1876 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1876 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
 | |
|  * All Rights Reserved.
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License as
 | |
|  * published by the Free Software Foundation.
 | |
|  *
 | |
|  * This program is distributed in the hope that it would be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write the Free Software Foundation,
 | |
|  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 | |
|  */
 | |
| #include "xfs.h"
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/bio.h>
 | |
| #include <linux/sysctl.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/workqueue.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/blkdev.h>
 | |
| #include <linux/hash.h>
 | |
| #include <linux/kthread.h>
 | |
| #include <linux/migrate.h>
 | |
| #include <linux/backing-dev.h>
 | |
| #include <linux/freezer.h>
 | |
| 
 | |
| #include "xfs_sb.h"
 | |
| #include "xfs_inum.h"
 | |
| #include "xfs_ag.h"
 | |
| #include "xfs_dmapi.h"
 | |
| #include "xfs_mount.h"
 | |
| 
 | |
| static kmem_zone_t *xfs_buf_zone;
 | |
| STATIC int xfsbufd(void *);
 | |
| STATIC int xfsbufd_wakeup(int, gfp_t);
 | |
| STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int);
 | |
| static struct shrinker xfs_buf_shake = {
 | |
| 	.shrink = xfsbufd_wakeup,
 | |
| 	.seeks = DEFAULT_SEEKS,
 | |
| };
 | |
| 
 | |
| static struct workqueue_struct *xfslogd_workqueue;
 | |
| struct workqueue_struct *xfsdatad_workqueue;
 | |
| struct workqueue_struct *xfsconvertd_workqueue;
 | |
| 
 | |
| #ifdef XFS_BUF_TRACE
 | |
| void
 | |
| xfs_buf_trace(
 | |
| 	xfs_buf_t	*bp,
 | |
| 	char		*id,
 | |
| 	void		*data,
 | |
| 	void		*ra)
 | |
| {
 | |
| 	ktrace_enter(xfs_buf_trace_buf,
 | |
| 		bp, id,
 | |
| 		(void *)(unsigned long)bp->b_flags,
 | |
| 		(void *)(unsigned long)bp->b_hold.counter,
 | |
| 		(void *)(unsigned long)bp->b_sema.count,
 | |
| 		(void *)current,
 | |
| 		data, ra,
 | |
| 		(void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff),
 | |
| 		(void *)(unsigned long)(bp->b_file_offset & 0xffffffff),
 | |
| 		(void *)(unsigned long)bp->b_buffer_length,
 | |
| 		NULL, NULL, NULL, NULL, NULL);
 | |
| }
 | |
| ktrace_t *xfs_buf_trace_buf;
 | |
| #define XFS_BUF_TRACE_SIZE	4096
 | |
| #define XB_TRACE(bp, id, data)	\
 | |
| 	xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0))
 | |
| #else
 | |
| #define XB_TRACE(bp, id, data)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #ifdef XFS_BUF_LOCK_TRACKING
 | |
| # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid)
 | |
| # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1)
 | |
| # define XB_GET_OWNER(bp)	((bp)->b_last_holder)
 | |
| #else
 | |
| # define XB_SET_OWNER(bp)	do { } while (0)
 | |
| # define XB_CLEAR_OWNER(bp)	do { } while (0)
 | |
| # define XB_GET_OWNER(bp)	do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #define xb_to_gfp(flags) \
 | |
| 	((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \
 | |
| 	  ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN)
 | |
| 
 | |
| #define xb_to_km(flags) \
 | |
| 	 (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP)
 | |
| 
 | |
| #define xfs_buf_allocate(flags) \
 | |
| 	kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags))
 | |
| #define xfs_buf_deallocate(bp) \
 | |
| 	kmem_zone_free(xfs_buf_zone, (bp));
 | |
| 
 | |
| /*
 | |
|  *	Page Region interfaces.
 | |
|  *
 | |
|  *	For pages in filesystems where the blocksize is smaller than the
 | |
|  *	pagesize, we use the page->private field (long) to hold a bitmap
 | |
|  * 	of uptodate regions within the page.
 | |
|  *
 | |
|  *	Each such region is "bytes per page / bits per long" bytes long.
 | |
|  *
 | |
|  *	NBPPR == number-of-bytes-per-page-region
 | |
|  *	BTOPR == bytes-to-page-region (rounded up)
 | |
|  *	BTOPRT == bytes-to-page-region-truncated (rounded down)
 | |
|  */
 | |
| #if (BITS_PER_LONG == 32)
 | |
| #define PRSHIFT		(PAGE_CACHE_SHIFT - 5)	/* (32 == 1<<5) */
 | |
| #elif (BITS_PER_LONG == 64)
 | |
| #define PRSHIFT		(PAGE_CACHE_SHIFT - 6)	/* (64 == 1<<6) */
 | |
| #else
 | |
| #error BITS_PER_LONG must be 32 or 64
 | |
| #endif
 | |
| #define NBPPR		(PAGE_CACHE_SIZE/BITS_PER_LONG)
 | |
| #define BTOPR(b)	(((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT)
 | |
| #define BTOPRT(b)	(((unsigned int)(b) >> PRSHIFT))
 | |
| 
 | |
| STATIC unsigned long
 | |
| page_region_mask(
 | |
| 	size_t		offset,
 | |
| 	size_t		length)
 | |
| {
 | |
| 	unsigned long	mask;
 | |
| 	int		first, final;
 | |
| 
 | |
| 	first = BTOPR(offset);
 | |
| 	final = BTOPRT(offset + length - 1);
 | |
| 	first = min(first, final);
 | |
| 
 | |
| 	mask = ~0UL;
 | |
| 	mask <<= BITS_PER_LONG - (final - first);
 | |
| 	mask >>= BITS_PER_LONG - (final);
 | |
| 
 | |
| 	ASSERT(offset + length <= PAGE_CACHE_SIZE);
 | |
| 	ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0);
 | |
| 
 | |
| 	return mask;
 | |
| }
 | |
| 
 | |
| STATIC_INLINE void
 | |
| set_page_region(
 | |
| 	struct page	*page,
 | |
| 	size_t		offset,
 | |
| 	size_t		length)
 | |
| {
 | |
| 	set_page_private(page,
 | |
| 		page_private(page) | page_region_mask(offset, length));
 | |
| 	if (page_private(page) == ~0UL)
 | |
| 		SetPageUptodate(page);
 | |
| }
 | |
| 
 | |
| STATIC_INLINE int
 | |
| test_page_region(
 | |
| 	struct page	*page,
 | |
| 	size_t		offset,
 | |
| 	size_t		length)
 | |
| {
 | |
| 	unsigned long	mask = page_region_mask(offset, length);
 | |
| 
 | |
| 	return (mask && (page_private(page) & mask) == mask);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Mapping of multi-page buffers into contiguous virtual space
 | |
|  */
 | |
| 
 | |
| typedef struct a_list {
 | |
| 	void		*vm_addr;
 | |
| 	struct a_list	*next;
 | |
| } a_list_t;
 | |
| 
 | |
| static a_list_t		*as_free_head;
 | |
| static int		as_list_len;
 | |
| static DEFINE_SPINLOCK(as_lock);
 | |
| 
 | |
| /*
 | |
|  *	Try to batch vunmaps because they are costly.
 | |
|  */
 | |
| STATIC void
 | |
| free_address(
 | |
| 	void		*addr)
 | |
| {
 | |
| 	a_list_t	*aentry;
 | |
| 
 | |
| #ifdef CONFIG_XEN
 | |
| 	/*
 | |
| 	 * Xen needs to be able to make sure it can get an exclusive
 | |
| 	 * RO mapping of pages it wants to turn into a pagetable.  If
 | |
| 	 * a newly allocated page is also still being vmap()ed by xfs,
 | |
| 	 * it will cause pagetable construction to fail.  This is a
 | |
| 	 * quick workaround to always eagerly unmap pages so that Xen
 | |
| 	 * is happy.
