 | |
| 	if (atomic_dec_and_test(chan_dev->idr_ref)) {
 | |
| 		mutex_lock(&dma_list_mutex);
 | |
| 		idr_remove(&dma_idr, chan_dev->dev_id);
 | |
| 		mutex_unlock(&dma_list_mutex);
 | |
| 		kfree(chan_dev->idr_ref);
 | |
| 	}
 | |
| 	kfree(chan_dev);
 | |
| }
 | |
| 
 | |
| static struct class dma_devclass = {
 | |
| 	.name		= "dma",
 | |
| 	.dev_attrs	= dma_attrs,
 | |
| 	.dev_release	= chan_dev_release,
 | |
| };
 | |
| 
 | |
| /* --- client and device registration --- */
 | |
| 
 | |
| #define dma_device_satisfies_mask(device, mask) \
 | |
| 	__dma_device_satisfies_mask((device), &(mask))
 | |
| static int
 | |
| __dma_device_satisfies_mask(struct dma_device *device, dma_cap_mask_t *want)
 | |
| {
 | |
| 	dma_cap_mask_t has;
 | |
| 
 | |
| 	bitmap_and(has.bits, want->bits, device->cap_mask.bits,
 | |
| 		DMA_TX_TYPE_END);
 | |
| 	return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
 | |
| }
 | |
| 
 | |
| static struct module *dma_chan_to_owner(struct dma_chan *chan)
 | |
| {
 | |
| 	return chan->device->dev->driver->owner;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * balance_ref_count - catch up the channel reference count
 | |
|  * @chan - channel to balance ->client_count versus dmaengine_ref_count
 | |
|  *
 | |
|  * balance_ref_count must be called under dma_list_mutex
 | |
|  */
 | |
| static void balance_ref_count(struct dma_chan *chan)
 | |
| {
 | |
| 	struct module *owner = dma_chan_to_owner(chan);
 | |
| 
 | |
| 	while (chan->client_count < dmaengine_ref_count) {
 | |
| 		__module_get(owner);
 | |
| 		chan->client_count++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_chan_get - try to grab a dma channel's parent driver module
 | |
|  * @chan - channel to grab
 | |
|  *
 | |
|  * Must be called under dma_list_mutex
 | |
|  */
 | |
| static int dma_chan_get(struct dma_chan *chan)
 | |
| {
 | |
| 	int err = -ENODEV;
 | |
| 	struct module *owner = dma_chan_to_owner(chan);
 | |
| 
 | |
| 	if (chan->client_count) {
 | |
| 		__module_get(owner);
 | |
| 		err = 0;
 | |
| 	} else if (try_module_get(owner))
 | |
| 		err = 0;
 | |
| 
 | |
| 	if (err == 0)
 | |
| 		chan->client_count++;
 | |
| 
 | |
| 	/* allocate upon first client reference */
 | |
| 	if (chan->client_count == 1 && err == 0) {
 | |
| 		int desc_cnt = chan->device->device_alloc_chan_resources(chan);
 | |
| 
 | |
| 		if (desc_cnt < 0) {
 | |
| 			err = desc_cnt;
 | |
| 			chan->client_count = 0;
 | |
| 			module_put(owner);
 | |
| 		} else if (!dma_has_cap(DMA_PRIVATE, chan->device->cap_mask))
 | |
| 			balance_ref_count(chan);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_chan_put - drop a reference to a dma channel's parent driver module
 | |
|  * @chan - channel to release
 | |
|  *
 | |
|  * Must be called under dma_list_mutex
 | |
|  */
 | |
| static void dma_chan_put(struct dma_chan *chan)
 | |
| {
 | |
| 	if (!chan->client_count)
 | |
| 		return; /* this channel failed alloc_chan_resources */
 | |
| 	chan->client_count--;
 | |
| 	module_put(dma_chan_to_owner(chan));
 | |
| 	if (chan->client_count == 0)
 | |
| 		chan->device->device_free_chan_resources(chan);
 | |
| }
 | |
| 
 | |
| enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
 | |
| {
 | |
| 	enum dma_status status;
 | |
| 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 | |
| 
 | |
| 	dma_async_issue_pending(chan);
 | |
| 	do {
 | |
| 		status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
 | |
