1410 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1410 lines
		
	
	
		
			40 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Linux-DVB Driver for DiBcom's DiB7000M and
 | |
|  *              first generation DiB7000P-demodulator-family.
 | |
|  *
 | |
|  * Copyright (C) 2005-7 DiBcom (http://www.dibcom.fr/)
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  *	modify it under the terms of the GNU General Public License as
 | |
|  *	published by the Free Software Foundation, version 2.
 | |
|  */
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/i2c.h>
 | |
| 
 | |
| #include "dvb_frontend.h"
 | |
| 
 | |
| #include "dib7000m.h"
 | |
| 
 | |
| static int debug;
 | |
| module_param(debug, int, 0644);
 | |
| MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
 | |
| 
 | |
| #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000M: "); printk(args); printk("\n"); } } while (0)
 | |
| 
 | |
| struct dib7000m_state {
 | |
| 	struct dvb_frontend demod;
 | |
|     struct dib7000m_config cfg;
 | |
| 
 | |
| 	u8 i2c_addr;
 | |
| 	struct i2c_adapter   *i2c_adap;
 | |
| 
 | |
| 	struct dibx000_i2c_master i2c_master;
 | |
| 
 | |
| /* offset is 1 in case of the 7000MC */
 | |
| 	u8 reg_offs;
 | |
| 
 | |
| 	u16 wbd_ref;
 | |
| 
 | |
| 	u8 current_band;
 | |
| 	fe_bandwidth_t current_bandwidth;
 | |
| 	struct dibx000_agc_config *current_agc;
 | |
| 	u32 timf;
 | |
| 	u32 timf_default;
 | |
| 	u32 internal_clk;
 | |
| 
 | |
| 	u8 div_force_off : 1;
 | |
| 	u8 div_state : 1;
 | |
| 	u16 div_sync_wait;
 | |
| 
 | |
| 	u16 revision;
 | |
| 
 | |
| 	u8 agc_state;
 | |
| };
 | |
| 
 | |
| enum dib7000m_power_mode {
 | |
| 	DIB7000M_POWER_ALL = 0,
 | |
| 
 | |
| 	DIB7000M_POWER_NO,
 | |
| 	DIB7000M_POWER_INTERF_ANALOG_AGC,
 | |
| 	DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD,
 | |
| 	DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD,
 | |
| 	DIB7000M_POWER_INTERFACE_ONLY,
 | |
| };
 | |
| 
 | |
| static u16 dib7000m_read_word(struct dib7000m_state *state, u16 reg)
 | |
| {
 | |
| 	u8 wb[2] = { (reg >> 8) | 0x80, reg & 0xff };
 | |
| 	u8 rb[2];
 | |
| 	struct i2c_msg msg[2] = {
 | |
| 		{ .addr = state->i2c_addr >> 1, .flags = 0,        .buf = wb, .len = 2 },
 | |
| 		{ .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 },
 | |
| 	};
 | |
| 
 | |
| 	if (i2c_transfer(state->i2c_adap, msg, 2) != 2)
 | |
| 		dprintk("i2c read error on %d",reg);
 | |
| 
 | |
| 	return (rb[0] << 8) | rb[1];
 | |
| }
 | |
| 
 | |
| static int dib7000m_write_word(struct dib7000m_state *state, u16 reg, u16 val)
 | |
| {
 | |
| 	u8 b[4] = {
 | |
| 		(reg >> 8) & 0xff, reg & 0xff,
 | |
| 		(val >> 8) & 0xff, val & 0xff,
 | |
| 	};
 | |
| 	struct i2c_msg msg = {
 | |
| 		.addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4
 | |
| 	};
 | |
| 	return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
 | |
| }
 | |
| static void dib7000m_write_tab(struct dib7000m_state *state, u16 *buf)
 | |
| {
 | |
| 	u16 l = 0, r, *n;
 | |
| 	n = buf;
 | |
| 	l = *n++;
 | |
| 	while (l) {
 | |
| 		r = *n++;
 | |
| 
 | |
| 		if (state->reg_offs && (r >= 112 && r <= 331)) // compensate for 7000MC
 | |
| 			r++;
 | |
| 
 | |
| 		do {
 | |
| 			dib7000m_write_word(state, r, *n++);
 | |
| 			r++;
 | |
| 		} while (--l);
 | |
| 		l = *n++;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int dib7000m_set_output_mode(struct dib7000m_state *state, int mode)
 | |
| {
 | |
| 	int    ret = 0;
 | |
| 	u16 outreg, fifo_threshold, smo_mode,
 | |
| 		sram = 0x0005; /* by default SRAM output is disabled */
 | |
| 
 | |
| 	outreg = 0;
 | |
| 	fifo_threshold = 1792;
 | |
| 	smo_mode = (dib7000m_read_word(state, 294 + state->reg_offs) & 0x0010) | (1 << 1);
 | |
| 
 | |
| 	dprintk( "setting output mode for demod %p to %d", &state->demod, mode);
 | |
| 
 | |
| 	switch (mode) {
 | |
| 		case OUTMODE_MPEG2_PAR_GATED_CLK:   // STBs with parallel gated clock
 | |
| 			outreg = (1 << 10);  /* 0x0400 */
 | |
| 			break;
 | |
| 		case OUTMODE_MPEG2_PAR_CONT_CLK:    // STBs with parallel continues clock
 | |
| 			outreg = (1 << 10) | (1 << 6); /* 0x0440 */
 | |
| 			break;
 | |
| 		case OUTMODE_MPEG2_SERIAL:          // STBs with serial input
 | |
| 			outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
 | |
| 			break;
 | |
| 		case OUTMODE_DIVERSITY:
 | |
| 			if (state->cfg.hostbus_diversity)
 | |
| 				outreg = (1 << 10) | (4 << 6); /* 0x0500 */
 | |
| 			else
 | |
| 				sram   |= 0x0c00;
 | |
| 			break;
 | |
| 		case OUTMODE_MPEG2_FIFO:            // e.g. USB feeding
 | |
| 			smo_mode |= (3 << 1);
 | |
| 			fifo_threshold = 512;
 | |
| 			outreg = (1 << 10) | (5 << 6);
 | |
| 			break;
 | |
| 		case OUTMODE_HIGH_Z:  // disable
 | |
| 			outreg = 0;
 | |
| 			break;
 | |
| 		default:
 | |
| 			dprintk( "Unhandled output_mode passed to be set for demod %p",&state->demod);
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	if (state->cfg.output_mpeg2_in_188_bytes)
 | |
| 		smo_mode |= (1 << 5) ;
 | |
| 
 | |
| 	ret |= dib7000m_write_word(state,  294 + state->reg_offs, smo_mode);
 | |
| 	ret |= dib7000m_write_word(state,  295 + state->reg_offs, fifo_threshold); /* synchronous fread */
 | |
| 	ret |= dib7000m_write_word(state, 1795, outreg);
 | |
| 	ret |= dib7000m_write_word(state, 1805, sram);
 | |
| 
 | |
| 	if (state->revision == 0x4003) {
 | |
| 		u16 clk_cfg1 = dib7000m_read_word(state, 909) & 0xfffd;
 | |
| 		if (mode == OUTMODE_DIVERSITY)
 | |
| 			clk_cfg1 |= (1 << 1); // P_O_CLK_en
 | |
| 		dib7000m_write_word(state, 909, clk_cfg1);
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dib7000m_set_power_mode(struct dib7000m_state *state, enum dib7000m_power_mode mode)
 | |
| {
 | |
| 	/* by default everything is going to be powered off */
 | |
| 	u16 reg_903 = 0xffff, reg_904 = 0xffff, reg_905 = 0xffff, reg_906  = 0x3fff;
 | |
| 	u8  offset = 0;
 | |
| 
 | |
| 	/* now, depending on the requested mode, we power on */
 | |
| 	switch (mode) {
 | |
| 		/* power up everything in the demod */
 | |
| 		case DIB7000M_POWER_ALL:
 | |
| 			reg_903 = 0x0000; reg_904 = 0x0000; reg_905 = 0x0000; reg_906 = 0x0000;
 | |
| 			break;
 | |
| 
 | |
| 		/* just leave power on the control-interfaces: GPIO and (I2C or SDIO or SRAM) */
 | |