 | |
| 	 */
 | |
| 	vunmap(addr);
 | |
| 	return;
 | |
| #endif
 | |
| 
 | |
| 	aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT);
 | |
| 	if (likely(aentry)) {
 | |
| 		spin_lock(&as_lock);
 | |
| 		aentry->next = as_free_head;
 | |
| 		aentry->vm_addr = addr;
 | |
| 		as_free_head = aentry;
 | |
| 		as_list_len++;
 | |
| 		spin_unlock(&as_lock);
 | |
| 	} else {
 | |
| 		vunmap(addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| purge_addresses(void)
 | |
| {
 | |
| 	a_list_t	*aentry, *old;
 | |
| 
 | |
| 	if (as_free_head == NULL)
 | |
| 		return;
 | |
| 
 | |
| 	spin_lock(&as_lock);
 | |
| 	aentry = as_free_head;
 | |
| 	as_free_head = NULL;
 | |
| 	as_list_len = 0;
 | |
| 	spin_unlock(&as_lock);
 | |
| 
 | |
| 	while ((old = aentry) != NULL) {
 | |
| 		vunmap(aentry->vm_addr);
 | |
| 		aentry = aentry->next;
 | |
| 		kfree(old);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Internal xfs_buf_t object manipulation
 | |
|  */
 | |
| 
 | |
| STATIC void
 | |
| _xfs_buf_initialize(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buftarg_t		*target,
 | |
| 	xfs_off_t		range_base,
 | |
| 	size_t			range_length,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	/*
 | |
| 	 * We don't want certain flags to appear in b_flags.
 | |
| 	 */
 | |
| 	flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD);
 | |
| 
 | |
| 	memset(bp, 0, sizeof(xfs_buf_t));
 | |
| 	atomic_set(&bp->b_hold, 1);
 | |
| 	init_completion(&bp->b_iowait);
 | |
| 	INIT_LIST_HEAD(&bp->b_list);
 | |
| 	INIT_LIST_HEAD(&bp->b_hash_list);
 | |
| 	init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */
 | |
| 	XB_SET_OWNER(bp);
 | |
| 	bp->b_target = target;
 | |
| 	bp->b_file_offset = range_base;
 | |
| 	/*
 | |
| 	 * Set buffer_length and count_desired to the same value initially.
 | |
| 	 * I/O routines should use count_desired, which will be the same in
 | |
| 	 * most cases but may be reset (e.g. XFS recovery).
 | |
| 	 */
 | |
| 	bp->b_buffer_length = bp->b_count_desired = range_length;
 | |
| 	bp->b_flags = flags;
 | |
| 	bp->b_bn = XFS_BUF_DADDR_NULL;
 | |
| 	atomic_set(&bp->b_pin_count, 0);
 | |
| 	init_waitqueue_head(&bp->b_waiters);
 | |
| 
 | |
| 	XFS_STATS_INC(xb_create);
 | |
| 	XB_TRACE(bp, "initialize", target);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Allocate a page array capable of holding a specified number
 | |
|  *	of pages, and point the page buf at it.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_get_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			page_count,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	/* Make sure that we have a page list */
 | |
| 	if (bp->b_pages == NULL) {
 | |
| 		bp->b_offset = xfs_buf_poff(bp->b_file_offset);
 | |
| 		bp->b_page_count = page_count;
 | |
| 		if (page_count <= XB_PAGES) {
 | |
| 			bp->b_pages = bp->b_page_array;
 | |
| 		} else {
 | |
| 			bp->b_pages = kmem_alloc(sizeof(struct page *) *
 | |
| 					page_count, xb_to_km(flags));
 | |
| 			if (bp->b_pages == NULL)
 | |
| 				return -ENOMEM;
 | |
| 		}
 | |
| 		memset(bp->b_pages, 0, sizeof(struct page *) * page_count);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Frees b_pages if it was allocated.
 | |
|  */
 | |
| STATIC void
 | |
| _xfs_buf_free_pages(
 | |
| 	xfs_buf_t	*bp)
 | |
| {
 | |
| 	if (bp->b_pages != bp->b_page_array) {
 | |
| 		kmem_free(bp->b_pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases the specified buffer.
 | |
|  *
 | |
|  * 	The modification state of any associated pages is left unchanged.
 | |
|  * 	The buffer most not be on any hash - use xfs_buf_rele instead for
 | |
|  * 	hashed and refcounted buffers
 | |
|  */
 | |
| void
 | |
| xfs_buf_free(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	XB_TRACE(bp, "free", 0);
 | |
| 
 | |
| 	ASSERT(list_empty(&bp->b_hash_list));
 | |
| 
 | |
| 	if (bp->b_flags & (_XBF_PAGE_CACHE|_XBF_PAGES)) {
 | |
| 		uint		i;
 | |
| 
 | |
| 		if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1))
 | |
| 			free_address(bp->b_addr - bp->b_offset);
 | |
| 
 | |
| 		for (i = 0; i < bp->b_page_count; i++) {
 | |
| 			struct page	*page = bp->b_pages[i];
 | |
| 
 | |
| 			if (bp->b_flags & _XBF_PAGE_CACHE)
 | |
| 				ASSERT(!PagePrivate(page));
 | |
| 			page_cache_release(page);
 | |
| 		}
 | |
| 		_xfs_buf_free_pages(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_deallocate(bp);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Finds all pages for buffer in question and builds it's page list.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_lookup_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	struct address_space	*mapping = bp->b_target->bt_mapping;
 | |
| 	size_t			blocksize = bp->b_target->bt_bsize;
 | |
| 	size_t			size = bp->b_count_desired;
 | |
| 	size_t			nbytes, offset;
 | |
| 	gfp_t			gfp_mask = xb_to_gfp(flags);
 | |
| 	unsigned short		page_count, i;
 | |
| 	pgoff_t			first;
 | |
| 	xfs_off_t		end;
 | |
| 	int			error;
 | |
| 
 | |
| 	end = bp->b_file_offset + bp->b_buffer_length;
 | |
| 	page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset);
 | |
| 
 | |
| 	error = _xfs_buf_get_pages(bp, page_count, flags);
 | |
| 	if (unlikely(error))
 | |
| 		return error;
 | |
| 	bp->b_flags |= _XBF_PAGE_CACHE;
 | |
| 
 | |
| 	offset = bp->b_offset;
 | |
| 	first = bp->b_file_offset >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++) {
 | |
| 		struct page	*page;
 | |
| 		uint		retries = 0;
 | |
| 
 | |
| 	      retry:
 | |
| 		page = find_or_create_page(mapping, first + i, gfp_mask);
 | |
| 		if (unlikely(page == NULL)) {
 | |
| 			if (flags & XBF_READ_AHEAD) {
 | |
| 				bp->b_page_count = i;
 | |
| 				for (i = 0; i < bp->b_page_count; i++)
 | |
| 					unlock_page(bp->b_pages[i]);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			/*
 | |
| 			 * This could deadlock.
 | |
| 			 *
 | |
| 			 * But until all the XFS lowlevel code is revamped to
 | |
| 			 * handle buffer allocation failures we can't do much.
 | |
| 			 */
 | |
| 			if (!(++retries % 100))
 | |
| 				printk(KERN_ERR
 | |
| 					"XFS: possible memory allocation "
 | |
| 					"deadlock in %s (mode:0x%x)\n",
 | |
| 					__func__, gfp_mask);
 | |
| 
 | |
| 			XFS_STATS_INC(xb_page_retries);
 | |
| 			xfsbufd_wakeup(0, gfp_mask);
 | |
| 			congestion_wait(BLK_RW_ASYNC, HZ/50);
 | |
| 			goto retry;
 | |
| 		}
 | |
| 
 | |
| 		XFS_STATS_INC(xb_page_found);
 | |
| 
 | |
| 		nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset);
 | |
| 		size -= nbytes;
 | |
| 
 | |
| 		ASSERT(!PagePrivate(page));
 | |
| 		if (!PageUptodate(page)) {
 | |
| 			page_count--;
 | |
| 			if (blocksize >= PAGE_CACHE_SIZE) {
 | |
| 				if (flags & XBF_READ)
 | |
| 					bp->b_flags |= _XBF_PAGE_LOCKED;
 | |
| 			} else if (!PagePrivate(page)) {
 | |
| 				if (test_page_region(page, offset, nbytes))
 | |
| 					page_count++;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		bp->b_pages[i] = page;
 | |
| 		offset = 0;
 | |
| 	}
 | |
| 
 | |
| 	if (!(bp->b_flags & _XBF_PAGE_LOCKED)) {
 | |
| 		for (i = 0; i < bp->b_page_count; i++)
 | |
| 			unlock_page(bp->b_pages[i]);
 | |
| 	}
 | |
| 
 | |
| 	if (page_count == bp->b_page_count)
 | |
| 		bp->b_flags |= XBF_DONE;
 | |
| 
 | |
| 	XB_TRACE(bp, "lookup_pages", (long)page_count);
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Map buffer into kernel address-space if nessecary.