| 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 | |
| 			printk(KERN_ERR "dma_sync_wait_timeout!\n");
 | |
| 			return DMA_ERROR;
 | |
| 		}
 | |
| 	} while (status == DMA_IN_PROGRESS);
 | |
| 
 | |
| 	return status;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_sync_wait);
 | |
| 
 | |
| /**
 | |
|  * dma_cap_mask_all - enable iteration over all operation types
 | |
|  */
 | |
| static dma_cap_mask_t dma_cap_mask_all;
 | |
| 
 | |
| /**
 | |
|  * dma_chan_tbl_ent - tracks channel allocations per core/operation
 | |
|  * @chan - associated channel for this entry
 | |
|  */
 | |
| struct dma_chan_tbl_ent {
 | |
| 	struct dma_chan *chan;
 | |
| };
 | |
| 
 | |
| /**
 | |
|  * channel_table - percpu lookup table for memory-to-memory offload providers
 | |
|  */
 | |
| static struct dma_chan_tbl_ent *channel_table[DMA_TX_TYPE_END];
 | |
| 
 | |
| static int __init dma_channel_table_init(void)
 | |
| {
 | |
| 	enum dma_transaction_type cap;
 | |
| 	int err = 0;
 | |
| 
 | |
| 	bitmap_fill(dma_cap_mask_all.bits, DMA_TX_TYPE_END);
 | |
| 
 | |
| 	/* 'interrupt', 'private', and 'slave' are channel capabilities,
 | |
| 	 * but are not associated with an operation so they do not need
 | |
| 	 * an entry in the channel_table
 | |
| 	 */
 | |
| 	clear_bit(DMA_INTERRUPT, dma_cap_mask_all.bits);
 | |
| 	clear_bit(DMA_PRIVATE, dma_cap_mask_all.bits);
 | |
| 	clear_bit(DMA_SLAVE, dma_cap_mask_all.bits);
 | |
| 
 | |
| 	for_each_dma_cap_mask(cap, dma_cap_mask_all) {
 | |
| 		channel_table[cap] = alloc_percpu(struct dma_chan_tbl_ent);
 | |
| 		if (!channel_table[cap]) {
 | |
| 			err = -ENOMEM;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (err) {
 | |
| 		pr_err("dmaengine: initialization failure\n");
 | |
| 		for_each_dma_cap_mask(cap, dma_cap_mask_all)
 | |
| 			if (channel_table[cap])
 | |
| 				free_percpu(channel_table[cap]);
 | |
| 	}
 | |
| 
 | |
| 	return err;
 | |
| }
 | |
| arch_initcall(dma_channel_table_init);
 | |
| 
 | |
| /**
 | |
|  * dma_find_channel - find a channel to carry out the operation
 | |
|  * @tx_type: transaction type
 | |
|  */
 | |
| struct dma_chan *dma_find_channel(enum dma_transaction_type tx_type)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 	int cpu;
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	chan = per_cpu_ptr(channel_table[tx_type], cpu)->chan;
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return chan;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_find_channel);
 | |
| 
 | |
| /**
 | |
|  * dma_issue_pending_all - flush all pending operations across all channels
 | |
|  */
 | |
| void dma_issue_pending_all(void)
 | |
| {
 | |
| 	struct dma_device *device;
 | |
| 	struct dma_chan *chan;
 | |
| 
 | |
| 	rcu_read_lock();
 | |
| 	list_for_each_entry_rcu(device, &dma_device_list, global_node) {
 | |
| 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 			continue;
 | |
| 		list_for_each_entry(chan, &device->channels, device_node)
 | |
| 			if (chan->client_count)
 | |
| 				device->device_issue_pending(chan);
 | |
| 	}
 | |
| 	rcu_read_unlock();
 | |
| }
 | |
| EXPORT_SYMBOL(dma_issue_pending_all);
 | |
| 
 | |
| /**
 | |
|  * nth_chan - returns the nth channel of the given capability
 | |
|  * @cap: capability to match
 | |
|  * @n: nth channel desired
 | |
|  *
 | |
|  * Defaults to returning the channel with the desired capability and the
 | |
|  * lowest reference count when 'n' cannot be satisfied.  Must be called
 | |
|  * under dma_list_mutex.