| 		case DIB7000M_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C or SRAM */
 | |
| 			reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 2));
 | |
| 			break;
 | |
| 
 | |
| 		case DIB7000M_POWER_INTERF_ANALOG_AGC:
 | |
| 			reg_903 &= ~((1 << 15) | (1 << 14) | (1 << 11) | (1 << 10));
 | |
| 			reg_905 &= ~((1 << 7) | (1 << 6) | (1 << 5) | (1 << 4) | (1 << 2));
 | |
| 			reg_906 &= ~((1 << 0));
 | |
| 			break;
 | |
| 
 | |
| 		case DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD:
 | |
| 			reg_903 = 0x0000; reg_904 = 0x801f; reg_905 = 0x0000; reg_906 = 0x0000;
 | |
| 			break;
 | |
| 
 | |
| 		case DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD:
 | |
| 			reg_903 = 0x0000; reg_904 = 0x8000; reg_905 = 0x010b; reg_906 = 0x0000;
 | |
| 			break;
 | |
| 		case DIB7000M_POWER_NO:
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	/* always power down unused parts */
 | |
| 	if (!state->cfg.mobile_mode)
 | |
| 		reg_904 |= (1 << 7) | (1 << 6) | (1 << 4) | (1 << 2) | (1 << 1);
 | |
| 
 | |
| 	/* P_sdio_select_clk = 0 on MC and after*/
 | |
| 	if (state->revision != 0x4000)
 | |
| 		reg_906 <<= 1;
 | |
| 
 | |
| 	if (state->revision == 0x4003)
 | |
| 		offset = 1;
 | |
| 
 | |
| 	dib7000m_write_word(state, 903 + offset, reg_903);
 | |
| 	dib7000m_write_word(state, 904 + offset, reg_904);
 | |
| 	dib7000m_write_word(state, 905 + offset, reg_905);
 | |
| 	dib7000m_write_word(state, 906 + offset, reg_906);
 | |
| }
 | |
| 
 | |
| static int dib7000m_set_adc_state(struct dib7000m_state *state, enum dibx000_adc_states no)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 	u16 reg_913 = dib7000m_read_word(state, 913),
 | |
| 	       reg_914 = dib7000m_read_word(state, 914);
 | |
| 
 | |
| 	switch (no) {
 | |
| 		case DIBX000_SLOW_ADC_ON:
 | |
| 			reg_914 |= (1 << 1) | (1 << 0);
 | |
| 			ret |= dib7000m_write_word(state, 914, reg_914);
 | |
| 			reg_914 &= ~(1 << 1);
 | |
| 			break;
 | |
| 
 | |
| 		case DIBX000_SLOW_ADC_OFF:
 | |
| 			reg_914 |=  (1 << 1) | (1 << 0);
 | |
| 			break;
 | |
| 
 | |
| 		case DIBX000_ADC_ON:
 | |
| 			if (state->revision == 0x4000) { // workaround for PA/MA
 | |
| 				// power-up ADC
 | |
| 				dib7000m_write_word(state, 913, 0);
 | |
| 				dib7000m_write_word(state, 914, reg_914 & 0x3);
 | |
| 				// power-down bandgag
 | |
| 				dib7000m_write_word(state, 913, (1 << 15));
 | |
| 				dib7000m_write_word(state, 914, reg_914 & 0x3);
 | |
| 			}
 | |
| 
 | |
| 			reg_913 &= 0x0fff;
 | |
| 			reg_914 &= 0x0003;
 | |
| 			break;
 | |
| 
 | |
| 		case DIBX000_ADC_OFF: // leave the VBG voltage on
 | |
| 			reg_913 |= (1 << 14) | (1 << 13) | (1 << 12);
 | |
| 			reg_914 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
 | |
| 			break;
 | |
| 
 | |
| 		case DIBX000_VBG_ENABLE:
 | |
| 			reg_913 &= ~(1 << 15);
 | |
| 			break;
 | |
| 
 | |
| 		case DIBX000_VBG_DISABLE:
 | |
| 			reg_913 |= (1 << 15);
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| //	dprintk( "913: %x, 914: %x", reg_913, reg_914);
 | |
| 	ret |= dib7000m_write_word(state, 913, reg_913);
 | |
| 	ret |= dib7000m_write_word(state, 914, reg_914);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000m_set_bandwidth(struct dib7000m_state *state, u32 bw)
 | |
| {
 | |
| 	u32 timf;
 | |
| 
 | |
| 	// store the current bandwidth for later use
 | |
| 	state->current_bandwidth = bw;
 | |
| 
 | |
| 	if (state->timf == 0) {
 | |
| 		dprintk( "using default timf");
 | |
| 		timf = state->timf_default;
 | |
| 	} else {
 | |
| 		dprintk( "using updated timf");
 | |
| 		timf = state->timf;
 | |
| 	}
 | |
| 
 | |
| 	timf = timf * (bw / 50) / 160;
 | |
| 
 | |
| 	dib7000m_write_word(state, 23, (u16) ((timf >> 16) & 0xffff));
 | |
| 	dib7000m_write_word(state, 24, (u16) ((timf      ) & 0xffff));
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_set_diversity_in(struct dvb_frontend *demod, int onoff)
 | |
| {
 | |
| 	struct dib7000m_state *state = demod->demodulator_priv;
 | |
| 
 | |
| 	if (state->div_force_off) {
 | |
| 		dprintk( "diversity combination deactivated - forced by COFDM parameters");
 | |
| 		onoff = 0;
 | |
| 	}
 | |
| 	state->div_state = (u8)onoff;
 | |
| 
 | |
| 	if (onoff) {
 | |
| 		dib7000m_write_word(state, 263 + state->reg_offs, 6);
 | |
| 		dib7000m_write_word(state, 264 + state->reg_offs, 6);
 | |
| 		dib7000m_write_word(state, 266 + state->reg_offs, (state->div_sync_wait << 4) | (1 << 2) | (2 << 0));
 | |
| 	} else {
 | |
| 		dib7000m_write_word(state, 263 + state->reg_offs, 1);
 | |
| 		dib7000m_write_word(state, 264 + state->reg_offs, 0);
 | |
| 		dib7000m_write_word(state, 266 + state->reg_offs, 0);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_sad_calib(struct dib7000m_state *state)
 | |
| {
 | |
| 
 | |
| /* internal */
 | |
| //	dib7000m_write_word(state, 928, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is writting in set_bandwidth
 | |
| 	dib7000m_write_word(state, 929, (0 << 1) | (0 << 0));
 | |
| 	dib7000m_write_word(state, 930, 776); // 0.625*3.3 / 4096
 | |
| 
 | |
| 	/* do the calibration */
 | |
| 	dib7000m_write_word(state, 929, (1 << 0));
 | |
| 	dib7000m_write_word(state, 929, (0 << 0));
 | |
| 
 | |
| 	msleep(1);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000m_reset_pll_common(struct dib7000m_state *state, const struct dibx000_bandwidth_config *bw)
 | |
| {
 | |
| 	dib7000m_write_word(state, 18, (u16) (((bw->internal*1000) >> 16) & 0xffff));
 | |
| 	dib7000m_write_word(state, 19, (u16) ( (bw->internal*1000)        & 0xffff));
 | |
| 	dib7000m_write_word(state, 21, (u16) ( (bw->ifreq          >> 16) & 0xffff));
 | |
| 	dib7000m_write_word(state, 22, (u16) (  bw->ifreq                 & 0xffff));
 | |
| 
 | |
| 	dib7000m_write_word(state, 928, bw->sad_cfg);
 | |
| }
 | |
| 
 | |
| static void dib7000m_reset_pll(struct dib7000m_state *state)
 | |
| {
 | |
| 	const struct dibx000_bandwidth_config *bw = state->cfg.bw;
 | |
| 	u16 reg_907,reg_910;
 | |
| 
 | |
| 	/* default */
 | |
| 	reg_907 = (bw->pll_bypass << 15) | (bw->modulo << 7) |
 | |
| 		(bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) |
 | |
| 		(bw->enable_refdiv << 1) | (0 << 0);
 | |
| 	reg_910 = (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset;
 | |
| 
 | |
| 	// for this oscillator frequency should be 30 MHz for the Master (default values in the board_parameters give that value)
