516 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			516 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/alpha/kernel/time.c
 | |
|  *
 | |
|  *  Copyright (C) 1991, 1992, 1995, 1999, 2000  Linus Torvalds
 | |
|  *
 | |
|  * This file contains the PC-specific time handling details:
 | |
|  * reading the RTC at bootup, etc..
 | |
|  * 1994-07-02    Alan Modra
 | |
|  *	fixed set_rtc_mmss, fixed time.year for >= 2000, new mktime
 | |
|  * 1995-03-26    Markus Kuhn
 | |
|  *      fixed 500 ms bug at call to set_rtc_mmss, fixed DS12887
 | |
|  *      precision CMOS clock update
 | |
|  * 1997-09-10	Updated NTP code according to technical memorandum Jan '96
 | |
|  *		"A Kernel Model for Precision Timekeeping" by Dave Mills
 | |
|  * 1997-01-09    Adrian Sun
 | |
|  *      use interval timer if CONFIG_RTC=y
 | |
|  * 1997-10-29    John Bowman (bowman@math.ualberta.ca)
 | |
|  *      fixed tick loss calculation in timer_interrupt
 | |
|  *      (round system clock to nearest tick instead of truncating)
 | |
|  *      fixed algorithm in time_init for getting time from CMOS clock
 | |
|  * 1999-04-16	Thorsten Kranzkowski (dl8bcu@gmx.net)
 | |
|  *	fixed algorithm in do_gettimeofday() for calculating the precise time
 | |
|  *	from processor cycle counter (now taking lost_ticks into account)
 | |
|  * 2000-08-13	Jan-Benedict Glaw <jbglaw@lug-owl.de>
 | |
|  * 	Fixed time_init to be aware of epoches != 1900. This prevents
 | |
|  * 	booting up in 2048 for me;) Code is stolen from rtc.c.
 | |
|  * 2003-06-03	R. Scott Bailey <scott.bailey@eds.com>
 | |
|  *	Tighten sanity in time_init from 1% (10,000 PPM) to 250 PPM
 | |
|  */
 | |
| #include <linux/errno.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/param.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/ioport.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/bcd.h>
 | |
| #include <linux/profile.h>
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/hwrpb.h>
 | |
| #include <asm/8253pit.h>
 | |
| #include <asm/rtc.h>
 | |
| 
 | |
| #include <linux/mc146818rtc.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/timex.h>
 | |
| 
 | |
| #include "proto.h"
 | |
| #include "irq_impl.h"
 | |
| 
 | |
| static int set_rtc_mmss(unsigned long);
 | |
| 
 | |
| DEFINE_SPINLOCK(rtc_lock);
 | |
| EXPORT_SYMBOL(rtc_lock);
 | |
| 
 | |
| #define TICK_SIZE (tick_nsec / 1000)
 | |
| 
 | |
| /*
 | |
|  * Shift amount by which scaled_ticks_per_cycle is scaled.  Shifting
 | |
|  * by 48 gives us 16 bits for HZ while keeping the accuracy good even
 | |
|  * for large CPU clock rates.
 | |
|  */
 | |
| #define FIX_SHIFT	48
 | |
| 
 | |
| /* lump static variables together for more efficient access: */
 | |
| static struct {
 | |
| 	/* cycle counter last time it got invoked */
 | |
| 	__u32 last_time;
 | |
| 	/* ticks/cycle * 2^48 */
 | |
| 	unsigned long scaled_ticks_per_cycle;
 | |
| 	/* last time the CMOS clock got updated */
 | |
| 	time_t last_rtc_update;
 | |
| 	/* partial unused tick */
 | |
| 	unsigned long partial_tick;
 | |
| } state;
 | |
| 
 | |
| unsigned long est_cycle_freq;
 | |
| 
 | |
| 
 | |
| static inline __u32 rpcc(void)
 | |
| {
 | |
|     __u32 result;
 | |
|     asm volatile ("rpcc %0" : "=r"(result));
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * timer_interrupt() needs to keep up the real-time clock,
 | |
|  * as well as call the "do_timer()" routine every clocktick
 | |
|  */
 | |
| irqreturn_t timer_interrupt(int irq, void *dev)
 | |
| {
 | |
| 	unsigned long delta;
 | |
| 	__u32 now;
 | |
| 	long nticks;
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| 	/* Not SMP, do kernel PC profiling here.  */
 | |
| 	profile_tick(CPU_PROFILING);
 | |
| #endif
 | |
| 
 | |
| 	write_seqlock(&xtime_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate how many ticks have passed since the last update,
 | |
| 	 * including any previous partial leftover.  Save any resulting
 | |
| 	 * fraction for the next pass.