 | |
|  */
 | |
| static struct dma_chan *nth_chan(enum dma_transaction_type cap, int n)
 | |
| {
 | |
| 	struct dma_device *device;
 | |
| 	struct dma_chan *chan;
 | |
| 	struct dma_chan *ret = NULL;
 | |
| 	struct dma_chan *min = NULL;
 | |
| 
 | |
| 	list_for_each_entry(device, &dma_device_list, global_node) {
 | |
| 		if (!dma_has_cap(cap, device->cap_mask) ||
 | |
| 		    dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 			continue;
 | |
| 		list_for_each_entry(chan, &device->channels, device_node) {
 | |
| 			if (!chan->client_count)
 | |
| 				continue;
 | |
| 			if (!min)
 | |
| 				min = chan;
 | |
| 			else if (chan->table_count < min->table_count)
 | |
| 				min = chan;
 | |
| 
 | |
| 			if (n-- == 0) {
 | |
| 				ret = chan;
 | |
| 				break; /* done */
 | |
| 			}
 | |
| 		}
 | |
| 		if (ret)
 | |
| 			break; /* done */
 | |
| 	}
 | |
| 
 | |
| 	if (!ret)
 | |
| 		ret = min;
 | |
| 
 | |
| 	if (ret)
 | |
| 		ret->table_count++;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_channel_rebalance - redistribute the available channels
 | |
|  *
 | |
|  * Optimize for cpu isolation (each cpu gets a dedicated channel for an
 | |
|  * operation type) in the SMP case,  and operation isolation (avoid
 | |
|  * multi-tasking channels) in the non-SMP case.  Must be called under
 | |
|  * dma_list_mutex.
 | |
|  */
 | |
| static void dma_channel_rebalance(void)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 	struct dma_device *device;
 | |
| 	int cpu;
 | |
| 	int cap;
 | |
| 	int n;
 | |
| 
 | |
| 	/* undo the last distribution */
 | |
| 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 | |
| 		for_each_possible_cpu(cpu)
 | |
| 			per_cpu_ptr(channel_table[cap], cpu)->chan = NULL;
 | |
| 
 | |
| 	list_for_each_entry(device, &dma_device_list, global_node) {
 | |
| 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 			continue;
 | |
| 		list_for_each_entry(chan, &device->channels, device_node)
 | |
| 			chan->table_count = 0;
 | |
| 	}
 | |
| 
 | |
| 	/* don't populate the channel_table if no clients are available */
 | |
| 	if (!dmaengine_ref_count)
 | |
| 		return;
 | |
| 
 | |
| 	/* redistribute available channels */
 | |
| 	n = 0;
 | |
| 	for_each_dma_cap_mask(cap, dma_cap_mask_all)
 | |
| 		for_each_online_cpu(cpu) {
 | |
| 			if (num_possible_cpus() > 1)
 | |
| 				chan = nth_chan(cap, n++);
 | |
| 			else
 | |
| 				chan = nth_chan(cap, -1);
 | |
| 
 | |
| 			per_cpu_ptr(channel_table[cap], cpu)->chan = chan;
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static struct dma_chan *private_candidate(dma_cap_mask_t *mask, struct dma_device *dev,
 | |
| 					  dma_filter_fn fn, void *fn_param)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 
 | |
| 	if (!__dma_device_satisfies_mask(dev, mask)) {
 | |
| 		pr_debug("%s: wrong capabilities\n", __func__);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	/* devices with multiple channels need special handling as we need to
 | |
| 	 * ensure that all channels are either private or public.