 | |
| 	// this is only working only for 30 MHz crystals
 | |
| 	if (!state->cfg.quartz_direct) {
 | |
| 		reg_910 |= (1 << 5);  // forcing the predivider to 1
 | |
| 
 | |
| 		// if the previous front-end is baseband, its output frequency is 15 MHz (prev freq divided by 2)
 | |
| 		if(state->cfg.input_clk_is_div_2)
 | |
| 			reg_907 |= (16 << 9);
 | |
| 		else // otherwise the previous front-end puts out its input (default 30MHz) - no extra division necessary
 | |
| 			reg_907 |= (8 << 9);
 | |
| 	} else {
 | |
| 		reg_907 |= (bw->pll_ratio & 0x3f) << 9;
 | |
| 		reg_910 |= (bw->pll_prediv << 5);
 | |
| 	}
 | |
| 
 | |
| 	dib7000m_write_word(state, 910, reg_910); // pll cfg
 | |
| 	dib7000m_write_word(state, 907, reg_907); // clk cfg0
 | |
| 	dib7000m_write_word(state, 908, 0x0006);  // clk_cfg1
 | |
| 
 | |
| 	dib7000m_reset_pll_common(state, bw);
 | |
| }
 | |
| 
 | |
| static void dib7000mc_reset_pll(struct dib7000m_state *state)
 | |
| {
 | |
| 	const struct dibx000_bandwidth_config *bw = state->cfg.bw;
 | |
| 	u16 clk_cfg1;
 | |
| 
 | |
| 	// clk_cfg0
 | |
| 	dib7000m_write_word(state, 907, (bw->pll_prediv << 8) | (bw->pll_ratio << 0));
 | |
| 
 | |
| 	// clk_cfg1
 | |
| 	//dib7000m_write_word(state, 908, (1 << 14) | (3 << 12) |(0 << 11) |
 | |
| 	clk_cfg1 = (0 << 14) | (3 << 12) |(0 << 11) |
 | |
| 			(bw->IO_CLK_en_core << 10) | (bw->bypclk_div << 5) | (bw->enable_refdiv << 4) |
 | |
| 			(1 << 3) | (bw->pll_range << 1) | (bw->pll_reset << 0);
 | |
| 	dib7000m_write_word(state, 908, clk_cfg1);
 | |
| 	clk_cfg1 = (clk_cfg1 & 0xfff7) | (bw->pll_bypass << 3);
 | |
| 	dib7000m_write_word(state, 908, clk_cfg1);
 | |
| 
 | |
| 	// smpl_cfg
 | |
| 	dib7000m_write_word(state, 910, (1 << 12) | (2 << 10) | (bw->modulo << 8) | (bw->ADClkSrc << 7));
 | |
| 
 | |
| 	dib7000m_reset_pll_common(state, bw);
 | |
| }
 | |
| 
 | |
| static int dib7000m_reset_gpio(struct dib7000m_state *st)
 | |
| {
 | |
| 	/* reset the GPIOs */
 | |
| 	dib7000m_write_word(st, 773, st->cfg.gpio_dir);
 | |
| 	dib7000m_write_word(st, 774, st->cfg.gpio_val);
 | |
| 
 | |
| 	/* TODO 782 is P_gpio_od */
 | |
| 
 | |
| 	dib7000m_write_word(st, 775, st->cfg.gpio_pwm_pos);
 | |
| 
 | |
| 	dib7000m_write_word(st, 780, st->cfg.pwm_freq_div);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static u16 dib7000m_defaults_common[] =
 | |
| 
 | |
| {
 | |
| 	// auto search configuration
 | |
| 	3, 2,
 | |
| 		0x0004,
 | |
| 		0x1000,
 | |
| 		0x0814,
 | |
| 
 | |
| 	12, 6,
 | |
| 		0x001b,
 | |
| 		0x7740,
 | |
| 		0x005b,
 | |
| 		0x8d80,
 | |
| 		0x01c9,
 | |
| 		0xc380,
 | |
| 		0x0000,
 | |
| 		0x0080,
 | |
| 		0x0000,
 | |
| 		0x0090,
 | |
| 		0x0001,
 | |
| 		0xd4c0,
 | |
| 
 | |
| 	1, 26,
 | |
| 		0x6680, // P_corm_thres Lock algorithms configuration
 | |
| 
 | |
| 	1, 170,
 | |
| 		0x0410, // P_palf_alpha_regul, P_palf_filter_freeze, P_palf_filter_on
 | |
| 
 | |
| 	8, 173,
 | |
| 		0,
 | |
| 		0,
 | |
| 		0,
 | |
| 		0,
 | |
| 		0,
 | |
| 		0,
 | |
| 		0,
 | |
| 		0,
 | |
| 
 | |
| 	1, 182,
 | |
| 		8192, // P_fft_nb_to_cut
 | |
| 
 | |
| 	2, 195,
 | |
| 		0x0ccd, // P_pha3_thres
 | |
| 		0,      // P_cti_use_cpe, P_cti_use_prog
 | |
| 
 | |
| 	1, 205,
 | |
| 		0x200f, // P_cspu_regul, P_cspu_win_cut
 | |
| 
 | |
| 	5, 214,
 | |
| 		0x023d, // P_adp_regul_cnt
 | |
| 		0x00a4, // P_adp_noise_cnt
 | |
| 		0x00a4, // P_adp_regul_ext
 | |
| 		0x7ff0, // P_adp_noise_ext
 | |
| 		0x3ccc, // P_adp_fil
 | |
| 
 | |
| 	1, 226,
 | |
| 		0, // P_2d_byp_ti_num
 | |
| 
 | |
| 	1, 255,
 | |
| 		0x800, // P_equal_thres_wgn
 | |
| 
 | |
| 	1, 263,
 | |
| 		0x0001,
 | |
| 
 | |
| 	1, 281,
 | |
| 		0x0010, // P_fec_*
 | |
| 
 | |
| 	1, 294,
 | |
| 		0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
 | |
| 
 | |
| 	0
 | |
| };
 | |
| 
 | |
| static u16 dib7000m_defaults[] =
 | |
| 
 | |
| {
 | |
| 	/* set ADC level to -16 */
 | |
| 	11, 76,
 | |
| 		(1 << 13) - 825 - 117,
 | |
| 		(1 << 13) - 837 - 117,
 | |
| 		(1 << 13) - 811 - 117,
 | |
| 		(1 << 13) - 766 - 117,
 | |
| 		(1 << 13) - 737 - 117,
 | |
| 		(1 << 13) - 693 - 117,
 | |
| 		(1 << 13) - 648 - 117,
 | |
| 		(1 << 13) - 619 - 117,
 | |
| 		(1 << 13) - 575 - 117,
 | |
| 		(1 << 13) - 531 - 117,
 | |
| 		(1 << 13) - 501 - 117,
 | |
| 
 | |
| 	// Tuner IO bank: max drive (14mA)
 | |
| 	1, 912,
 | |
| 		0x2c8a,
 | |
| 
 | |
| 	1, 1817,
 | |
| 		1,
 | |
| 
 | |
| 	0,
 | |
| };
 | |
| 
 | |
| static int dib7000m_demod_reset(struct dib7000m_state *state)
 | |
| {
 | |
| 	dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
 | |
| 
 | |
| 	/* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
 | |
| 	dib7000m_set_adc_state(state, DIBX000_VBG_ENABLE);
 | |
| 
 | |
| 	/* restart all parts */
 | |
| 	dib7000m_write_word(state,  898, 0xffff);
 | |
| 	dib7000m_write_word(state,  899, 0xffff);
 | |
| 	dib7000m_write_word(state,  900, 0xff0f);
 | |
| 	dib7000m_write_word(state,  901, 0xfffc);
 | |
| 
 | |
| 	dib7000m_write_word(state,  898, 0);
 | |
| 	dib7000m_write_word(state,  899, 0);
 | |
| 	dib7000m_write_word(state,  900, 0);
 | |
| 	dib7000m_write_word(state,  901, 0);
 | |
| 
 | |
| 	if (state->revision == 0x4000)
 | |
| 		dib7000m_reset_pll(state);
 | |
| 	else
 | |
| 		dib7000mc_reset_pll(state);
 | |
| 
 | |
| 	if (dib7000m_reset_gpio(state) != 0)
 | |
| 		dprintk( "GPIO reset was not successful.");
 | |
| 
 | |
| 	if (dib7000m_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
 | |
| 		dprintk( "OUTPUT_MODE could not be reset.");
 | |
| 
 | |
| 	/* unforce divstr regardless whether i2c enumeration was done or not */
 | |
| 	dib7000m_write_word(state, 1794, dib7000m_read_word(state, 1794) & ~(1 << 1) );
 | |
| 
 | |
| 	dib7000m_set_bandwidth(state, 8000);
 | |
| 
 | |
| 	dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON);
 | |
| 	dib7000m_sad_calib(state);
 | |
| 	dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
 | |
| 
 | |
| 	if (state->cfg.dvbt_mode)
 | |
| 		dib7000m_write_word(state, 1796, 0x0); // select DVB-T output
 | |
| 
 | |
| 	if (state->cfg.mobile_mode)
 | |
| 		dib7000m_write_word(state, 261 + state->reg_offs, 2);
 | |
| 	else
 | |
| 		dib7000m_write_word(state, 224 + state->reg_offs, 1);
 | |
| 
 | |