 | |
|  */
 | |
| STATIC int
 | |
| _xfs_buf_map_pages(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	uint			flags)
 | |
| {
 | |
| 	/* A single page buffer is always mappable */
 | |
| 	if (bp->b_page_count == 1) {
 | |
| 		bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset;
 | |
| 		bp->b_flags |= XBF_MAPPED;
 | |
| 	} else if (flags & XBF_MAPPED) {
 | |
| 		if (as_list_len > 64)
 | |
| 			purge_addresses();
 | |
| 		bp->b_addr = vmap(bp->b_pages, bp->b_page_count,
 | |
| 					VM_MAP, PAGE_KERNEL);
 | |
| 		if (unlikely(bp->b_addr == NULL))
 | |
| 			return -ENOMEM;
 | |
| 		bp->b_addr += bp->b_offset;
 | |
| 		bp->b_flags |= XBF_MAPPED;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Finding and Reading Buffers
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *	Look up, and creates if absent, a lockable buffer for
 | |
|  *	a given range of an inode.  The buffer is returned
 | |
|  *	locked.	 If other overlapping buffers exist, they are
 | |
|  *	released before the new buffer is created and locked,
 | |
|  *	which may imply that this call will block until those buffers
 | |
|  *	are unlocked.  No I/O is implied by this call.
 | |
|  */
 | |
| xfs_buf_t *
 | |
| _xfs_buf_find(
 | |
| 	xfs_buftarg_t		*btp,	/* block device target		*/
 | |
| 	xfs_off_t		ioff,	/* starting offset of range	*/
 | |
| 	size_t			isize,	/* length of range		*/
 | |
| 	xfs_buf_flags_t		flags,
 | |
| 	xfs_buf_t		*new_bp)
 | |
| {
 | |
| 	xfs_off_t		range_base;
 | |
| 	size_t			range_length;
 | |
| 	xfs_bufhash_t		*hash;
 | |
| 	xfs_buf_t		*bp, *n;
 | |
| 
 | |
| 	range_base = (ioff << BBSHIFT);
 | |
| 	range_length = (isize << BBSHIFT);
 | |
| 
 | |
| 	/* Check for IOs smaller than the sector size / not sector aligned */
 | |
| 	ASSERT(!(range_length < (1 << btp->bt_sshift)));
 | |
| 	ASSERT(!(range_base & (xfs_off_t)btp->bt_smask));
 | |
| 
 | |
| 	hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)];
 | |
| 
 | |
| 	spin_lock(&hash->bh_lock);
 | |
| 
 | |
| 	list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
 | |
| 		ASSERT(btp == bp->b_target);
 | |
| 		if (bp->b_file_offset == range_base &&
 | |
| 		    bp->b_buffer_length == range_length) {
 | |
| 			/*
 | |
| 			 * If we look at something, bring it to the
 | |
| 			 * front of the list for next time.
 | |
| 			 */
 | |
| 			atomic_inc(&bp->b_hold);
 | |
| 			list_move(&bp->b_hash_list, &hash->bh_list);
 | |
| 			goto found;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* No match found */
 | |
| 	if (new_bp) {
 | |
| 		_xfs_buf_initialize(new_bp, btp, range_base,
 | |
| 				range_length, flags);
 | |
| 		new_bp->b_hash = hash;
 | |
| 		list_add(&new_bp->b_hash_list, &hash->bh_list);
 | |
| 	} else {
 | |
| 		XFS_STATS_INC(xb_miss_locked);
 | |
| 	}
 | |
| 
 | |
| 	spin_unlock(&hash->bh_lock);
 | |
| 	return new_bp;
 | |
| 
 | |
| found:
 | |
| 	spin_unlock(&hash->bh_lock);
 | |
| 
 | |
| 	/* Attempt to get the semaphore without sleeping,
 | |
| 	 * if this does not work then we need to drop the
 | |
| 	 * spinlock and do a hard attempt on the semaphore.
 | |
| 	 */
 | |
| 	if (down_trylock(&bp->b_sema)) {
 | |
| 		if (!(flags & XBF_TRYLOCK)) {
 | |
| 			/* wait for buffer ownership */
 | |
| 			XB_TRACE(bp, "get_lock", 0);
 | |
| 			xfs_buf_lock(bp);
 | |
| 			XFS_STATS_INC(xb_get_locked_waited);
 | |
| 		} else {
 | |
| 			/* We asked for a trylock and failed, no need
 | |
| 			 * to look at file offset and length here, we
 | |
| 			 * know that this buffer at least overlaps our
 | |
| 			 * buffer and is locked, therefore our buffer
 | |
| 			 * either does not exist, or is this buffer.
 | |
| 			 */
 | |
| 			xfs_buf_rele(bp);
 | |
| 			XFS_STATS_INC(xb_busy_locked);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	} else {
 | |
| 		/* trylock worked */
 | |
| 		XB_SET_OWNER(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (bp->b_flags & XBF_STALE) {
 | |
| 		ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0);
 | |
| 		bp->b_flags &= XBF_MAPPED;
 | |
| 	}
 | |
| 	XB_TRACE(bp, "got_lock", 0);
 | |
| 	XFS_STATS_INC(xb_get_locked);
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Assembles a buffer covering the specified range.
 | |
|  *	Storage in memory for all portions of the buffer will be allocated,
 | |
|  *	although backing storage may not be.
 | |
|  */
 | |
| xfs_buf_t *
 | |
| xfs_buf_get_flags(
 | |
| 	xfs_buftarg_t		*target,/* target for buffer		*/
 | |
| 	xfs_off_t		ioff,	/* starting offset of range	*/
 | |
| 	size_t			isize,	/* length of range		*/
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	xfs_buf_t		*bp, *new_bp;
 | |
| 	int			error = 0, i;
 | |
| 
 | |
| 	new_bp = xfs_buf_allocate(flags);
 | |
| 	if (unlikely(!new_bp))
 | |
| 		return NULL;
 | |
| 
 | |
| 	bp = _xfs_buf_find(target, ioff, isize, flags, new_bp);
 | |
| 	if (bp == new_bp) {
 | |
| 		error = _xfs_buf_lookup_pages(bp, flags);
 | |
| 		if (error)
 | |
| 			goto no_buffer;
 | |
| 	} else {
 | |
| 		xfs_buf_deallocate(new_bp);
 | |
| 		if (unlikely(bp == NULL))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++)
 | |
| 		mark_page_accessed(bp->b_pages[i]);
 | |
| 
 | |
| 	if (!(bp->b_flags & XBF_MAPPED)) {
 | |
| 		error = _xfs_buf_map_pages(bp, flags);
 | |
| 		if (unlikely(error)) {
 | |
| 			printk(KERN_WARNING "%s: failed to map pages\n",
 | |
| 					__func__);
 | |
| 			goto no_buffer;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	XFS_STATS_INC(xb_get);
 | |
| 
 | |
| 	/*
 | |
| 	 * Always fill in the block number now, the mapped cases can do
 | |
| 	 * their own overlay of this later.