 | |
| 	 */
 | |
| 	if (dev->chancnt > 1 && !dma_has_cap(DMA_PRIVATE, dev->cap_mask))
 | |
| 		list_for_each_entry(chan, &dev->channels, device_node) {
 | |
| 			/* some channels are already publicly allocated */
 | |
| 			if (chan->client_count)
 | |
| 				return NULL;
 | |
| 		}
 | |
| 
 | |
| 	list_for_each_entry(chan, &dev->channels, device_node) {
 | |
| 		if (chan->client_count) {
 | |
| 			pr_debug("%s: %s busy\n",
 | |
| 				 __func__, dma_chan_name(chan));
 | |
| 			continue;
 | |
| 		}
 | |
| 		if (fn && !fn(chan, fn_param)) {
 | |
| 			pr_debug("%s: %s filter said false\n",
 | |
| 				 __func__, dma_chan_name(chan));
 | |
| 			continue;
 | |
| 		}
 | |
| 		return chan;
 | |
| 	}
 | |
| 
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_request_channel - try to allocate an exclusive channel
 | |
|  * @mask: capabilities that the channel must satisfy
 | |
|  * @fn: optional callback to disposition available channels
 | |
|  * @fn_param: opaque parameter to pass to dma_filter_fn
 | |
|  */
 | |
| struct dma_chan *__dma_request_channel(dma_cap_mask_t *mask, dma_filter_fn fn, void *fn_param)
 | |
| {
 | |
| 	struct dma_device *device, *_d;
 | |
| 	struct dma_chan *chan = NULL;
 | |
| 	int err;
 | |
| 
 | |
| 	/* Find a channel */
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 | |
| 		chan = private_candidate(mask, device, fn, fn_param);
 | |
| 		if (chan) {
 | |
| 			/* Found a suitable channel, try to grab, prep, and
 | |
| 			 * return it.  We first set DMA_PRIVATE to disable
 | |
| 			 * balance_ref_count as this channel will not be
 | |
| 			 * published in the general-purpose allocator
 | |
| 			 */
 | |
| 			dma_cap_set(DMA_PRIVATE, device->cap_mask);
 | |
| 			device->privatecnt++;
 | |
| 			err = dma_chan_get(chan);
 | |
| 
 | |
| 			if (err == -ENODEV) {
 | |
| 				pr_debug("%s: %s module removed\n", __func__,
 | |
| 					 dma_chan_name(chan));
 | |
| 				list_del_rcu(&device->global_node);
 | |
| 			} else if (err)
 | |
| 				pr_err("dmaengine: failed to get %s: (%d)\n",
 | |
| 				       dma_chan_name(chan), err);
 | |
| 			else
 | |
| 				break;
 | |
| 			if (--device->privatecnt == 0)
 | |
| 				dma_cap_clear(DMA_PRIVATE, device->cap_mask);
 | |
| 			chan->private = NULL;
 | |
| 			chan = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 
 | |
| 	pr_debug("%s: %s (%s)\n", __func__, chan ? "success" : "fail",
 | |
| 		 chan ? dma_chan_name(chan) : NULL);
 | |
| 
 | |
| 	return chan;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(__dma_request_channel);
 | |
| 
 | |
| void dma_release_channel(struct dma_chan *chan)
 | |
| {
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	WARN_ONCE(chan->client_count != 1,
 | |
| 		  "chan reference count %d != 1\n", chan->client_count);
 | |
| 	dma_chan_put(chan);
 | |
| 	/* drop PRIVATE cap enabled by __dma_request_channel() */
 | |
| 	if (--chan->device->privatecnt == 0)
 | |
| 		dma_cap_clear(DMA_PRIVATE, chan->device->cap_mask);
 | |
| 	chan->private = NULL;
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_release_channel);
 | |
| 
 | |
| /**
 | |
|  * dmaengine_get - register interest in dma_channels
 | |
|  */
 | |
| void dmaengine_get(void)
 | |
| {
 | |
| 	struct dma_device *device, *_d;
 | |
| 	struct dma_chan *chan;
 | |
| 	int err;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	dmaengine_ref_count++;
 | |
| 
 | |
| 	/* try to grab channels */
 | |
| 	list_for_each_entry_safe(device, _d, &dma_device_list, global_node) {
 | |
| 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 			continue;
 | |
| 		list_for_each_entry(chan, &device->channels, device_node) {
 | |
| 			err = dma_chan_get(chan);
 | |
| 			if (err == -ENODEV) {
 | |
| 				/* module removed before we could use it */
 | |
| 				list_del_rcu(&device->global_node);
 | |
| 				break;
 | |
| 			} else if (err)
 | |
| 				pr_err("dmaengine: failed to get %s: (%d)\n",
 | |
| 				       dma_chan_name(chan), err);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* if this is the first reference and there were channels
 | |
| 	 * waiting we need to rebalance to get those channels
 | |
| 	 * incorporated into the channel table
 | |
| 	 */
 | |
| 	if (dmaengine_ref_count == 1)
 | |
| 		dma_channel_rebalance();
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(dmaengine_get);
 | |
| 
 | |
| /**
 | |
|  * dmaengine_put - let dma drivers be removed when ref_count == 0
 | |
|  */
 | |
| void dmaengine_put(void)
 | |
| {
 | |
| 	struct dma_device *device;
 | |
| 	struct dma_chan *chan;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	dmaengine_ref_count--;
 | |
| 	BUG_ON(dmaengine_ref_count < 0);
 | |
| 	/* drop channel references */
 | |
| 	list_for_each_entry(device, &dma_device_list, global_node) {
 | |
| 		if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 			continue;
 | |
| 		list_for_each_entry(chan, &device->channels, device_node)
 | |
| 			dma_chan_put(chan);
 | |
| 	}
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| }
 | |
| EXPORT_SYMBOL(dmaengine_put);
 | |
| 
 | |
| static bool device_has_all_tx_types(struct dma_device *device)
 | |
| {
 | |
| 	/* A device that satisfies this test has channels that will never cause
 | |
| 	 * an async_tx channel switch event as all possible operation types can
 | |
| 	 * be handled.