| 	// P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
 | |
| 	if(state->cfg.tuner_is_baseband)
 | |
| 		dib7000m_write_word(state, 36, 0x0755);
 | |
| 	else
 | |
| 		dib7000m_write_word(state, 36, 0x1f55);
 | |
| 
 | |
| 	// P_divclksel=3 P_divbitsel=1
 | |
| 	if (state->revision == 0x4000)
 | |
| 		dib7000m_write_word(state, 909, (3 << 10) | (1 << 6));
 | |
| 	else
 | |
| 		dib7000m_write_word(state, 909, (3 << 4) | 1);
 | |
| 
 | |
| 	dib7000m_write_tab(state, dib7000m_defaults_common);
 | |
| 	dib7000m_write_tab(state, dib7000m_defaults);
 | |
| 
 | |
| 	dib7000m_set_power_mode(state, DIB7000M_POWER_INTERFACE_ONLY);
 | |
| 
 | |
| 	state->internal_clk = state->cfg.bw->internal;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000m_restart_agc(struct dib7000m_state *state)
 | |
| {
 | |
| 	// P_restart_iqc & P_restart_agc
 | |
| 	dib7000m_write_word(state, 898, 0x0c00);
 | |
| 	dib7000m_write_word(state, 898, 0x0000);
 | |
| }
 | |
| 
 | |
| static int dib7000m_agc_soft_split(struct dib7000m_state *state)
 | |
| {
 | |
| 	u16 agc,split_offset;
 | |
| 
 | |
| 	if(!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	// n_agc_global
 | |
| 	agc = dib7000m_read_word(state, 390);
 | |
| 
 | |
| 	if (agc > state->current_agc->split.min_thres)
 | |
| 		split_offset = state->current_agc->split.min;
 | |
| 	else if (agc < state->current_agc->split.max_thres)
 | |
| 		split_offset = state->current_agc->split.max;
 | |
| 	else
 | |
| 		split_offset = state->current_agc->split.max *
 | |
| 			(agc - state->current_agc->split.min_thres) /
 | |
| 			(state->current_agc->split.max_thres - state->current_agc->split.min_thres);
 | |
| 
 | |
| 	dprintk( "AGC split_offset: %d",split_offset);
 | |
| 
 | |
| 	// P_agc_force_split and P_agc_split_offset
 | |
| 	return dib7000m_write_word(state, 103, (dib7000m_read_word(state, 103) & 0xff00) | split_offset);
 | |
| }
 | |
| 
 | |
| static int dib7000m_update_lna(struct dib7000m_state *state)
 | |
| {
 | |
| 	u16 dyn_gain;
 | |
| 
 | |
| 	if (state->cfg.update_lna) {
 | |
| 		// read dyn_gain here (because it is demod-dependent and not fe)
 | |
| 		dyn_gain = dib7000m_read_word(state, 390);
 | |
| 
 | |
| 		if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed
 | |
| 			dib7000m_restart_agc(state);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_set_agc_config(struct dib7000m_state *state, u8 band)
 | |
| {
 | |
| 	struct dibx000_agc_config *agc = NULL;
 | |
| 	int i;
 | |
| 	if (state->current_band == band && state->current_agc != NULL)
 | |
| 		return 0;
 | |
| 	state->current_band = band;
 | |
| 
 | |
| 	for (i = 0; i < state->cfg.agc_config_count; i++)
 | |
| 		if (state->cfg.agc[i].band_caps & band) {
 | |
| 			agc = &state->cfg.agc[i];
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	if (agc == NULL) {
 | |
| 		dprintk( "no valid AGC configuration found for band 0x%02x",band);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	state->current_agc = agc;
 | |
| 
 | |
| 	/* AGC */
 | |
| 	dib7000m_write_word(state, 72 ,  agc->setup);
 | |
| 	dib7000m_write_word(state, 73 ,  agc->inv_gain);
 | |
| 	dib7000m_write_word(state, 74 ,  agc->time_stabiliz);
 | |
| 	dib7000m_write_word(state, 97 , (agc->alpha_level << 12) | agc->thlock);
 | |
| 
 | |
| 	// Demod AGC loop configuration
 | |
| 	dib7000m_write_word(state, 98, (agc->alpha_mant << 5) | agc->alpha_exp);
 | |
| 	dib7000m_write_word(state, 99, (agc->beta_mant  << 6) | agc->beta_exp);
 | |
| 
 | |
| 	dprintk( "WBD: ref: %d, sel: %d, active: %d, alpha: %d",
 | |
| 		state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
 | |
| 
 | |
| 	/* AGC continued */
 | |
| 	if (state->wbd_ref != 0)
 | |
| 		dib7000m_write_word(state, 102, state->wbd_ref);
 | |
| 	else // use default
 | |
| 		dib7000m_write_word(state, 102, agc->wbd_ref);
 | |
| 
 | |
| 	dib7000m_write_word(state, 103, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) );
 | |
| 	dib7000m_write_word(state, 104,  agc->agc1_max);
 | |
| 	dib7000m_write_word(state, 105,  agc->agc1_min);
 | |
| 	dib7000m_write_word(state, 106,  agc->agc2_max);
 | |
| 	dib7000m_write_word(state, 107,  agc->agc2_min);
 | |
| 	dib7000m_write_word(state, 108, (agc->agc1_pt1 << 8) | agc->agc1_pt2 );
 | |
| 	dib7000m_write_word(state, 109, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
 | |
| 	dib7000m_write_word(state, 110, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
 | |
| 	dib7000m_write_word(state, 111, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
 | |
| 
 | |
| 	if (state->revision > 0x4000) { // settings for the MC
 | |
| 		dib7000m_write_word(state, 71,   agc->agc1_pt3);
 | |
| //		dprintk( "929: %x %d %d",
 | |
| //			(dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2), agc->wbd_inv, agc->wbd_sel);
 | |
| 		dib7000m_write_word(state, 929, (dib7000m_read_word(state, 929) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2));
 | |
| 	} else {
 | |
| 		// wrong default values
 | |
| 		u16 b[9] = { 676, 696, 717, 737, 758, 778, 799, 819, 840 };
 | |
| 		for (i = 0; i < 9; i++)
 | |
| 			dib7000m_write_word(state, 88 + i, b[i]);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000m_update_timf(struct dib7000m_state *state)
 | |
| {
 | |
| 	u32 timf = (dib7000m_read_word(state, 436) << 16) | dib7000m_read_word(state, 437);
 | |
| 	state->timf = timf * 160 / (state->current_bandwidth / 50);
 | |
| 	dib7000m_write_word(state, 23, (u16) (timf >> 16));
 | |
| 	dib7000m_write_word(state, 24, (u16) (timf & 0xffff));
 | |
| 	dprintk( "updated timf_frequency: %d (default: %d)",state->timf, state->timf_default);
 | |
| }
 | |
| 
 | |
| static int dib7000m_agc_startup(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
 | |
| {
 | |
| 	struct dib7000m_state *state = demod->demodulator_priv;
 | |
| 	u16 cfg_72 = dib7000m_read_word(state, 72);
 | |
| 	int ret = -1;
 | |
| 	u8 *agc_state = &state->agc_state;
 | |
| 	u8 agc_split;
 | |
| 
 | |
| 	switch (state->agc_state) {
 | |
| 		case 0:
 | |
| 			// set power-up level: interf+analog+AGC
 | |
| 			dib7000m_set_power_mode(state, DIB7000M_POWER_INTERF_ANALOG_AGC);
 | |
| 			dib7000m_set_adc_state(state, DIBX000_ADC_ON);
 | |
| 
 | |
| 			if (dib7000m_set_agc_config(state, BAND_OF_FREQUENCY(ch->frequency/1000)) != 0)
 | |
| 				return -1;
 | |
| 