 | |
| 	 */
 | |
| 	bp->b_bn = ioff;
 | |
| 	bp->b_count_desired = bp->b_buffer_length;
 | |
| 
 | |
| 	XB_TRACE(bp, "get", (unsigned long)flags);
 | |
| 	return bp;
 | |
| 
 | |
|  no_buffer:
 | |
| 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
 | |
| 		xfs_buf_unlock(bp);
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| _xfs_buf_read(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	int			status;
 | |
| 
 | |
| 	XB_TRACE(bp, "_xfs_buf_read", (unsigned long)flags);
 | |
| 
 | |
| 	ASSERT(!(flags & (XBF_DELWRI|XBF_WRITE)));
 | |
| 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 | |
| 
 | |
| 	bp->b_flags &= ~(XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \
 | |
| 			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
 | |
| 	bp->b_flags |= flags & (XBF_READ | XBF_ASYNC | \
 | |
| 			XBF_READ_AHEAD | _XBF_RUN_QUEUES);
 | |
| 
 | |
| 	status = xfs_buf_iorequest(bp);
 | |
| 	if (!status && !(flags & XBF_ASYNC))
 | |
| 		status = xfs_buf_iowait(bp);
 | |
| 	return status;
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_read_flags(
 | |
| 	xfs_buftarg_t		*target,
 | |
| 	xfs_off_t		ioff,
 | |
| 	size_t			isize,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	flags |= XBF_READ;
 | |
| 
 | |
| 	bp = xfs_buf_get_flags(target, ioff, isize, flags);
 | |
| 	if (bp) {
 | |
| 		if (!XFS_BUF_ISDONE(bp)) {
 | |
| 			XB_TRACE(bp, "read", (unsigned long)flags);
 | |
| 			XFS_STATS_INC(xb_get_read);
 | |
| 			_xfs_buf_read(bp, flags);
 | |
| 		} else if (flags & XBF_ASYNC) {
 | |
| 			XB_TRACE(bp, "read_async", (unsigned long)flags);
 | |
| 			/*
 | |
| 			 * Read ahead call which is already satisfied,
 | |
| 			 * drop the buffer
 | |
| 			 */
 | |
| 			goto no_buffer;
 | |
| 		} else {
 | |
| 			XB_TRACE(bp, "read_done", (unsigned long)flags);
 | |
| 			/* We do not want read in the flags */
 | |
| 			bp->b_flags &= ~XBF_READ;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return bp;
 | |
| 
 | |
|  no_buffer:
 | |
| 	if (flags & (XBF_LOCK | XBF_TRYLOCK))
 | |
| 		xfs_buf_unlock(bp);
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	If we are not low on memory then do the readahead in a deadlock
 | |
|  *	safe manner.
 | |
|  */
 | |
| void
 | |
| xfs_buf_readahead(
 | |
| 	xfs_buftarg_t		*target,
 | |
| 	xfs_off_t		ioff,
 | |
| 	size_t			isize,
 | |
| 	xfs_buf_flags_t		flags)
 | |
| {
 | |
| 	struct backing_dev_info *bdi;
 | |
| 
 | |
| 	bdi = target->bt_mapping->backing_dev_info;
 | |
| 	if (bdi_read_congested(bdi))
 | |
| 		return;
 | |
| 
 | |
| 	flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD);
 | |
| 	xfs_buf_read_flags(target, ioff, isize, flags);
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_get_empty(
 | |
| 	size_t			len,
 | |
| 	xfs_buftarg_t		*target)
 | |
| {
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	bp = xfs_buf_allocate(0);
 | |
| 	if (bp)
 | |
| 		_xfs_buf_initialize(bp, target, 0, len, 0);
 | |
| 	return bp;
 | |
| }
 | |
| 
 | |
| static inline struct page *
 | |
| mem_to_page(
 | |
| 	void			*addr)
 | |
| {
 | |
| 	if ((!is_vmalloc_addr(addr))) {
 | |
| 		return virt_to_page(addr);
 | |
| 	} else {
 | |
| 		return vmalloc_to_page(addr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_associate_memory(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	void			*mem,
 | |
| 	size_t			len)
 | |
| {
 | |
| 	int			rval;
 | |
| 	int			i = 0;
 | |
| 	unsigned long		pageaddr;
 | |
| 	unsigned long		offset;
 | |
| 	size_t			buflen;
 | |
| 	int			page_count;
 | |
| 
 | |
| 	pageaddr = (unsigned long)mem & PAGE_CACHE_MASK;
 | |
| 	offset = (unsigned long)mem - pageaddr;
 | |
| 	buflen = PAGE_CACHE_ALIGN(len + offset);
 | |
| 	page_count = buflen >> PAGE_CACHE_SHIFT;
 | |
| 
 | |
| 	/* Free any previous set of page pointers */
 | |
| 	if (bp->b_pages)
 | |
| 		_xfs_buf_free_pages(bp);
 | |
| 
 | |
| 	bp->b_pages = NULL;
 | |
| 	bp->b_addr = mem;
 | |
| 
 | |
| 	rval = _xfs_buf_get_pages(bp, page_count, XBF_DONT_BLOCK);
 | |
| 	if (rval)
 | |
| 		return rval;
 | |
| 
 | |
| 	bp->b_offset = offset;
 | |
| 
 | |
| 	for (i = 0; i < bp->b_page_count; i++) {
 | |
| 		bp->b_pages[i] = mem_to_page((void *)pageaddr);
 | |
| 		pageaddr += PAGE_CACHE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	bp->b_count_desired = len;
 | |
| 	bp->b_buffer_length = buflen;
 | |
| 	bp->b_flags |= XBF_MAPPED;
 | |
| 	bp->b_flags &= ~_XBF_PAGE_LOCKED;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| xfs_buf_t *
 | |
| xfs_buf_get_noaddr(
 | |
| 	size_t			len,
 | |
| 	xfs_buftarg_t		*target)
 | |
| {
 | |
| 	unsigned long		page_count = PAGE_ALIGN(len) >> PAGE_SHIFT;
 | |
| 	int			error, i;
 | |
| 	xfs_buf_t		*bp;
 | |
| 
 | |
| 	bp = xfs_buf_allocate(0);
 | |
| 	if (unlikely(bp == NULL))
 | |
| 		goto fail;
 | |
| 	_xfs_buf_initialize(bp, target, 0, len, 0);
 | |
| 
 | |
| 	error = _xfs_buf_get_pages(bp, page_count, 0);
 | |
| 	if (error)
 | |
| 		goto fail_free_buf;
 | |
| 
 | |
| 	for (i = 0; i < page_count; i++) {
 | |
| 		bp->b_pages[i] = alloc_page(GFP_KERNEL);
 | |
| 		if (!bp->b_pages[i])
 | |
| 			goto fail_free_mem;
 | |
| 	}
 | |
| 	bp->b_flags |= _XBF_PAGES;
 | |
| 
 | |
| 	error = _xfs_buf_map_pages(bp, XBF_MAPPED);
 | |
| 	if (unlikely(error)) {
 | |
| 		printk(KERN_WARNING "%s: failed to map pages\n",
 | |
| 				__func__);
 | |
| 		goto fail_free_mem;
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_unlock(bp);
 | |
| 
 | |
| 	XB_TRACE(bp, "no_daddr", len);
 | |
| 	return bp;
 | |
| 
 | |
|  fail_free_mem:
 | |
| 	while (--i >= 0)
 | |
| 		__free_page(bp->b_pages[i]);
 | |
| 	_xfs_buf_free_pages(bp);
 | |
|  fail_free_buf:
 | |
| 	xfs_buf_deallocate(bp);
 | |
|  fail:
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Increment reference count on buffer, to hold the buffer concurrently
 | |
|  *	with another thread which may release (free) the buffer asynchronously.
 | |
|  *	Must hold the buffer already to call this function.
 | |
|  */
 | |
| void
 | |
| xfs_buf_hold(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	atomic_inc(&bp->b_hold);
 | |
| 	XB_TRACE(bp, "hold", 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases a hold on the specified buffer.  If the
 | |
|  *	the hold count is 1, calls xfs_buf_free.
 | |
|  */
 | |
| void
 | |
| xfs_buf_rele(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	xfs_bufhash_t		*hash = bp->b_hash;
 | |
| 
 | |
| 	XB_TRACE(bp, "rele", bp->b_relse);
 | |
| 
 | |
| 	if (unlikely(!hash)) {
 | |
| 		ASSERT(!bp->b_relse);
 | |
| 		if (atomic_dec_and_test(&bp->b_hold))
 | |
| 			xfs_buf_free(bp);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	ASSERT(atomic_read(&bp->b_hold) > 0);
 | |
| 	if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) {
 | |
| 		if (bp->b_relse) {
 | |
| 			atomic_inc(&bp->b_hold);
 | |
| 			spin_unlock(&hash->bh_lock);
 | |
| 			(*(bp->b_relse)) (bp);
 | |
| 		} else if (bp->b_flags & XBF_FS_MANAGED) {
 | |
| 			spin_unlock(&hash->bh_lock);
 | |
| 		} else {
 | |
| 			ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)));
 | |
| 			list_del_init(&bp->b_hash_list);
 | |
| 			spin_unlock(&hash->bh_lock);
 | |
| 			xfs_buf_free(bp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Mutual exclusion on buffers.  Locking model:
 | |
|  *
 | |
|  *	Buffers associated with inodes for which buffer locking
 | |
|  *	is not enabled are not protected by semaphores, and are
 | |
|  *	assumed to be exclusively owned by the caller.  There is a
 | |
|  *	spinlock in the buffer, used by the caller when concurrent
 | |
|  *	access is possible.