 | |
| 	 */
 | |
| 	#ifdef CONFIG_ASYNC_TX_DMA
 | |
| 	if (!dma_has_cap(DMA_INTERRUPT, device->cap_mask))
 | |
| 		return false;
 | |
| 	#endif
 | |
| 
 | |
| 	#if defined(CONFIG_ASYNC_MEMCPY) || defined(CONFIG_ASYNC_MEMCPY_MODULE)
 | |
| 	if (!dma_has_cap(DMA_MEMCPY, device->cap_mask))
 | |
| 		return false;
 | |
| 	#endif
 | |
| 
 | |
| 	#if defined(CONFIG_ASYNC_MEMSET) || defined(CONFIG_ASYNC_MEMSET_MODULE)
 | |
| 	if (!dma_has_cap(DMA_MEMSET, device->cap_mask))
 | |
| 		return false;
 | |
| 	#endif
 | |
| 
 | |
| 	#if defined(CONFIG_ASYNC_XOR) || defined(CONFIG_ASYNC_XOR_MODULE)
 | |
| 	if (!dma_has_cap(DMA_XOR, device->cap_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	#ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
 | |
| 	if (!dma_has_cap(DMA_XOR_VAL, device->cap_mask))
 | |
| 		return false;
 | |
| 	#endif
 | |
| 	#endif
 | |
| 
 | |
| 	#if defined(CONFIG_ASYNC_PQ) || defined(CONFIG_ASYNC_PQ_MODULE)
 | |
| 	if (!dma_has_cap(DMA_PQ, device->cap_mask))
 | |
| 		return false;
 | |
| 
 | |
| 	#ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
 | |
| 	if (!dma_has_cap(DMA_PQ_VAL, device->cap_mask))
 | |
| 		return false;
 | |
| 	#endif
 | |
| 	#endif
 | |
| 
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static int get_dma_id(struct dma_device *device)
 | |
| {
 | |
| 	int rc;
 | |
| 
 | |
|  idr_retry:
 | |
| 	if (!idr_pre_get(&dma_idr, GFP_KERNEL))
 | |
| 		return -ENOMEM;
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	rc = idr_get_new(&dma_idr, NULL, &device->dev_id);
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 	if (rc == -EAGAIN)
 | |
| 		goto idr_retry;
 | |
| 	else if (rc != 0)
 | |
| 		return rc;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * dma_async_device_register - registers DMA devices found
 | |
|  * @device: &dma_device
 | |
|  */
 | |
| int dma_async_device_register(struct dma_device *device)
 | |
| {
 | |
| 	int chancnt = 0, rc;
 | |
| 	struct dma_chan* chan;
 | |
| 	atomic_t *idr_ref;
 | |
| 
 | |
| 	if (!device)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	/* validate device routines */
 | |
| 	BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_memcpy);
 | |
| 	BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_xor);
 | |
| 	BUG_ON(dma_has_cap(DMA_XOR_VAL, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_xor_val);
 | |
| 	BUG_ON(dma_has_cap(DMA_PQ, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_pq);
 | |
| 	BUG_ON(dma_has_cap(DMA_PQ_VAL, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_pq_val);
 | |
| 	BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_memset);
 | |
| 	BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
 | |
| 		!device->device_prep_dma_interrupt);
 | |
| 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
 | |
| 		!device->device_prep_slave_sg);
 | |
| 	BUG_ON(dma_has_cap(DMA_SLAVE, device->cap_mask) &&
 | |
| 		!device->device_terminate_all);
 | |
| 
 | |
| 	BUG_ON(!device->device_alloc_chan_resources);
 | |
| 	BUG_ON(!device->device_free_chan_resources);
 | |
| 	BUG_ON(!device->device_is_tx_complete);
 | |
| 	BUG_ON(!device->device_issue_pending);
 | |
| 	BUG_ON(!device->dev);
 | |
| 
 | |
| 	/* note: this only matters in the
 | |
| 	 * CONFIG_ASYNC_TX_DISABLE_CHANNEL_SWITCH=y case
 | |
| 	 */
 | |
| 	if (device_has_all_tx_types(device))
 | |
| 		dma_cap_set(DMA_ASYNC_TX, device->cap_mask);
 | |
| 
 | |