 | |
| 			ret = 7; /* ADC power up */
 | |
| 			(*agc_state)++;
 | |
| 			break;
 | |
| 
 | |
| 		case 1:
 | |
| 			/* AGC initialization */
 | |
| 			if (state->cfg.agc_control)
 | |
| 				state->cfg.agc_control(&state->demod, 1);
 | |
| 
 | |
| 			dib7000m_write_word(state, 75, 32768);
 | |
| 			if (!state->current_agc->perform_agc_softsplit) {
 | |
| 				/* we are using the wbd - so slow AGC startup */
 | |
| 				dib7000m_write_word(state, 103, 1 << 8); /* force 0 split on WBD and restart AGC */
 | |
| 				(*agc_state)++;
 | |
| 				ret = 5;
 | |
| 			} else {
 | |
| 				/* default AGC startup */
 | |
| 				(*agc_state) = 4;
 | |
| 				/* wait AGC rough lock time */
 | |
| 				ret = 7;
 | |
| 			}
 | |
| 
 | |
| 			dib7000m_restart_agc(state);
 | |
| 			break;
 | |
| 
 | |
| 		case 2: /* fast split search path after 5sec */
 | |
| 			dib7000m_write_word(state,  72, cfg_72 | (1 << 4)); /* freeze AGC loop */
 | |
| 			dib7000m_write_word(state, 103, 2 << 9);            /* fast split search 0.25kHz */
 | |
| 			(*agc_state)++;
 | |
| 			ret = 14;
 | |
| 			break;
 | |
| 
 | |
| 	case 3: /* split search ended */
 | |
| 			agc_split = (u8)dib7000m_read_word(state, 392); /* store the split value for the next time */
 | |
| 			dib7000m_write_word(state, 75, dib7000m_read_word(state, 390)); /* set AGC gain start value */
 | |
| 
 | |
| 			dib7000m_write_word(state, 72,  cfg_72 & ~(1 << 4));   /* std AGC loop */
 | |
| 			dib7000m_write_word(state, 103, (state->current_agc->wbd_alpha << 9) | agc_split); /* standard split search */
 | |
| 
 | |
| 			dib7000m_restart_agc(state);
 | |
| 
 | |
| 			dprintk( "SPLIT %p: %hd", demod, agc_split);
 | |
| 
 | |
| 			(*agc_state)++;
 | |
| 			ret = 5;
 | |
| 			break;
 | |
| 
 | |
| 		case 4: /* LNA startup */
 | |
| 			/* wait AGC accurate lock time */
 | |
| 			ret = 7;
 | |
| 
 | |
| 			if (dib7000m_update_lna(state))
 | |
| 				// wait only AGC rough lock time
 | |
| 				ret = 5;
 | |
| 			else
 | |
| 				(*agc_state)++;
 | |
| 			break;
 | |
| 
 | |
| 		case 5:
 | |
| 			dib7000m_agc_soft_split(state);
 | |
| 
 | |
| 			if (state->cfg.agc_control)
 | |
| 				state->cfg.agc_control(&state->demod, 0);
 | |
| 
 | |
| 			(*agc_state)++;
 | |
| 			break;
 | |
| 
 | |
| 		default:
 | |
| 			break;
 | |
| 	}
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void dib7000m_set_channel(struct dib7000m_state *state, struct dvb_frontend_parameters *ch, u8 seq)
 | |
| {
 | |
| 	u16 value, est[4];
 | |
| 
 | |
| 	dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
 | |
| 
 | |
| 	/* nfft, guard, qam, alpha */
 | |
| 	value = 0;
 | |
| 	switch (ch->u.ofdm.transmission_mode) {
 | |
| 		case TRANSMISSION_MODE_2K: value |= (0 << 7); break;
 | |
| 		case /* 4K MODE */ 255: value |= (2 << 7); break;
 | |
| 		default:
 | |
| 		case TRANSMISSION_MODE_8K: value |= (1 << 7); break;
 | |
| 	}
 | |
| 	switch (ch->u.ofdm.guard_interval) {
 | |
| 		case GUARD_INTERVAL_1_32: value |= (0 << 5); break;
 | |
| 		case GUARD_INTERVAL_1_16: value |= (1 << 5); break;
 | |
| 		case GUARD_INTERVAL_1_4:  value |= (3 << 5); break;
 | |
| 		default:
 | |
| 		case GUARD_INTERVAL_1_8:  value |= (2 << 5); break;
 | |
| 	}
 | |
| 	switch (ch->u.ofdm.constellation) {
 | |
| 		case QPSK:  value |= (0 << 3); break;
 | |
| 		case QAM_16: value |= (1 << 3); break;
 | |
| 		default:
 | |
| 		case QAM_64: value |= (2 << 3); break;
 | |
| 	}
 | |
| 	switch (HIERARCHY_1) {
 | |
| 		case HIERARCHY_2: value |= 2; break;
 | |
| 		case HIERARCHY_4: value |= 4; break;
 | |
| 		default:
 | |
| 		case HIERARCHY_1: value |= 1; break;
 | |
| 	}
 | |
| 	dib7000m_write_word(state, 0, value);
 | |
| 	dib7000m_write_word(state, 5, (seq << 4));
 | |
| 
 | |
| 	/* P_dintl_native, P_dintlv_inv, P_hrch, P_code_rate, P_select_hp */
 | |
| 	value = 0;
 | |
| 	if (1 != 0)
 | |
| 		value |= (1 << 6);
 | |
| 	if (ch->u.ofdm.hierarchy_information == 1)
 | |
| 		value |= (1 << 4);
 | |
| 	if (1 == 1)
 | |
| 		value |= 1;
 | |
| 	switch ((ch->u.ofdm.hierarchy_information == 0 || 1 == 1) ? ch->u.ofdm.code_rate_HP : ch->u.ofdm.code_rate_LP) {
 | |
| 		case FEC_2_3: value |= (2 << 1); break;
 | |
| 		case FEC_3_4: value |= (3 << 1); break;
 | |
| 		case FEC_5_6: value |= (5 << 1); break;
 | |
| 		case FEC_7_8: value |= (7 << 1); break;
 | |
| 		default:
 | |
| 		case FEC_1_2: value |= (1 << 1); break;
 | |
| 	}
 | |
| 	dib7000m_write_word(state, 267 + state->reg_offs, value);
 | |
| 
 | |
| 	/* offset loop parameters */
 | |
| 
 | |
| 	/* P_timf_alpha = 6, P_corm_alpha=6, P_corm_thres=0x80 */
 | |
| 	dib7000m_write_word(state, 26, (6 << 12) | (6 << 8) | 0x80);
 | |
| 
 | |
| 	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=1, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
 | |
| 	dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (1 << 9) | (3 << 5) | (1 << 4) | (0x3));
 | |
| 
 | |
| 	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max=3 */
 | |
| 	dib7000m_write_word(state, 32, (0 << 4) | 0x3);
 | |
| 
 | |
| 	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step=5 */
 | |
| 	dib7000m_write_word(state, 33, (0 << 4) | 0x5);
 | |
| 
 | |
| 	/* P_dvsy_sync_wait */
 | |
| 	switch (ch->u.ofdm.transmission_mode) {
 | |
| 		case TRANSMISSION_MODE_8K: value = 256; break;
 | |
| 		case /* 4K MODE */ 255: value = 128; break;
 | |
| 		case TRANSMISSION_MODE_2K:
 | |
| 		default: value = 64; break;
 | |
| 	}
 | |
| 	switch (ch->u.ofdm.guard_interval) {
 | |
| 		case GUARD_INTERVAL_1_16: value *= 2; break;
 | |
| 		case GUARD_INTERVAL_1_8:  value *= 4; break;
 | |
| 		case GUARD_INTERVAL_1_4:  value *= 8; break;
 | |
| 		default:
 | |
| 		case GUARD_INTERVAL_1_32: value *= 1; break;
 | |
| 	}
 | |
| 	state->div_sync_wait = (value * 3) / 2 + 32; // add 50% SFN margin + compensate for one DVSY-fifo TODO
 | |
| 
 | |
| 	/* deactive the possibility of diversity reception if extended interleave - not for 7000MC */
 | |
| 	/* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */
 | |
| 	if (1 == 1 || state->revision > 0x4000)
 | |
| 		state->div_force_off = 0;
 | |
| 	else
 | |
| 		state->div_force_off = 1;
 | |
| 	dib7000m_set_diversity_in(&state->demod, state->div_state);
 | |
| 
 | |
| 	/* channel estimation fine configuration */
 | |
| 	switch (ch->u.ofdm.constellation) {