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *	Locks a buffer object, if it is not already locked.
 | |
|  *	Note that this in no way locks the underlying pages, so it is only
 | |
|  *	useful for synchronizing concurrent use of buffer objects, not for
 | |
|  *	synchronizing independent access to the underlying pages.
 | |
|  */
 | |
| int
 | |
| xfs_buf_cond_lock(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	int			locked;
 | |
| 
 | |
| 	locked = down_trylock(&bp->b_sema) == 0;
 | |
| 	if (locked) {
 | |
| 		XB_SET_OWNER(bp);
 | |
| 	}
 | |
| 	XB_TRACE(bp, "cond_lock", (long)locked);
 | |
| 	return locked ? 0 : -EBUSY;
 | |
| }
 | |
| 
 | |
| #if defined(DEBUG) || defined(XFS_BLI_TRACE)
 | |
| int
 | |
| xfs_buf_lock_value(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	return bp->b_sema.count;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  *	Locks a buffer object.
 | |
|  *	Note that this in no way locks the underlying pages, so it is only
 | |
|  *	useful for synchronizing concurrent use of buffer objects, not for
 | |
|  *	synchronizing independent access to the underlying pages.
 | |
|  */
 | |
| void
 | |
| xfs_buf_lock(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	XB_TRACE(bp, "lock", 0);
 | |
| 	if (atomic_read(&bp->b_io_remaining))
 | |
| 		blk_run_address_space(bp->b_target->bt_mapping);
 | |
| 	down(&bp->b_sema);
 | |
| 	XB_SET_OWNER(bp);
 | |
| 	XB_TRACE(bp, "locked", 0);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Releases the lock on the buffer object.
 | |
|  *	If the buffer is marked delwri but is not queued, do so before we
 | |
|  *	unlock the buffer as we need to set flags correctly.  We also need to
 | |
|  *	take a reference for the delwri queue because the unlocker is going to
 | |
|  *	drop their's and they don't know we just queued it.
 | |
|  */
 | |
| void
 | |
| xfs_buf_unlock(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) {
 | |
| 		atomic_inc(&bp->b_hold);
 | |
| 		bp->b_flags |= XBF_ASYNC;
 | |
| 		xfs_buf_delwri_queue(bp, 0);
 | |
| 	}
 | |
| 
 | |
| 	XB_CLEAR_OWNER(bp);
 | |
| 	up(&bp->b_sema);
 | |
| 	XB_TRACE(bp, "unlock", 0);
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Pinning Buffer Storage in Memory
 | |
|  *	Ensure that no attempt to force a buffer to disk will succeed.
 | |
|  */
 | |
| void
 | |
| xfs_buf_pin(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	atomic_inc(&bp->b_pin_count);
 | |
| 	XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_unpin(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&bp->b_pin_count))
 | |
| 		wake_up_all(&bp->b_waiters);
 | |
| 	XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_ispin(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	return atomic_read(&bp->b_pin_count);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_wait_unpin(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	DECLARE_WAITQUEUE	(wait, current);
 | |
| 
 | |
| 	if (atomic_read(&bp->b_pin_count) == 0)
 | |
| 		return;
 | |
| 
 | |
| 	add_wait_queue(&bp->b_waiters, &wait);
 | |
| 	for (;;) {
 | |
| 		set_current_state(TASK_UNINTERRUPTIBLE);
 | |
| 		if (atomic_read(&bp->b_pin_count) == 0)
 | |
| 			break;
 | |
| 		if (atomic_read(&bp->b_io_remaining))
 | |
| 			blk_run_address_space(bp->b_target->bt_mapping);
 | |
| 		schedule();
 | |
| 	}
 | |
| 	remove_wait_queue(&bp->b_waiters, &wait);
 | |
| 	set_current_state(TASK_RUNNING);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Buffer Utility Routines
 | |
|  */
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_iodone_work(
 | |
| 	struct work_struct	*work)
 | |
| {
 | |
| 	xfs_buf_t		*bp =
 | |
| 		container_of(work, xfs_buf_t, b_iodone_work);
 | |
| 
 | |
| 	/*
 | |
| 	 * We can get an EOPNOTSUPP to ordered writes.  Here we clear the
 | |
| 	 * ordered flag and reissue them.  Because we can't tell the higher
 | |
| 	 * layers directly that they should not issue ordered I/O anymore, they
 | |
| 	 * need to check if the _XFS_BARRIER_FAILED flag was set during I/O completion.
 | |
| 	 */
 | |
| 	if ((bp->b_error == EOPNOTSUPP) &&
 | |
| 	    (bp->b_flags & (XBF_ORDERED|XBF_ASYNC)) == (XBF_ORDERED|XBF_ASYNC)) {
 | |
| 		XB_TRACE(bp, "ordered_retry", bp->b_iodone);
 | |
| 		bp->b_flags &= ~XBF_ORDERED;
 | |
| 		bp->b_flags |= _XFS_BARRIER_FAILED;
 | |
| 		xfs_buf_iorequest(bp);
 | |
| 	} else if (bp->b_iodone)
 | |
| 		(*(bp->b_iodone))(bp);
 | |
| 	else if (bp->b_flags & XBF_ASYNC)
 | |
| 		xfs_buf_relse(bp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioend(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			schedule)
 | |
| {
 | |
| 	bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_READ_AHEAD);
 | |
| 	if (bp->b_error == 0)
 | |
| 		bp->b_flags |= XBF_DONE;
 | |
| 
 | |
| 	XB_TRACE(bp, "iodone", bp->b_iodone);
 | |
| 
 | |
| 	if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) {
 | |
| 		if (schedule) {
 | |
| 			INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work);
 | |
| 			queue_work(xfslogd_workqueue, &bp->b_iodone_work);
 | |
| 		} else {
 | |
| 			xfs_buf_iodone_work(&bp->b_iodone_work);
 | |
| 		}
 | |
| 	} else {
 | |
| 		complete(&bp->b_iowait);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_ioerror(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			error)
 | |
| {
 | |
| 	ASSERT(error >= 0 && error <= 0xffff);
 | |
| 	bp->b_error = (unsigned short)error;
 | |
| 	XB_TRACE(bp, "ioerror", (unsigned long)error);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_bawrite(
 | |
| 	void			*mp,
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	XB_TRACE(bp, "bawrite", 0);
 | |
| 
 | |
| 	ASSERT(bp->b_bn != XFS_BUF_DADDR_NULL);
 | |
| 
 | |
| 	xfs_buf_delwri_dequeue(bp);
 | |
| 
 | |
| 	bp->b_flags &= ~(XBF_READ | XBF_DELWRI | XBF_READ_AHEAD);
 | |
| 	bp->b_flags |= (XBF_WRITE | XBF_ASYNC | _XBF_RUN_QUEUES);
 | |
| 
 | |
| 	bp->b_mount = mp;
 | |
| 	bp->b_strat = xfs_bdstrat_cb;
 | |
| 	return xfs_bdstrat_cb(bp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_bdwrite(
 | |
| 	void			*mp,
 | |
| 	struct xfs_buf		*bp)
 | |
| {
 | |
| 	XB_TRACE(bp, "bdwrite", 0);
 | |
| 
 | |
| 	bp->b_strat = xfs_bdstrat_cb;
 | |
| 	bp->b_mount = mp;
 | |
| 
 | |