| 	idr_ref = kmalloc(sizeof(*idr_ref), GFP_KERNEL);
 | |
| 	if (!idr_ref)
 | |
| 		return -ENOMEM;
 | |
| 	rc = get_dma_id(device);
 | |
| 	if (rc != 0) {
 | |
| 		kfree(idr_ref);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	atomic_set(idr_ref, 0);
 | |
| 
 | |
| 	/* represent channels in sysfs. Probably want devs too */
 | |
| 	list_for_each_entry(chan, &device->channels, device_node) {
 | |
| 		rc = -ENOMEM;
 | |
| 		chan->local = alloc_percpu(typeof(*chan->local));
 | |
| 		if (chan->local == NULL)
 | |
| 			goto err_out;
 | |
| 		chan->dev = kzalloc(sizeof(*chan->dev), GFP_KERNEL);
 | |
| 		if (chan->dev == NULL) {
 | |
| 			free_percpu(chan->local);
 | |
| 			chan->local = NULL;
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 
 | |
| 		chan->chan_id = chancnt++;
 | |
| 		chan->dev->device.class = &dma_devclass;
 | |
| 		chan->dev->device.parent = device->dev;
 | |
| 		chan->dev->chan = chan;
 | |
| 		chan->dev->idr_ref = idr_ref;
 | |
| 		chan->dev->dev_id = device->dev_id;
 | |
| 		atomic_inc(idr_ref);
 | |
| 		dev_set_name(&chan->dev->device, "dma%dchan%d",
 | |
| 			     device->dev_id, chan->chan_id);
 | |
| 
 | |
| 		rc = device_register(&chan->dev->device);
 | |
| 		if (rc) {
 | |
| 			free_percpu(chan->local);
 | |
| 			chan->local = NULL;
 | |
| 			kfree(chan->dev);
 | |
| 			atomic_dec(idr_ref);
 | |
| 			goto err_out;
 | |
| 		}
 | |
| 		chan->client_count = 0;
 | |
| 	}
 | |
| 	device->chancnt = chancnt;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	/* take references on public channels */
 | |
| 	if (dmaengine_ref_count && !dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 		list_for_each_entry(chan, &device->channels, device_node) {
 | |
| 			/* if clients are already waiting for channels we need
 | |
| 			 * to take references on their behalf
 | |
| 			 */
 | |
| 			if (dma_chan_get(chan) == -ENODEV) {
 | |
| 				/* note we can only get here for the first
 | |
| 				 * channel as the remaining channels are
 | |
| 				 * guaranteed to get a reference
 | |
| 				 */
 | |
| 				rc = -ENODEV;
 | |
| 				mutex_unlock(&dma_list_mutex);
 | |
| 				goto err_out;
 | |
| 			}
 | |
| 		}
 | |
| 	list_add_tail_rcu(&device->global_node, &dma_device_list);
 | |
| 	if (dma_has_cap(DMA_PRIVATE, device->cap_mask))
 | |
| 		device->privatecnt++;	/* Always private */
 | |
| 	dma_channel_rebalance();
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| err_out:
 | |
| 	/* if we never registered a channel just release the idr */
 | |
| 	if (atomic_read(idr_ref) == 0) {
 | |
| 		mutex_lock(&dma_list_mutex);
 | |
| 		idr_remove(&dma_idr, device->dev_id);
 | |
| 		mutex_unlock(&dma_list_mutex);
 | |
| 		kfree(idr_ref);
 | |
| 		return rc;
 | |
| 	}
 | |
| 
 | |
| 	list_for_each_entry(chan, &device->channels, device_node) {
 | |
| 		if (chan->local == NULL)
 | |
| 			continue;
 | |
| 		mutex_lock(&dma_list_mutex);
 | |
| 		chan->dev->chan = NULL;
 | |
| 		mutex_unlock(&dma_list_mutex);
 | |
| 		device_unregister(&chan->dev->device);
 | |
| 		free_percpu(chan->local);
 | |
| 	}
 | |
| 	return rc;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_async_device_register);
 | |
| 
 | |
| /**
 | |
|  * dma_async_device_unregister - unregister a DMA device
 | |
|  * @device: &dma_device
 | |
|  *
 | |
|  * This routine is called by dma driver exit routines, dmaengine holds module
 | |
|  * references to prevent it being called while channels are in use.