 | |
| 	 */
 | |
| 	now = rpcc();
 | |
| 	delta = now - state.last_time;
 | |
| 	state.last_time = now;
 | |
| 	delta = delta * state.scaled_ticks_per_cycle + state.partial_tick;
 | |
| 	state.partial_tick = delta & ((1UL << FIX_SHIFT) - 1); 
 | |
| 	nticks = delta >> FIX_SHIFT;
 | |
| 
 | |
| 	if (nticks)
 | |
| 		do_timer(nticks);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have an externally synchronized Linux clock, then update
 | |
| 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 | |
| 	 * called as close as possible to 500 ms before the new second starts.
 | |
| 	 */
 | |
| 	if (ntp_synced()
 | |
| 	    && xtime.tv_sec > state.last_rtc_update + 660
 | |
| 	    && xtime.tv_nsec >= 500000 - ((unsigned) TICK_SIZE) / 2
 | |
| 	    && xtime.tv_nsec <= 500000 + ((unsigned) TICK_SIZE) / 2) {
 | |
| 		int tmp = set_rtc_mmss(xtime.tv_sec);
 | |
| 		state.last_rtc_update = xtime.tv_sec - (tmp ? 600 : 0);
 | |
| 	}
 | |
| 
 | |
| 	write_sequnlock(&xtime_lock);
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| 	while (nticks--)
 | |
| 		update_process_times(user_mode(get_irq_regs()));
 | |
| #endif
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| void __init
 | |
| common_init_rtc(void)
 | |
| {
 | |
| 	unsigned char x;
 | |
| 
 | |
| 	/* Reset periodic interrupt frequency.  */
 | |
| 	x = CMOS_READ(RTC_FREQ_SELECT) & 0x3f;
 | |
|         /* Test includes known working values on various platforms
 | |
|            where 0x26 is wrong; we refuse to change those. */
 | |
| 	if (x != 0x26 && x != 0x25 && x != 0x19 && x != 0x06) {
 | |
| 		printk("Setting RTC_FREQ to 1024 Hz (%x)\n", x);
 | |
| 		CMOS_WRITE(0x26, RTC_FREQ_SELECT);
 | |
| 	}
 | |
| 
 | |
| 	/* Turn on periodic interrupts.  */
 | |
| 	x = CMOS_READ(RTC_CONTROL);
 | |
| 	if (!(x & RTC_PIE)) {
 | |
| 		printk("Turning on RTC interrupts.\n");
 | |
| 		x |= RTC_PIE;
 | |
| 		x &= ~(RTC_AIE | RTC_UIE);
 | |
| 		CMOS_WRITE(x, RTC_CONTROL);
 | |
| 	}
 | |
| 	(void) CMOS_READ(RTC_INTR_FLAGS);
 | |
| 
 | |
| 	outb(0x36, 0x43);	/* pit counter 0: system timer */
 | |
| 	outb(0x00, 0x40);
 | |
| 	outb(0x00, 0x40);
 | |
| 
 | |
| 	outb(0xb6, 0x43);	/* pit counter 2: speaker */
 | |
| 	outb(0x31, 0x42);
 | |
| 	outb(0x13, 0x42);
 | |
| 
 | |
| 	init_rtc_irq();
 | |
| }
 | |
| 
 | |
| unsigned int common_get_rtc_time(struct rtc_time *time)
 | |
| {
 | |
| 	return __get_rtc_time(time);
 | |
| }
 | |
| 
 | |
| int common_set_rtc_time(struct rtc_time *time)
 | |
| {
 | |
| 	return __set_rtc_time(time);
 | |
| }
 | |
| 
 | |
| /* Validate a computed cycle counter result against the known bounds for
 | |
|    the given processor core.  There's too much brokenness in the way of
 | |
|    timing hardware for any one method to work everywhere.  :-(
 | |