 | |
| 		case QAM_64:
 | |
| 			est[0] = 0x0148;       /* P_adp_regul_cnt 0.04 */
 | |
| 			est[1] = 0xfff0;       /* P_adp_noise_cnt -0.002 */
 | |
| 			est[2] = 0x00a4;       /* P_adp_regul_ext 0.02 */
 | |
| 			est[3] = 0xfff8;       /* P_adp_noise_ext -0.001 */
 | |
| 			break;
 | |
| 		case QAM_16:
 | |
| 			est[0] = 0x023d;       /* P_adp_regul_cnt 0.07 */
 | |
| 			est[1] = 0xffdf;       /* P_adp_noise_cnt -0.004 */
 | |
| 			est[2] = 0x00a4;       /* P_adp_regul_ext 0.02 */
 | |
| 			est[3] = 0xfff0;       /* P_adp_noise_ext -0.002 */
 | |
| 			break;
 | |
| 		default:
 | |
| 			est[0] = 0x099a;       /* P_adp_regul_cnt 0.3 */
 | |
| 			est[1] = 0xffae;       /* P_adp_noise_cnt -0.01 */
 | |
| 			est[2] = 0x0333;       /* P_adp_regul_ext 0.1 */
 | |
| 			est[3] = 0xfff8;       /* P_adp_noise_ext -0.002 */
 | |
| 			break;
 | |
| 	}
 | |
| 	for (value = 0; value < 4; value++)
 | |
| 		dib7000m_write_word(state, 214 + value + state->reg_offs, est[value]);
 | |
| 
 | |
| 	// set power-up level: autosearch
 | |
| 	dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_DINTLV_ICIRM_EQUAL_CFROD);
 | |
| }
 | |
| 
 | |
| static int dib7000m_autosearch_start(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
 | |
| {
 | |
| 	struct dib7000m_state *state = demod->demodulator_priv;
 | |
| 	struct dvb_frontend_parameters schan;
 | |
| 	int ret = 0;
 | |
| 	u32 value, factor;
 | |
| 
 | |
| 	schan = *ch;
 | |
| 
 | |
| 	schan.u.ofdm.constellation = QAM_64;
 | |
| 	schan.u.ofdm.guard_interval        = GUARD_INTERVAL_1_32;
 | |
| 	schan.u.ofdm.transmission_mode         = TRANSMISSION_MODE_8K;
 | |
| 	schan.u.ofdm.code_rate_HP = FEC_2_3;
 | |
| 	schan.u.ofdm.code_rate_LP = FEC_3_4;
 | |
| 	schan.u.ofdm.hierarchy_information         = 0;
 | |
| 
 | |
| 	dib7000m_set_channel(state, &schan, 7);
 | |
| 
 | |
| 	factor = BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth);
 | |
| 	if (factor >= 5000)
 | |
| 		factor = 1;
 | |
| 	else
 | |
| 		factor = 6;
 | |
| 
 | |
| 	// always use the setting for 8MHz here lock_time for 7,6 MHz are longer
 | |
| 	value = 30 * state->internal_clk * factor;
 | |
| 	ret |= dib7000m_write_word(state, 6,  (u16) ((value >> 16) & 0xffff)); // lock0 wait time
 | |
| 	ret |= dib7000m_write_word(state, 7,  (u16)  (value        & 0xffff)); // lock0 wait time
 | |
| 	value = 100 * state->internal_clk * factor;
 | |
| 	ret |= dib7000m_write_word(state, 8,  (u16) ((value >> 16) & 0xffff)); // lock1 wait time
 | |
| 	ret |= dib7000m_write_word(state, 9,  (u16)  (value        & 0xffff)); // lock1 wait time
 | |
| 	value = 500 * state->internal_clk * factor;
 | |
| 	ret |= dib7000m_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
 | |
| 	ret |= dib7000m_write_word(state, 11, (u16)  (value        & 0xffff)); // lock2 wait time
 | |
| 
 | |
| 	// start search
 | |
| 	value = dib7000m_read_word(state, 0);
 | |
| 	ret |= dib7000m_write_word(state, 0, (u16) (value | (1 << 9)));
 | |
| 
 | |
| 	/* clear n_irq_pending */
 | |
| 	if (state->revision == 0x4000)
 | |
| 		dib7000m_write_word(state, 1793, 0);
 | |
| 	else
 | |
| 		dib7000m_read_word(state, 537);
 | |
| 
 | |
| 	ret |= dib7000m_write_word(state, 0, (u16) value);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000m_autosearch_irq(struct dib7000m_state *state, u16 reg)
 | |
| {
 | |
| 	u16 irq_pending = dib7000m_read_word(state, reg);
 | |
| 
 | |
| 	if (irq_pending & 0x1) { // failed
 | |
| 		dprintk( "autosearch failed");
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (irq_pending & 0x2) { // succeeded
 | |
| 		dprintk( "autosearch succeeded");
 | |
| 		return 2;
 | |
| 	}
 | |
| 	return 0; // still pending
 | |
| }
 | |
| 
 | |
| static int dib7000m_autosearch_is_irq(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000m_state *state = demod->demodulator_priv;
 | |
| 	if (state->revision == 0x4000)
 | |
| 		return dib7000m_autosearch_irq(state, 1793);
 | |
| 	else
 | |
| 		return dib7000m_autosearch_irq(state, 537);
 | |
| }
 | |
| 
 | |
| static int dib7000m_tune(struct dvb_frontend *demod, struct dvb_frontend_parameters *ch)
 | |
| {
 | |
| 	struct dib7000m_state *state = demod->demodulator_priv;
 | |
| 	int ret = 0;
 | |
| 	u16 value;
 | |
| 
 | |
| 	// we are already tuned - just resuming from suspend
 | |
| 	if (ch != NULL)
 | |
| 		dib7000m_set_channel(state, ch, 0);
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	// restart demod
 | |
| 	ret |= dib7000m_write_word(state, 898, 0x4000);
 | |
| 	ret |= dib7000m_write_word(state, 898, 0x0000);
 | |
| 	msleep(45);
 | |
| 
 | |
| 	dib7000m_set_power_mode(state, DIB7000M_POWER_COR4_CRY_ESRAM_MOUT_NUD);
 | |
| 	/* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */
 | |
| 	ret |= dib7000m_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3));
 | |
| 
 | |
| 	// never achieved a lock before - wait for timfreq to update
 | |
| 	if (state->timf == 0)
 | |
| 		msleep(200);
 | |
| 
 | |
| 	//dump_reg(state);
 | |
| 	/* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */
 | |
| 	value = (6 << 8) | 0x80;
 | |
| 	switch (ch->u.ofdm.transmission_mode) {
 | |
| 		case TRANSMISSION_MODE_2K: value |= (7 << 12); break;
 | |
| 		case /* 4K MODE */ 255: value |= (8 << 12); break;
 | |
| 		default:
 | |
| 		case TRANSMISSION_MODE_8K: value |= (9 << 12); break;
 | |
| 	}
 | |
| 	ret |= dib7000m_write_word(state, 26, value);
 | |
| 
 | |
| 	/* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */
 | |
| 	value = (0 << 4);
 | |
| 	switch (ch->u.ofdm.transmission_mode) {
 | |
| 		case TRANSMISSION_MODE_2K: value |= 0x6; break;
 | |
| 		case /* 4K MODE */ 255: value |= 0x7; break;
 | |
| 		default:
 | |
| 		case TRANSMISSION_MODE_8K: value |= 0x8; break;
 | |
| 	}
 | |
| 	ret |= dib7000m_write_word(state, 32, value);
 | |
| 
 | |
| 	/* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */
 | |
| 	value = (0 << 4);
 | |
| 	switch (ch->u.ofdm.transmission_mode) {
 | |
| 		case TRANSMISSION_MODE_2K: value |= 0x6; break;
 | |
| 		case /* 4K MODE */ 255: value |= 0x7; break;
 | |
| 		default:
 | |
| 		case TRANSMISSION_MODE_8K: value |= 0x8; break;
 | |
| 	}
 | |
| 	ret |= dib7000m_write_word(state, 33,  value);
 | |
| 
 | |
| 	// we achieved a lock - it's time to update the timf freq
 | |