| 	bp->b_flags &= ~XBF_READ;
 | |
| 	bp->b_flags |= (XBF_DELWRI | XBF_ASYNC);
 | |
| 
 | |
| 	xfs_buf_delwri_queue(bp, 1);
 | |
| }
 | |
| 
 | |
| STATIC_INLINE void
 | |
| _xfs_buf_ioend(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			schedule)
 | |
| {
 | |
| 	if (atomic_dec_and_test(&bp->b_io_remaining) == 1) {
 | |
| 		bp->b_flags &= ~_XBF_PAGE_LOCKED;
 | |
| 		xfs_buf_ioend(bp, schedule);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_bio_end_io(
 | |
| 	struct bio		*bio,
 | |
| 	int			error)
 | |
| {
 | |
| 	xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private;
 | |
| 	unsigned int		blocksize = bp->b_target->bt_bsize;
 | |
| 	struct bio_vec		*bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
 | |
| 
 | |
| 	xfs_buf_ioerror(bp, -error);
 | |
| 
 | |
| 	do {
 | |
| 		struct page	*page = bvec->bv_page;
 | |
| 
 | |
| 		ASSERT(!PagePrivate(page));
 | |
| 		if (unlikely(bp->b_error)) {
 | |
| 			if (bp->b_flags & XBF_READ)
 | |
| 				ClearPageUptodate(page);
 | |
| 		} else if (blocksize >= PAGE_CACHE_SIZE) {
 | |
| 			SetPageUptodate(page);
 | |
| 		} else if (!PagePrivate(page) &&
 | |
| 				(bp->b_flags & _XBF_PAGE_CACHE)) {
 | |
| 			set_page_region(page, bvec->bv_offset, bvec->bv_len);
 | |
| 		}
 | |
| 
 | |
| 		if (--bvec >= bio->bi_io_vec)
 | |
| 			prefetchw(&bvec->bv_page->flags);
 | |
| 
 | |
| 		if (bp->b_flags & _XBF_PAGE_LOCKED)
 | |
| 			unlock_page(page);
 | |
| 	} while (bvec >= bio->bi_io_vec);
 | |
| 
 | |
| 	_xfs_buf_ioend(bp, 1);
 | |
| 	bio_put(bio);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| _xfs_buf_ioapply(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	int			rw, map_i, total_nr_pages, nr_pages;
 | |
| 	struct bio		*bio;
 | |
| 	int			offset = bp->b_offset;
 | |
| 	int			size = bp->b_count_desired;
 | |
| 	sector_t		sector = bp->b_bn;
 | |
| 	unsigned int		blocksize = bp->b_target->bt_bsize;
 | |
| 
 | |
| 	total_nr_pages = bp->b_page_count;
 | |
| 	map_i = 0;
 | |
| 
 | |
| 	if (bp->b_flags & XBF_ORDERED) {
 | |
| 		ASSERT(!(bp->b_flags & XBF_READ));
 | |
| 		rw = WRITE_BARRIER;
 | |
| 	} else if (bp->b_flags & _XBF_RUN_QUEUES) {
 | |
| 		ASSERT(!(bp->b_flags & XBF_READ_AHEAD));
 | |
| 		bp->b_flags &= ~_XBF_RUN_QUEUES;
 | |
| 		rw = (bp->b_flags & XBF_WRITE) ? WRITE_SYNC : READ_SYNC;
 | |
| 	} else {
 | |
| 		rw = (bp->b_flags & XBF_WRITE) ? WRITE :
 | |
| 		     (bp->b_flags & XBF_READ_AHEAD) ? READA : READ;
 | |
| 	}
 | |
| 
 | |
| 	/* Special code path for reading a sub page size buffer in --
 | |
| 	 * we populate up the whole page, and hence the other metadata
 | |
| 	 * in the same page.  This optimization is only valid when the
 | |
| 	 * filesystem block size is not smaller than the page size.
 | |
| 	 */
 | |
| 	if ((bp->b_buffer_length < PAGE_CACHE_SIZE) &&
 | |
| 	    ((bp->b_flags & (XBF_READ|_XBF_PAGE_LOCKED)) ==
 | |
| 	      (XBF_READ|_XBF_PAGE_LOCKED)) &&
 | |
| 	    (blocksize >= PAGE_CACHE_SIZE)) {
 | |
| 		bio = bio_alloc(GFP_NOIO, 1);
 | |
| 
 | |
| 		bio->bi_bdev = bp->b_target->bt_bdev;
 | |
| 		bio->bi_sector = sector - (offset >> BBSHIFT);
 | |
| 		bio->bi_end_io = xfs_buf_bio_end_io;
 | |
| 		bio->bi_private = bp;
 | |
| 
 | |
| 		bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0);
 | |
| 		size = 0;
 | |
| 
 | |
| 		atomic_inc(&bp->b_io_remaining);
 | |
| 
 | |
| 		goto submit_io;
 | |
| 	}
 | |
| 
 | |
| next_chunk:
 | |
| 	atomic_inc(&bp->b_io_remaining);
 | |
| 	nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT);
 | |
| 	if (nr_pages > total_nr_pages)
 | |
| 		nr_pages = total_nr_pages;
 | |
| 
 | |
| 	bio = bio_alloc(GFP_NOIO, nr_pages);
 | |
| 	bio->bi_bdev = bp->b_target->bt_bdev;
 | |
| 	bio->bi_sector = sector;
 | |
| 	bio->bi_end_io = xfs_buf_bio_end_io;
 | |
| 	bio->bi_private = bp;
 | |
| 
 | |
| 	for (; size && nr_pages; nr_pages--, map_i++) {
 | |
| 		int	rbytes, nbytes = PAGE_CACHE_SIZE - offset;
 | |
| 
 | |
| 		if (nbytes > size)
 | |
| 			nbytes = size;
 | |
| 
 | |
| 		rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset);
 | |
| 		if (rbytes < nbytes)
 | |
| 			break;
 | |
| 
 | |
| 		offset = 0;
 | |
| 		sector += nbytes >> BBSHIFT;
 | |
| 		size -= nbytes;
 | |
| 		total_nr_pages--;
 | |
| 	}
 | |
| 
 | |
| submit_io:
 | |
| 	if (likely(bio->bi_size)) {
 | |
| 		submit_bio(rw, bio);
 | |
| 		if (size)
 | |
| 			goto next_chunk;
 | |
| 	} else {
 | |
| 		bio_put(bio);
 | |
| 		xfs_buf_ioerror(bp, EIO);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_buf_iorequest(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	XB_TRACE(bp, "iorequest", 0);
 | |
| 
 | |
| 	if (bp->b_flags & XBF_DELWRI) {
 | |
| 		xfs_buf_delwri_queue(bp, 1);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	if (bp->b_flags & XBF_WRITE) {
 | |
| 		xfs_buf_wait_unpin(bp);
 | |
| 	}
 | |
| 
 | |
| 	xfs_buf_hold(bp);
 | |
| 
 | |
| 	/* Set the count to 1 initially, this will stop an I/O
 | |
| 	 * completion callout which happens before we have started
 | |
| 	 * all the I/O from calling xfs_buf_ioend too early.
 | |
| 	 */
 | |
| 	atomic_set(&bp->b_io_remaining, 1);
 | |
| 	_xfs_buf_ioapply(bp);
 | |
| 	_xfs_buf_ioend(bp, 0);
 | |
| 
 | |
| 	xfs_buf_rele(bp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Waits for I/O to complete on the buffer supplied.
 | |
|  *	It returns immediately if no I/O is pending.
 | |
|  *	It returns the I/O error code, if any, or 0 if there was no error.
 | |
|  */
 | |
| int
 | |
| xfs_buf_iowait(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	XB_TRACE(bp, "iowait", 0);
 | |
| 	if (atomic_read(&bp->b_io_remaining))
 | |
| 		blk_run_address_space(bp->b_target->bt_mapping);
 | |
| 	wait_for_completion(&bp->b_iowait);
 | |
| 	XB_TRACE(bp, "iowaited", (long)bp->b_error);
 | |
| 	return bp->b_error;
 | |
| }
 | |
| 
 | |
| xfs_caddr_t
 | |
| xfs_buf_offset(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	size_t			offset)
 | |
| {
 | |
| 	struct page		*page;
 | |
| 
 | |
| 	if (bp->b_flags & XBF_MAPPED)
 | |
| 		return XFS_BUF_PTR(bp) + offset;
 | |
| 
 | |
| 	offset += bp->b_offset;
 | |
| 	page = bp->b_pages[offset >> PAGE_CACHE_SHIFT];
 | |
| 	return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Move data into or out of a buffer.