 | |
|  */
 | |
| void dma_async_device_unregister(struct dma_device *device)
 | |
| {
 | |
| 	struct dma_chan *chan;
 | |
| 
 | |
| 	mutex_lock(&dma_list_mutex);
 | |
| 	list_del_rcu(&device->global_node);
 | |
| 	dma_channel_rebalance();
 | |
| 	mutex_unlock(&dma_list_mutex);
 | |
| 
 | |
| 	list_for_each_entry(chan, &device->channels, device_node) {
 | |
| 		WARN_ONCE(chan->client_count,
 | |
| 			  "%s called while %d clients hold a reference\n",
 | |
| 			  __func__, chan->client_count);
 | |
| 		mutex_lock(&dma_list_mutex);
 | |
| 		chan->dev->chan = NULL;
 | |
| 		mutex_unlock(&dma_list_mutex);
 | |
| 		device_unregister(&chan->dev->device);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(dma_async_device_unregister);
 | |
| 
 | |
| /**
 | |
|  * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
 | |
|  * @chan: DMA channel to offload copy to
 | |
|  * @dest: destination address (virtual)
 | |
|  * @src: source address (virtual)
 | |
|  * @len: length
 | |
|  *
 | |
|  * Both @dest and @src must be mappable to a bus address according to the
 | |
|  * DMA mapping API rules for streaming mappings.
 | |
|  * Both @dest and @src must stay memory resident (kernel memory or locked
 | |
|  * user space pages).
 | |
|  */
 | |
| dma_cookie_t
 | |
| dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
 | |
| 			void *src, size_t len)
 | |
| {
 | |
| 	struct dma_device *dev = chan->device;
 | |
| 	struct dma_async_tx_descriptor *tx;
 | |
| 	dma_addr_t dma_dest, dma_src;
 | |
| 	dma_cookie_t cookie;
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
 | |
| 	dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
 | |
| 	flags = DMA_CTRL_ACK |
 | |
| 		DMA_COMPL_SRC_UNMAP_SINGLE |
 | |
| 		DMA_COMPL_DEST_UNMAP_SINGLE;
 | |
| 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
 | |
| 
 | |
| 	if (!tx) {
 | |
| 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
 | |
| 		dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tx->callback = NULL;
 | |
| 	cookie = tx->tx_submit(tx);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
 | |
| 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
 | |
| 
 | |
| /**
 | |
|  * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
 | |
|  * @chan: DMA channel to offload copy to
 | |
|  * @page: destination page
 | |
|  * @offset: offset in page to copy to
 | |
|  * @kdata: source address (virtual)
 | |
|  * @len: length
 | |
|  *
 | |
|  * Both @page/@offset and @kdata must be mappable to a bus address according
 | |
|  * to the DMA mapping API rules for streaming mappings.
 | |
|  * Both @page/@offset and @kdata must stay memory resident (kernel memory or
 | |
|  * locked user space pages)
 | |
|  */
 | |
| dma_cookie_t
 | |
| dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
 | |
| 			unsigned int offset, void *kdata, size_t len)
 | |
| {
 | |
| 	struct dma_device *dev = chan->device;
 | |
| 	struct dma_async_tx_descriptor *tx;
 | |
| 	dma_addr_t dma_dest, dma_src;
 | |
| 	dma_cookie_t cookie;
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
 | |
| 	dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
 | |
| 	flags = DMA_CTRL_ACK | DMA_COMPL_SRC_UNMAP_SINGLE;
 | |
| 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
 | |
| 
 | |
| 	if (!tx) {
 | |
| 		dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
 | |
| 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tx->callback = NULL;
 | |
| 	cookie = tx->tx_submit(tx);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
 | |
| 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
 | |
| 
 | |
| /**
 | |
|  * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
 | |
|  * @chan: DMA channel to offload copy to
 | |
|  * @dest_pg: destination page
 | |
|  * @dest_off: offset in page to copy to
 | |
|  * @src_pg: source page
 | |
|  * @src_off: offset in page to copy from
 | |
|  * @len: length
 | |
|  *
 | |
|  * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
 | |
|  * address according to the DMA mapping API rules for streaming mappings.
 | |
|  * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
 | |
|  * (kernel memory or locked user space pages).