| 	if ((dib7000m_read_word(state, 535) >> 6)  & 0x1)
 | |
| 		dib7000m_update_timf(state);
 | |
| 
 | |
|     dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(ch->u.ofdm.bandwidth));
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000m_wakeup(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000m_state *state = demod->demodulator_priv;
 | |
| 
 | |
| 	dib7000m_set_power_mode(state, DIB7000M_POWER_ALL);
 | |
| 
 | |
| 	if (dib7000m_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
 | |
| 		dprintk( "could not start Slow ADC");
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_sleep(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000m_state *st = demod->demodulator_priv;
 | |
| 	dib7000m_set_output_mode(st, OUTMODE_HIGH_Z);
 | |
| 	dib7000m_set_power_mode(st, DIB7000M_POWER_INTERFACE_ONLY);
 | |
| 	return dib7000m_set_adc_state(st, DIBX000_SLOW_ADC_OFF) |
 | |
| 		dib7000m_set_adc_state(st, DIBX000_ADC_OFF);
 | |
| }
 | |
| 
 | |
| static int dib7000m_identify(struct dib7000m_state *state)
 | |
| {
 | |
| 	u16 value;
 | |
| 
 | |
| 	if ((value = dib7000m_read_word(state, 896)) != 0x01b3) {
 | |
| 		dprintk( "wrong Vendor ID (0x%x)",value);
 | |
| 		return -EREMOTEIO;
 | |
| 	}
 | |
| 
 | |
| 	state->revision = dib7000m_read_word(state, 897);
 | |
| 	if (state->revision != 0x4000 &&
 | |
| 		state->revision != 0x4001 &&
 | |
| 		state->revision != 0x4002 &&
 | |
| 		state->revision != 0x4003) {
 | |
| 		dprintk( "wrong Device ID (0x%x)",value);
 | |
| 		return -EREMOTEIO;
 | |
| 	}
 | |
| 
 | |
| 	/* protect this driver to be used with 7000PC */
 | |
| 	if (state->revision == 0x4000 && dib7000m_read_word(state, 769) == 0x4000) {
 | |
| 		dprintk( "this driver does not work with DiB7000PC");
 | |
| 		return -EREMOTEIO;
 | |
| 	}
 | |
| 
 | |
| 	switch (state->revision) {
 | |
| 		case 0x4000: dprintk( "found DiB7000MA/PA/MB/PB"); break;
 | |
| 		case 0x4001: state->reg_offs = 1; dprintk( "found DiB7000HC"); break;
 | |
| 		case 0x4002: state->reg_offs = 1; dprintk( "found DiB7000MC"); break;
 | |
| 		case 0x4003: state->reg_offs = 1; dprintk( "found DiB9000"); break;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int dib7000m_get_frontend(struct dvb_frontend* fe,
 | |
| 				struct dvb_frontend_parameters *fep)
 | |
| {
 | |
| 	struct dib7000m_state *state = fe->demodulator_priv;
 | |
| 	u16 tps = dib7000m_read_word(state,480);
 | |
| 
 | |
| 	fep->inversion = INVERSION_AUTO;
 | |
| 
 | |
| 	fep->u.ofdm.bandwidth = state->current_bandwidth;
 | |
| 
 | |
| 	switch ((tps >> 8) & 0x3) {
 | |
| 		case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break;
 | |
| 		case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break;
 | |
| 		/* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */
 | |
| 	}
 | |
| 
 | |
| 	switch (tps & 0x3) {
 | |
| 		case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break;
 | |
| 		case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break;
 | |
| 		case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break;
 | |
| 		case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break;
 | |
| 	}
 | |
| 
 | |
| 	switch ((tps >> 14) & 0x3) {
 | |
| 		case 0: fep->u.ofdm.constellation = QPSK; break;
 | |
| 		case 1: fep->u.ofdm.constellation = QAM_16; break;
 | |
| 		case 2:
 | |
| 		default: fep->u.ofdm.constellation = QAM_64; break;
 | |
| 	}
 | |
| 
 | |
| 	/* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */
 | |
| 	/* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */
 | |
| 
 | |
| 	fep->u.ofdm.hierarchy_information = HIERARCHY_NONE;
 | |
| 	switch ((tps >> 5) & 0x7) {
 | |
| 		case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break;
 | |
| 		case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break;
 | |
| 		case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break;
 | |
| 		case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break;
 | |
| 		case 7:
 | |
| 		default: fep->u.ofdm.code_rate_HP = FEC_7_8; break;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	switch ((tps >> 2) & 0x7) {
 | |
| 		case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break;
 | |
| 		case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break;
 | |
| 		case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break;
 | |
| 		case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break;
 | |
| 		case 7:
 | |
| 		default: fep->u.ofdm.code_rate_LP = FEC_7_8; break;
 | |
| 	}
 | |
| 
 | |
| 	/* native interleaver: (dib7000m_read_word(state, 481) >>  5) & 0x1 */
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_set_frontend(struct dvb_frontend* fe,
 | |
| 				struct dvb_frontend_parameters *fep)
 | |
| {
 | |
| 	struct dib7000m_state *state = fe->demodulator_priv;
 | |
| 	int time, ret;
 | |
| 
 | |
|     dib7000m_set_output_mode(state, OUTMODE_HIGH_Z);
 | |
| 
 | |
| 	state->current_bandwidth = fep->u.ofdm.bandwidth;
 | |
| 	dib7000m_set_bandwidth(state, BANDWIDTH_TO_KHZ(fep->u.ofdm.bandwidth));
 | |
| 
 | |
| 	if (fe->ops.tuner_ops.set_params)
 | |
| 		fe->ops.tuner_ops.set_params(fe, fep);
 | |
| 
 | |
| 	/* start up the AGC */
 | |
| 	state->agc_state = 0;
 | |
| 	do {
 | |
| 		time = dib7000m_agc_startup(fe, fep);
 | |
| 		if (time != -1)
 | |
| 			msleep(time);
 | |
| 	} while (time != -1);
 | |
| 
 | |
| 	if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO ||
 | |
| 		fep->u.ofdm.guard_interval    == GUARD_INTERVAL_AUTO ||
 | |
| 		fep->u.ofdm.constellation     == QAM_AUTO ||
 | |
| 		fep->u.ofdm.code_rate_HP      == FEC_AUTO) {
 | |
| 		int i = 800, found;
 | |
| 
 | |
| 		dib7000m_autosearch_start(fe, fep);
 | |
| 		do {
 | |
| 			msleep(1);
 | |
| 			found = dib7000m_autosearch_is_irq(fe);
 | |
| 		} while (found == 0 && i--);
 | |
| 
 | |
| 		dprintk("autosearch returns: %d",found);
 | |
| 		if (found == 0 || found == 1)
 | |
| 			return 0; // no channel found
 | |
| 
 | |
| 		dib7000m_get_frontend(fe, fep);
 | |
| 	}
 | |
| 
 | |
| 	ret = dib7000m_tune(fe, fep);
 | |
| 
 | |
| 	/* make this a config parameter */
 | |
| 	dib7000m_set_output_mode(state, OUTMODE_MPEG2_FIFO);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int dib7000m_read_status(struct dvb_frontend *fe, fe_status_t *stat)
 | |
| {
 | |
| 	struct dib7000m_state *state = fe->demodulator_priv;