 | |
|  */
 | |
| void
 | |
| xfs_buf_iomove(
 | |
| 	xfs_buf_t		*bp,	/* buffer to process		*/
 | |
| 	size_t			boff,	/* starting buffer offset	*/
 | |
| 	size_t			bsize,	/* length to copy		*/
 | |
| 	caddr_t			data,	/* data address			*/
 | |
| 	xfs_buf_rw_t		mode)	/* read/write/zero flag		*/
 | |
| {
 | |
| 	size_t			bend, cpoff, csize;
 | |
| 	struct page		*page;
 | |
| 
 | |
| 	bend = boff + bsize;
 | |
| 	while (boff < bend) {
 | |
| 		page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)];
 | |
| 		cpoff = xfs_buf_poff(boff + bp->b_offset);
 | |
| 		csize = min_t(size_t,
 | |
| 			      PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff);
 | |
| 
 | |
| 		ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE));
 | |
| 
 | |
| 		switch (mode) {
 | |
| 		case XBRW_ZERO:
 | |
| 			memset(page_address(page) + cpoff, 0, csize);
 | |
| 			break;
 | |
| 		case XBRW_READ:
 | |
| 			memcpy(data, page_address(page) + cpoff, csize);
 | |
| 			break;
 | |
| 		case XBRW_WRITE:
 | |
| 			memcpy(page_address(page) + cpoff, data, csize);
 | |
| 		}
 | |
| 
 | |
| 		boff += csize;
 | |
| 		data += csize;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Handling of buffer targets (buftargs).
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  *	Wait for any bufs with callbacks that have been submitted but
 | |
|  *	have not yet returned... walk the hash list for the target.
 | |
|  */
 | |
| void
 | |
| xfs_wait_buftarg(
 | |
| 	xfs_buftarg_t	*btp)
 | |
| {
 | |
| 	xfs_buf_t	*bp, *n;
 | |
| 	xfs_bufhash_t	*hash;
 | |
| 	uint		i;
 | |
| 
 | |
| 	for (i = 0; i < (1 << btp->bt_hashshift); i++) {
 | |
| 		hash = &btp->bt_hash[i];
 | |
| again:
 | |
| 		spin_lock(&hash->bh_lock);
 | |
| 		list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) {
 | |
| 			ASSERT(btp == bp->b_target);
 | |
| 			if (!(bp->b_flags & XBF_FS_MANAGED)) {
 | |
| 				spin_unlock(&hash->bh_lock);
 | |
| 				/*
 | |
| 				 * Catch superblock reference count leaks
 | |
| 				 * immediately
 | |
| 				 */
 | |
| 				BUG_ON(bp->b_bn == 0);
 | |
| 				delay(100);
 | |
| 				goto again;
 | |
| 			}
 | |
| 		}
 | |
| 		spin_unlock(&hash->bh_lock);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Allocate buffer hash table for a given target.
 | |
|  *	For devices containing metadata (i.e. not the log/realtime devices)
 | |
|  *	we need to allocate a much larger hash table.
 | |
|  */
 | |
| STATIC void
 | |
| xfs_alloc_bufhash(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	int			external)
 | |
| {
 | |
| 	unsigned int		i;
 | |
| 
 | |
| 	btp->bt_hashshift = external ? 3 : 8;	/* 8 or 256 buckets */
 | |
| 	btp->bt_hashmask = (1 << btp->bt_hashshift) - 1;
 | |
| 	btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) *
 | |
| 					sizeof(xfs_bufhash_t), KM_SLEEP | KM_LARGE);
 | |
| 	for (i = 0; i < (1 << btp->bt_hashshift); i++) {
 | |
| 		spin_lock_init(&btp->bt_hash[i].bh_lock);
 | |
| 		INIT_LIST_HEAD(&btp->bt_hash[i].bh_list);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_free_bufhash(
 | |
| 	xfs_buftarg_t		*btp)
 | |
| {
 | |
| 	kmem_free(btp->bt_hash);
 | |
| 	btp->bt_hash = NULL;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	buftarg list for delwrite queue processing
 | |
|  */
 | |
| static LIST_HEAD(xfs_buftarg_list);
 | |
| static DEFINE_SPINLOCK(xfs_buftarg_lock);
 | |
| 
 | |
| STATIC void
 | |
| xfs_register_buftarg(
 | |
| 	xfs_buftarg_t           *btp)
 | |
| {
 | |
| 	spin_lock(&xfs_buftarg_lock);
 | |
| 	list_add(&btp->bt_list, &xfs_buftarg_list);
 | |
| 	spin_unlock(&xfs_buftarg_lock);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_unregister_buftarg(
 | |
| 	xfs_buftarg_t           *btp)
 | |
| {
 | |
| 	spin_lock(&xfs_buftarg_lock);
 | |
| 	list_del(&btp->bt_list);
 | |
| 	spin_unlock(&xfs_buftarg_lock);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_free_buftarg(
 | |
| 	struct xfs_mount	*mp,
 | |
| 	struct xfs_buftarg	*btp)
 | |
| {
 | |
| 	xfs_flush_buftarg(btp, 1);
 | |
| 	if (mp->m_flags & XFS_MOUNT_BARRIER)
 | |
| 		xfs_blkdev_issue_flush(btp);
 | |
| 	xfs_free_bufhash(btp);
 | |
| 	iput(btp->bt_mapping->host);
 | |
| 
 | |
| 	/* Unregister the buftarg first so that we don't get a
 | |
| 	 * wakeup finding a non-existent task
 | |
| 	 */
 | |
| 	xfs_unregister_buftarg(btp);
 | |
| 	kthread_stop(btp->bt_task);
 | |
| 
 | |
| 	kmem_free(btp);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_setsize_buftarg_flags(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	unsigned int		blocksize,
 | |
| 	unsigned int		sectorsize,
 | |
| 	int			verbose)
 | |
| {
 | |
| 	btp->bt_bsize = blocksize;
 | |
| 	btp->bt_sshift = ffs(sectorsize) - 1;
 | |
| 	btp->bt_smask = sectorsize - 1;
 | |
| 
 | |
| 	if (set_blocksize(btp->bt_bdev, sectorsize)) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"XFS: Cannot set_blocksize to %u on device %s\n",
 | |
| 			sectorsize, XFS_BUFTARG_NAME(btp));
 | |
| 		return EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	if (verbose &&
 | |
| 	    (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"XFS: %u byte sectors in use on device %s.  "
 | |
| 			"This is suboptimal; %u or greater is ideal.\n",
 | |
| 			sectorsize, XFS_BUFTARG_NAME(btp),
 | |
| 			(unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	When allocating the initial buffer target we have not yet
 | |
|  *	read in the superblock, so don't know what sized sectors
 | |
|  *	are being used is at this early stage.  Play safe.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_setsize_buftarg_early(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	struct block_device	*bdev)
 | |
| {
 | |
| 	return xfs_setsize_buftarg_flags(btp,
 | |
| 			PAGE_CACHE_SIZE, bdev_logical_block_size(bdev), 0);
 | |
| }
 | |
| 
 | |
| int
 | |
| xfs_setsize_buftarg(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	unsigned int		blocksize,
 | |
| 	unsigned int		sectorsize)
 | |
| {
 | |
| 	return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_mapping_buftarg(
 | |
| 	xfs_buftarg_t		*btp,
 | |
| 	struct block_device	*bdev)
 | |
| {
 | |
| 	struct backing_dev_info	*bdi;
 | |
| 	struct inode		*inode;
 | |
| 	struct address_space	*mapping;
 | |
| 	static const struct address_space_operations mapping_aops = {
 | |
| 		.sync_page = block_sync_page,
 | |
| 		.migratepage = fail_migrate_page,
 | |
| 	};
 | |
| 
 | |
| 	inode = new_inode(bdev->bd_inode->i_sb);