| 
 | |
|    Return 0 if the result cannot be trusted, otherwise return the argument.  */
 | |
| 
 | |
| static unsigned long __init
 | |
| validate_cc_value(unsigned long cc)
 | |
| {
 | |
| 	static struct bounds {
 | |
| 		unsigned int min, max;
 | |
| 	} cpu_hz[] __initdata = {
 | |
| 		[EV3_CPU]    = {   50000000,  200000000 },	/* guess */
 | |
| 		[EV4_CPU]    = {  100000000,  300000000 },
 | |
| 		[LCA4_CPU]   = {  100000000,  300000000 },	/* guess */
 | |
| 		[EV45_CPU]   = {  200000000,  300000000 },
 | |
| 		[EV5_CPU]    = {  250000000,  433000000 },
 | |
| 		[EV56_CPU]   = {  333000000,  667000000 },
 | |
| 		[PCA56_CPU]  = {  400000000,  600000000 },	/* guess */
 | |
| 		[PCA57_CPU]  = {  500000000,  600000000 },	/* guess */
 | |
| 		[EV6_CPU]    = {  466000000,  600000000 },
 | |
| 		[EV67_CPU]   = {  600000000,  750000000 },
 | |
| 		[EV68AL_CPU] = {  750000000,  940000000 },
 | |
| 		[EV68CB_CPU] = { 1000000000, 1333333333 },
 | |
| 		/* None of the following are shipping as of 2001-11-01.  */
 | |
| 		[EV68CX_CPU] = { 1000000000, 1700000000 },	/* guess */
 | |
| 		[EV69_CPU]   = { 1000000000, 1700000000 },	/* guess */
 | |
| 		[EV7_CPU]    = {  800000000, 1400000000 },	/* guess */
 | |
| 		[EV79_CPU]   = { 1000000000, 2000000000 },	/* guess */
 | |
| 	};
 | |
| 
 | |
| 	/* Allow for some drift in the crystal.  10MHz is more than enough.  */
 | |
| 	const unsigned int deviation = 10000000;
 | |
| 
 | |
| 	struct percpu_struct *cpu;
 | |
| 	unsigned int index;
 | |
| 
 | |
| 	cpu = (struct percpu_struct *)((char*)hwrpb + hwrpb->processor_offset);
 | |
| 	index = cpu->type & 0xffffffff;
 | |
| 
 | |
| 	/* If index out of bounds, no way to validate.  */
 | |
| 	if (index >= ARRAY_SIZE(cpu_hz))
 | |
| 		return cc;
 | |
| 
 | |
| 	/* If index contains no data, no way to validate.  */
 | |
| 	if (cpu_hz[index].max == 0)
 | |
| 		return cc;
 | |
| 
 | |
| 	if (cc < cpu_hz[index].min - deviation
 | |
| 	    || cc > cpu_hz[index].max + deviation)
 | |
| 		return 0;
 | |
| 
 | |
| 	return cc;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Calibrate CPU clock using legacy 8254 timer/counter. Stolen from
 | |
|  * arch/i386/time.c.
 | |
|  */
 | |
| 
 | |
| #define CALIBRATE_LATCH	0xffff
 | |
| #define TIMEOUT_COUNT	0x100000
 | |
| 
 | |
| static unsigned long __init
 | |
| calibrate_cc_with_pit(void)
 | |
| {
 | |
| 	int cc, count = 0;
 | |
| 
 | |
| 	/* Set the Gate high, disable speaker */
 | |
| 	outb((inb(0x61) & ~0x02) | 0x01, 0x61);
 | |
| 
 | |
| 	/*
 | |
| 	 * Now let's take care of CTC channel 2
 | |
| 	 *
 | |
| 	 * Set the Gate high, program CTC channel 2 for mode 0,
 | |
| 	 * (interrupt on terminal count mode), binary count,
 | |
| 	 * load 5 * LATCH count, (LSB and MSB) to begin countdown.