 | |
|  */
 | |
| dma_cookie_t
 | |
| dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
 | |
| 	unsigned int dest_off, struct page *src_pg, unsigned int src_off,
 | |
| 	size_t len)
 | |
| {
 | |
| 	struct dma_device *dev = chan->device;
 | |
| 	struct dma_async_tx_descriptor *tx;
 | |
| 	dma_addr_t dma_dest, dma_src;
 | |
| 	dma_cookie_t cookie;
 | |
| 	int cpu;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
 | |
| 	dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
 | |
| 				DMA_FROM_DEVICE);
 | |
| 	flags = DMA_CTRL_ACK;
 | |
| 	tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len, flags);
 | |
| 
 | |
| 	if (!tx) {
 | |
| 		dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
 | |
| 		dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
 | |
| 		return -ENOMEM;
 | |
| 	}
 | |
| 
 | |
| 	tx->callback = NULL;
 | |
| 	cookie = tx->tx_submit(tx);
 | |
| 
 | |
| 	cpu = get_cpu();
 | |
| 	per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
 | |
| 	per_cpu_ptr(chan->local, cpu)->memcpy_count++;
 | |
| 	put_cpu();
 | |
| 
 | |
| 	return cookie;
 | |
| }
 | |
| EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
 | |
| 
 | |
| void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
 | |
| 	struct dma_chan *chan)
 | |
| {
 | |
| 	tx->chan = chan;
 | |
| 	spin_lock_init(&tx->lock);
 | |
| }
 | |
| EXPORT_SYMBOL(dma_async_tx_descriptor_init);
 | |
| 
 | |
| /* dma_wait_for_async_tx - spin wait for a transaction to complete
 | |
|  * @tx: in-flight transaction to wait on
 | |
|  */
 | |
| enum dma_status
 | |
| dma_wait_for_async_tx(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
 | |
| 
 | |
| 	if (!tx)
 | |
| 		return DMA_SUCCESS;
 | |
| 
 | |
| 	while (tx->cookie == -EBUSY) {
 | |
| 		if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
 | |
| 			pr_err("%s timeout waiting for descriptor submission\n",
 | |
| 				__func__);
 | |
| 			return DMA_ERROR;
 | |
| 		}
 | |
| 		cpu_relax();
 | |
| 	}
 | |
| 	return dma_sync_wait(tx->chan, tx->cookie);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_wait_for_async_tx);
 | |
| 
 | |
| /* dma_run_dependencies - helper routine for dma drivers to process
 | |
|  *	(start) dependent operations on their target channel
 | |
|  * @tx: transaction with dependencies
 | |
|  */
 | |
| void dma_run_dependencies(struct dma_async_tx_descriptor *tx)
 | |
| {
 | |
| 	struct dma_async_tx_descriptor *dep = tx->next;
 | |
| 	struct dma_async_tx_descriptor *dep_next;
 | |
| 	struct dma_chan *chan;
 | |
| 
 | |
| 	if (!dep)
 | |
| 		return;
 | |
| 
 | |
| 	/* we'll submit tx->next now, so clear the link */
 | |
| 	tx->next = NULL;
 | |
| 	chan = dep->chan;
 | |
| 
 | |
| 	/* keep submitting up until a channel switch is detected
 | |
| 	 * in that case we will be called again as a result of
 | |
| 	 * processing the interrupt from async_tx_channel_switch
 | |
| 	 */
 | |
| 	for (; dep; dep = dep_next) {
 | |
| 		spin_lock_bh(&dep->lock);
 | |
| 		dep->parent = NULL;
 | |
| 		dep_next = dep->next;
 | |
| 		if (dep_next && dep_next->chan == chan)
 | |
| 			dep->next = NULL; /* ->next will be submitted */
 | |
| 		else
 | |
| 			dep_next = NULL; /* submit current dep and terminate */
 | |
| 		spin_unlock_bh(&dep->lock);
 | |
| 
 | |
| 		dep->tx_submit(dep);
 | |
| 	}
 | |
| 
 | |
| 	chan->device->device_issue_pending(chan);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(dma_run_dependencies);
 | |
| 
 | |
| static int __init dma_bus_init(void)
 | |
| {
 | |
| 	idr_init(&dma_idr);
 | |
| 	mutex_init(&dma_list_mutex);
 | |
| 	return class_register(&dma_devclass);
 | |
| }
 | |
| arch_initcall(dma_bus_init);
 | |
| 
 | |
| 
 |