 | |
| 	u16 lock = dib7000m_read_word(state, 535);
 | |
| 
 | |
| 	*stat = 0;
 | |
| 
 | |
| 	if (lock & 0x8000)
 | |
| 		*stat |= FE_HAS_SIGNAL;
 | |
| 	if (lock & 0x3000)
 | |
| 		*stat |= FE_HAS_CARRIER;
 | |
| 	if (lock & 0x0100)
 | |
| 		*stat |= FE_HAS_VITERBI;
 | |
| 	if (lock & 0x0010)
 | |
| 		*stat |= FE_HAS_SYNC;
 | |
| 	if (lock & 0x0008)
 | |
| 		*stat |= FE_HAS_LOCK;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_read_ber(struct dvb_frontend *fe, u32 *ber)
 | |
| {
 | |
| 	struct dib7000m_state *state = fe->demodulator_priv;
 | |
| 	*ber = (dib7000m_read_word(state, 526) << 16) | dib7000m_read_word(state, 527);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_read_unc_blocks(struct dvb_frontend *fe, u32 *unc)
 | |
| {
 | |
| 	struct dib7000m_state *state = fe->demodulator_priv;
 | |
| 	*unc = dib7000m_read_word(state, 534);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
 | |
| {
 | |
| 	struct dib7000m_state *state = fe->demodulator_priv;
 | |
| 	u16 val = dib7000m_read_word(state, 390);
 | |
| 	*strength = 65535 - val;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_read_snr(struct dvb_frontend* fe, u16 *snr)
 | |
| {
 | |
| 	*snr = 0x0000;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int dib7000m_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
 | |
| {
 | |
| 	tune->min_delay_ms = 1000;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void dib7000m_release(struct dvb_frontend *demod)
 | |
| {
 | |
| 	struct dib7000m_state *st = demod->demodulator_priv;
 | |
| 	dibx000_exit_i2c_master(&st->i2c_master);
 | |
| 	kfree(st);
 | |
| }
 | |
| 
 | |
| struct i2c_adapter * dib7000m_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating)
 | |
| {
 | |
| 	struct dib7000m_state *st = demod->demodulator_priv;
 | |
| 	return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
 | |
| }
 | |
| EXPORT_SYMBOL(dib7000m_get_i2c_master);
 | |
| 
 | |
| #if 0
 | |
| /* used with some prototype boards */
 | |
| int dib7000m_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods,
 | |
| 		u8 default_addr, struct dib7000m_config cfg[])
 | |
| {
 | |
| 	struct dib7000m_state st = { .i2c_adap = i2c };
 | |
| 	int k = 0;
 | |
| 	u8 new_addr = 0;
 | |
| 
 | |
| 	for (k = no_of_demods-1; k >= 0; k--) {
 | |
| 		st.cfg = cfg[k];
 | |
| 
 | |
| 		/* designated i2c address */
 | |
| 		new_addr          = (0x40 + k) << 1;
 | |
| 		st.i2c_addr = new_addr;
 | |
| 		if (dib7000m_identify(&st) != 0) {
 | |
| 			st.i2c_addr = default_addr;
 | |
| 			if (dib7000m_identify(&st) != 0) {
 | |
| 				dprintk("DiB7000M #%d: not identified", k);
 | |
| 				return -EIO;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		/* start diversity to pull_down div_str - just for i2c-enumeration */
 | |
| 		dib7000m_set_output_mode(&st, OUTMODE_DIVERSITY);
 | |
| 
 | |
| 		dib7000m_write_word(&st, 1796, 0x0); // select DVB-T output
 | |
| 
 | |
| 		/* set new i2c address and force divstart */
 | |
| 		dib7000m_write_word(&st, 1794, (new_addr << 2) | 0x2);
 | |
| 
 | |
| 		dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
 | |
| 	}
 | |
| 
 | |
| 	for (k = 0; k < no_of_demods; k++) {
 | |
| 		st.cfg = cfg[k];
 | |
| 		st.i2c_addr = (0x40 + k) << 1;
 | |
| 
 | |
| 		// unforce divstr
 | |
| 		dib7000m_write_word(&st,1794, st.i2c_addr << 2);
 | |
| 
 | |
| 		/* deactivate div - it was just for i2c-enumeration */
 | |
| 		dib7000m_set_output_mode(&st, OUTMODE_HIGH_Z);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL(dib7000m_i2c_enumeration);
 | |
| #endif
 | |
| 
 | |
| static struct dvb_frontend_ops dib7000m_ops;
 | |
| struct dvb_frontend * dib7000m_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000m_config *cfg)
 | |
| {
 | |
| 	struct dvb_frontend *demod;
 | |
| 	struct dib7000m_state *st;
 | |
| 	st = kzalloc(sizeof(struct dib7000m_state), GFP_KERNEL);
 | |
| 	if (st == NULL)
 | |
| 		return NULL;
 | |
| 
 | |
| 	memcpy(&st->cfg, cfg, sizeof(struct dib7000m_config));
 | |
| 	st->i2c_adap = i2c_adap;
 | |
| 	st->i2c_addr = i2c_addr;
 | |
| 
 | |
| 	demod                   = &st->demod;
 | |
| 	demod->demodulator_priv = st;
 | |
| 	memcpy(&st->demod.ops, &dib7000m_ops, sizeof(struct dvb_frontend_ops));
 | |
| 
 | |
| 	st->timf_default = cfg->bw->timf;
 | |
| 
 | |
| 	if (dib7000m_identify(st) != 0)
 | |
| 		goto error;
 | |
| 
 | |
| 	if (st->revision == 0x4000)
 | |
| 		dibx000_init_i2c_master(&st->i2c_master, DIB7000, st->i2c_adap, st->i2c_addr);
 | |
| 	else
 | |
| 		dibx000_init_i2c_master(&st->i2c_master, DIB7000MC, st->i2c_adap, st->i2c_addr);
 | |
| 
 | |
| 	dib7000m_demod_reset(st);
 | |
| 
 | |
| 	return demod;
 | |
| 
 | |
| error:
 | |
| 	kfree(st);
 | |
| 	return NULL;
 | |
| }
 | |
| EXPORT_SYMBOL(dib7000m_attach);
 | |
| 
 | |
| static struct dvb_frontend_ops dib7000m_ops = {
 | |
| 	.info = {
 | |
| 		.name = "DiBcom 7000MA/MB/PA/PB/MC",
 | |
| 		.type = FE_OFDM,
 | |
| 		.frequency_min      = 44250000,
 | |
| 		.frequency_max      = 867250000,
 | |
| 		.frequency_stepsize = 62500,
 | |
| 		.caps = FE_CAN_INVERSION_AUTO |
 | |
| 			FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
 | |
| 			FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
 | |
| 			FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
 | |
| 			FE_CAN_TRANSMISSION_MODE_AUTO |
 | |
| 			FE_CAN_GUARD_INTERVAL_AUTO |
 | |
| 			FE_CAN_RECOVER |
 | |
| 			FE_CAN_HIERARCHY_AUTO,
 | |
| 	},
 | |
| 
 | |
| 	.release              = dib7000m_release,
 | |
| 
 | |
| 	.init                 = dib7000m_wakeup,
 | |
| 	.sleep                = dib7000m_sleep,
 | |
| 
 | |
| 	.set_frontend         = dib7000m_set_frontend,
 | |
| 	.get_tune_settings    = dib7000m_fe_get_tune_settings,
 | |
| 	.get_frontend         = dib7000m_get_frontend,
 | |
| 
 | |
| 	.read_status          = dib7000m_read_status,
 | |
| 	.read_ber             = dib7000m_read_ber,
 | |
| 	.read_signal_strength = dib7000m_read_signal_strength,
 | |
| 	.read_snr             = dib7000m_read_snr,
 | |
| 	.read_ucblocks        = dib7000m_read_unc_blocks,
 | |
| };
 | |
| 
 | |
| MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
 | |
| MODULE_DESCRIPTION("Driver for the DiBcom 7000MA/MB/PA/PB/MC COFDM demodulator");
 | |
| MODULE_LICENSE("GPL");
 |