 | |
| 	 */
 | |
| 	outb(0xb0, 0x43);		/* binary, mode 0, LSB/MSB, Ch 2 */
 | |
| 	outb(CALIBRATE_LATCH & 0xff, 0x42);	/* LSB of count */
 | |
| 	outb(CALIBRATE_LATCH >> 8, 0x42);	/* MSB of count */
 | |
| 
 | |
| 	cc = rpcc();
 | |
| 	do {
 | |
| 		count++;
 | |
| 	} while ((inb(0x61) & 0x20) == 0 && count < TIMEOUT_COUNT);
 | |
| 	cc = rpcc() - cc;
 | |
| 
 | |
| 	/* Error: ECTCNEVERSET or ECPUTOOFAST.  */
 | |
| 	if (count <= 1 || count == TIMEOUT_COUNT)
 | |
| 		return 0;
 | |
| 
 | |
| 	return ((long)cc * PIT_TICK_RATE) / (CALIBRATE_LATCH + 1);
 | |
| }
 | |
| 
 | |
| /* The Linux interpretation of the CMOS clock register contents:
 | |
|    When the Update-In-Progress (UIP) flag goes from 1 to 0, the
 | |
|    RTC registers show the second which has precisely just started.
 | |
|    Let's hope other operating systems interpret the RTC the same way.  */
 | |
| 
 | |
| static unsigned long __init
 | |
| rpcc_after_update_in_progress(void)
 | |
| {
 | |
| 	do { } while (!(CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP));
 | |
| 	do { } while (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
 | |
| 
 | |
| 	return rpcc();
 | |
| }
 | |
| 
 | |
| void __init
 | |
| time_init(void)
 | |
| {
 | |
| 	unsigned int year, mon, day, hour, min, sec, cc1, cc2, epoch;
 | |
| 	unsigned long cycle_freq, tolerance;
 | |
| 	long diff;
 | |
| 
 | |
| 	/* Calibrate CPU clock -- attempt #1.  */
 | |
| 	if (!est_cycle_freq)
 | |
| 		est_cycle_freq = validate_cc_value(calibrate_cc_with_pit());
 | |
| 
 | |
| 	cc1 = rpcc();
 | |
| 
 | |
| 	/* Calibrate CPU clock -- attempt #2.  */
 | |
| 	if (!est_cycle_freq) {
 | |
| 		cc1 = rpcc_after_update_in_progress();
 | |
| 		cc2 = rpcc_after_update_in_progress();
 | |
| 		est_cycle_freq = validate_cc_value(cc2 - cc1);
 | |
| 		cc1 = cc2;
 | |
| 	}
 | |
| 
 | |
| 	cycle_freq = hwrpb->cycle_freq;
 | |
| 	if (est_cycle_freq) {
 | |
| 		/* If the given value is within 250 PPM of what we calculated,
 | |
| 		   accept it.  Otherwise, use what we found.  */
 | |
| 		tolerance = cycle_freq / 4000;
 | |
| 		diff = cycle_freq - est_cycle_freq;
 | |
| 		if (diff < 0)
 | |
| 			diff = -diff;
 | |
| 		if ((unsigned long)diff > tolerance) {
 | |
| 			cycle_freq = est_cycle_freq;
 | |
| 			printk("HWRPB cycle frequency bogus.  "
 | |
| 			       "Estimated %lu Hz\n", cycle_freq);
 | |
| 		} else {
 | |
| 			est_cycle_freq = 0;
 | |
| 		}
 | |
| 	} else if (! validate_cc_value (cycle_freq)) {
 | |
| 		printk("HWRPB cycle frequency bogus, "
 | |
| 		       "and unable to estimate a proper value!\n");
 | |
| 	}
 | |
| 
 | |
| 	/* From John Bowman <bowman@math.ualberta.ca>: allow the values
 | |
| 	   to settle, as the Update-In-Progress bit going low isn't good
 | |
| 	   enough on some hardware.  2ms is our guess; we haven't found 
 | |
| 	   bogomips yet, but this is close on a 500Mhz box.  */
 | |
| 	__delay(1000000);
 | |
| 
 | |
| 	sec = CMOS_READ(RTC_SECONDS);
 | |
| 	min = CMOS_READ(RTC_MINUTES);
 | |
| 	hour = CMOS_READ(RTC_HOURS);
 | |
| 	day = CMOS_READ(RTC_DAY_OF_MONTH);
 | |
| 	mon = CMOS_READ(RTC_MONTH);
 | |
| 	year = CMOS_READ(RTC_YEAR);
 | |
| 
 | |
| 	if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 | |
| 		sec = bcd2bin(sec);
 | |
| 		min = bcd2bin(min);
 | |
| 		hour = bcd2bin(hour);
 | |
| 		day = bcd2bin(day);
 | |
| 		mon = bcd2bin(mon);
 | |
| 		year = bcd2bin(year);
 | |
| 	}
 | |
| 
 | |
| 	/* PC-like is standard; used for year >= 70 */
 | |
| 	epoch = 1900;
 | |
| 	if (year < 20)
 | |
| 		epoch = 2000;
 | |
| 	else if (year >= 20 && year < 48)
 | |
| 		/* NT epoch */
 | |
| 		epoch = 1980;
 | |
| 	else if (year >= 48 && year < 70)
 | |
| 		/* Digital UNIX epoch */
 | |
| 		epoch = 1952;
 | |
| 
 | |
| 	printk(KERN_INFO "Using epoch = %d\n", epoch);
 | |
| 
 | |
| 	if ((year += epoch) < 1970)
 | |
| 		year += 100;
 | |
| 
 | |
| 	xtime.tv_sec = mktime(year, mon, day, hour, min, sec);
 | |
| 	xtime.tv_nsec = 0;
 | |
| 
 | |
|         wall_to_monotonic.tv_sec -= xtime.tv_sec;
 | |
|         wall_to_monotonic.tv_nsec = 0;
 | |
| 
 | |
| 	if (HZ > (1<<16)) {
 | |
| 		extern void __you_loose (void);
 | |
| 		__you_loose();
 | |
| 	}
 | |
| 
 | |
| 	state.last_time = cc1;
 | |
| 	state.scaled_ticks_per_cycle
 | |
| 		= ((unsigned long) HZ << FIX_SHIFT) / cycle_freq;
 | |
| 	state.last_rtc_update = 0;
 | |
| 	state.partial_tick = 0L;
 | |
| 
 | |
| 	/* Startup the timer source. */
 | |
| 	alpha_mv.init_rtc();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use the cycle counter to estimate an displacement from the last time
 | |
|  * tick.  Unfortunately the Alpha designers made only the low 32-bits of
 | |
|  * the cycle counter active, so we overflow on 8.2 seconds on a 500MHz
 | |
|  * part.  So we can't do the "find absolute time in terms of cycles" thing
 | |
|  * that the other ports do.
 | |
|  */
 | |
| u32 arch_gettimeoffset(void)
 | |
| {
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* Until and unless we figure out how to get cpu cycle counters
 | |
| 	   in sync and keep them there, we can't use the rpcc tricks.  */
 | |
| 	return 0;
 | |
| #else
 | |
| 	unsigned long delta_cycles, delta_usec, partial_tick;
 | |
| 
 | |
| 	delta_cycles = rpcc() - state.last_time;
 | |
| 	partial_tick = state.partial_tick;
 | |
| 	/*
 | |
| 	 * usec = cycles * ticks_per_cycle * 2**48 * 1e6 / (2**48 * ticks)
 | |
| 	 *	= cycles * (s_t_p_c) * 1e6 / (2**48 * ticks)
 | |
| 	 *	= cycles * (s_t_p_c) * 15625 / (2**42 * ticks)
 | |
| 	 *
 | |
| 	 * which, given a 600MHz cycle and a 1024Hz tick, has a
 | |
| 	 * dynamic range of about 1.7e17, which is less than the
 | |
| 	 * 1.8e19 in an unsigned long, so we are safe from overflow.
 | |
| 	 *
 | |
| 	 * Round, but with .5 up always, since .5 to even is harder
 | |
| 	 * with no clear gain.
 | |
| 	 */
 | |
| 
 | |
| 	delta_usec = (delta_cycles * state.scaled_ticks_per_cycle 
 | |
| 		      + partial_tick) * 15625;
 | |
| 	delta_usec = ((delta_usec / ((1UL << (FIX_SHIFT-6-1)) * HZ)) + 1) / 2;
 | |
| 	return delta_usec * 1000;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 | |
|  * called 500 ms after the second nowtime has started, because when
 | |
|  * nowtime is written into the registers of the CMOS clock, it will
 | |
|  * jump to the next second precisely 500 ms later. Check the Motorola
 | |
|  * MC146818A or Dallas DS12887 data sheet for details.
 | |
|  *
 | |
|  * BUG: This routine does not handle hour overflow properly; it just
 | |
|  *      sets the minutes. Usually you won't notice until after reboot!
 | |
|  */
 | |
| 
 | |
| 
 | |
| static int
 | |
| set_rtc_mmss(unsigned long nowtime)
 | |
| {
 | |
| 	int retval = 0;
 | |
| 	int real_seconds, real_minutes, cmos_minutes;
 | |
| 	unsigned char save_control, save_freq_select;
 | |
| 
 | |
| 	/* irq are locally disabled here */
 | |
| 	spin_lock(&rtc_lock);
 | |
| 	/* Tell the clock it's being set */
 | |
| 	save_control = CMOS_READ(RTC_CONTROL);
 | |
| 	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
 | |
| 
 | |
| 	/* Stop and reset prescaler */
 | |
| 	save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
 | |
| 	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
 | |
| 
 | |
| 	cmos_minutes = CMOS_READ(RTC_MINUTES);
 | |
| 	if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
 | |
| 		cmos_minutes = bcd2bin(cmos_minutes);
 | |
| 
 | |
| 	/*
 | |
| 	 * since we're only adjusting minutes and seconds,
 | |
| 	 * don't interfere with hour overflow. This avoids
 | |
| 	 * messing with unknown time zones but requires your
 | |
| 	 * RTC not to be off by more than 15 minutes
 | |
| 	 */
 | |
| 	real_seconds = nowtime % 60;
 | |
| 	real_minutes = nowtime / 60;
 | |
| 	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1) {
 | |
| 		/* correct for half hour time zone */
 | |
| 		real_minutes += 30;
 | |
| 	}
 | |
| 	real_minutes %= 60;
 | |
| 
 | |
| 	if (abs(real_minutes - cmos_minutes) < 30) {
 | |
| 		if (!(save_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 | |
| 			real_seconds = bin2bcd(real_seconds);
 | |
| 			real_minutes = bin2bcd(real_minutes);
 | |
| 		}
 | |
| 		CMOS_WRITE(real_seconds,RTC_SECONDS);
 | |
| 		CMOS_WRITE(real_minutes,RTC_MINUTES);
 | |
| 	} else {
 | |
| 		printk(KERN_WARNING
 | |
| 		       "set_rtc_mmss: can't update from %d to %d\n",
 | |
| 		       cmos_minutes, real_minutes);
 | |
|  		retval = -1;
 | |
| 	}
 | |
| 
 | |
| 	/* The following flags have to be released exactly in this order,
 | |
| 	 * otherwise the DS12887 (popular MC146818A clone with integrated
 | |
| 	 * battery and quartz) will not reset the oscillator and will not
 | |
| 	 * update precisely 500 ms later. You won't find this mentioned in
 | |
| 	 * the Dallas Semiconductor data sheets, but who believes data
 | |
| 	 * sheets anyway ...                           -- Markus Kuhn
 | |
| 	 */
 | |
| 	CMOS_WRITE(save_control, RTC_CONTROL);
 | |
| 	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
 | |
| 	spin_unlock(&rtc_lock);
 | |
| 
 | |
| 	return retval;
 | |
| }
 |