 | |
| 	if (!inode) {
 | |
| 		printk(KERN_WARNING
 | |
| 			"XFS: Cannot allocate mapping inode for device %s\n",
 | |
| 			XFS_BUFTARG_NAME(btp));
 | |
| 		return ENOMEM;
 | |
| 	}
 | |
| 	inode->i_mode = S_IFBLK;
 | |
| 	inode->i_bdev = bdev;
 | |
| 	inode->i_rdev = bdev->bd_dev;
 | |
| 	bdi = blk_get_backing_dev_info(bdev);
 | |
| 	if (!bdi)
 | |
| 		bdi = &default_backing_dev_info;
 | |
| 	mapping = &inode->i_data;
 | |
| 	mapping->a_ops = &mapping_aops;
 | |
| 	mapping->backing_dev_info = bdi;
 | |
| 	mapping_set_gfp_mask(mapping, GFP_NOFS);
 | |
| 	btp->bt_mapping = mapping;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfs_alloc_delwrite_queue(
 | |
| 	xfs_buftarg_t		*btp)
 | |
| {
 | |
| 	int	error = 0;
 | |
| 
 | |
| 	INIT_LIST_HEAD(&btp->bt_list);
 | |
| 	INIT_LIST_HEAD(&btp->bt_delwrite_queue);
 | |
| 	spin_lock_init(&btp->bt_delwrite_lock);
 | |
| 	btp->bt_flags = 0;
 | |
| 	btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd");
 | |
| 	if (IS_ERR(btp->bt_task)) {
 | |
| 		error = PTR_ERR(btp->bt_task);
 | |
| 		goto out_error;
 | |
| 	}
 | |
| 	xfs_register_buftarg(btp);
 | |
| out_error:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| xfs_buftarg_t *
 | |
| xfs_alloc_buftarg(
 | |
| 	struct block_device	*bdev,
 | |
| 	int			external)
 | |
| {
 | |
| 	xfs_buftarg_t		*btp;
 | |
| 
 | |
| 	btp = kmem_zalloc(sizeof(*btp), KM_SLEEP);
 | |
| 
 | |
| 	btp->bt_dev =  bdev->bd_dev;
 | |
| 	btp->bt_bdev = bdev;
 | |
| 	if (xfs_setsize_buftarg_early(btp, bdev))
 | |
| 		goto error;
 | |
| 	if (xfs_mapping_buftarg(btp, bdev))
 | |
| 		goto error;
 | |
| 	if (xfs_alloc_delwrite_queue(btp))
 | |
| 		goto error;
 | |
| 	xfs_alloc_bufhash(btp, external);
 | |
| 	return btp;
 | |
| 
 | |
| error:
 | |
| 	kmem_free(btp);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  *	Delayed write buffer handling
 | |
|  */
 | |
| STATIC void
 | |
| xfs_buf_delwri_queue(
 | |
| 	xfs_buf_t		*bp,
 | |
| 	int			unlock)
 | |
| {
 | |
| 	struct list_head	*dwq = &bp->b_target->bt_delwrite_queue;
 | |
| 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
 | |
| 
 | |
| 	XB_TRACE(bp, "delwri_q", (long)unlock);
 | |
| 	ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC));
 | |
| 
 | |
| 	spin_lock(dwlk);
 | |
| 	/* If already in the queue, dequeue and place at tail */
 | |
| 	if (!list_empty(&bp->b_list)) {
 | |
| 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
 | |
| 		if (unlock)
 | |
| 			atomic_dec(&bp->b_hold);
 | |
| 		list_del(&bp->b_list);
 | |
| 	}
 | |
| 
 | |
| 	bp->b_flags |= _XBF_DELWRI_Q;
 | |
| 	list_add_tail(&bp->b_list, dwq);
 | |
| 	bp->b_queuetime = jiffies;
 | |
| 	spin_unlock(dwlk);
 | |
| 
 | |
| 	if (unlock)
 | |
| 		xfs_buf_unlock(bp);
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_delwri_dequeue(
 | |
| 	xfs_buf_t		*bp)
 | |
| {
 | |
| 	spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock;
 | |
| 	int			dequeued = 0;
 | |
| 
 | |
| 	spin_lock(dwlk);
 | |
| 	if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) {
 | |
| 		ASSERT(bp->b_flags & _XBF_DELWRI_Q);
 | |
| 		list_del_init(&bp->b_list);
 | |
| 		dequeued = 1;
 | |
| 	}
 | |
| 	bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q);
 | |
| 	spin_unlock(dwlk);
 | |
| 
 | |
| 	if (dequeued)
 | |
| 		xfs_buf_rele(bp);
 | |
| 
 | |
| 	XB_TRACE(bp, "delwri_dq", (long)dequeued);
 | |
| }
 | |
| 
 | |
| STATIC void
 | |
| xfs_buf_runall_queues(
 | |
| 	struct workqueue_struct	*queue)
 | |
| {
 | |
| 	flush_workqueue(queue);
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfsbufd_wakeup(
 | |
| 	int			priority,
 | |
| 	gfp_t			mask)
 | |
| {
 | |
| 	xfs_buftarg_t		*btp;
 | |
| 
 | |
| 	spin_lock(&xfs_buftarg_lock);
 | |
| 	list_for_each_entry(btp, &xfs_buftarg_list, bt_list) {
 | |
| 		if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags))
 | |
| 			continue;
 | |
| 		set_bit(XBT_FORCE_FLUSH, &btp->bt_flags);
 | |
| 		wake_up_process(btp->bt_task);
 | |
| 	}
 | |
| 	spin_unlock(&xfs_buftarg_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Move as many buffers as specified to the supplied list
 | |
|  * idicating if we skipped any buffers to prevent deadlocks.
 | |
|  */
 | |
| STATIC int
 | |
| xfs_buf_delwri_split(
 | |
| 	xfs_buftarg_t	*target,
 | |
| 	struct list_head *list,
 | |
| 	unsigned long	age)
 | |
| {
 | |
| 	xfs_buf_t	*bp, *n;
 | |
| 	struct list_head *dwq = &target->bt_delwrite_queue;
 | |
| 	spinlock_t	*dwlk = &target->bt_delwrite_lock;
 | |
| 	int		skipped = 0;
 | |
| 	int		force;
 | |
| 
 | |
| 	force = test_and_clear_bit(XBT_FORCE_FLUSH, &target->bt_flags);
 | |
| 	INIT_LIST_HEAD(list);
 | |
| 	spin_lock(dwlk);
 | |
| 	list_for_each_entry_safe(bp, n, dwq, b_list) {
 | |
| 		XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp));
 | |
| 		ASSERT(bp->b_flags & XBF_DELWRI);
 | |
| 
 | |
| 		if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) {
 | |
| 			if (!force &&
 | |
| 			    time_before(jiffies, bp->b_queuetime + age)) {
 | |
| 				xfs_buf_unlock(bp);
 | |
| 				break;
 | |
| 			}
 | |
| 
 | |
| 			bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q|
 | |
| 					 _XBF_RUN_QUEUES);
 | |
| 			bp->b_flags |= XBF_WRITE;
 | |
| 			list_move_tail(&bp->b_list, list);
 | |
| 		} else
 | |
| 			skipped++;
 | |
| 	}
 | |
| 	spin_unlock(dwlk);
 | |
| 
 | |
| 	return skipped;
 | |
| 
 | |
| }
 | |
| 
 | |
| STATIC int
 | |
| xfsbufd(
 | |
| 	void		*data)
 | |
| {
 | |
| 	struct list_head tmp;
 | |
| 	xfs_buftarg_t	*target = (xfs_buftarg_t *)data;
 | |
| 	int		count;
 | |
| 	xfs_buf_t	*bp;
 | |
| 
 | |
| 	current->flags |= PF_MEMALLOC;
 | |
| 
 | |
| 	set_freezable();
 | |
| 
 | |
| 	do {
 | |
| 		if (unlikely(freezing(current))) {
 | |
| 			set_bit(XBT_FORCE_SLEEP, &target->bt_flags);
 | |
| 			refrigerator();
 | |
| 		} else {
 | |
| 			clear_bit(XBT_FORCE_SLEEP, &target->bt_flags);
 | |
| 		}
 | |
| 
 | |
| 		schedule_timeout_interruptible(
 | |
| 			xfs_buf_timer_centisecs * msecs_to_jiffies(10));
 | |
| 
 | |
| 		xfs_buf_delwri_split(target, &tmp,
 | |
| 				xfs_buf_age_centisecs * msecs_to_jiffies(10));
 | |
| 
 | |
| 		count = 0;
 | |
| 		while (!list_empty(&tmp)) {
 | |
| 			bp = list_entry(tmp.next, xfs_buf_t, b_list);
 | |
| 			ASSERT(target == bp->b_target);
 | |
| 
 | |
| 			list_del_init(&bp->b_list);
 | |
| 			xfs_buf_iostrategy(bp);
 | |
| 			count++;
 | |
| 		}
 | |
| 
 | |
| 		if (as_list_len > 0)
 | |
| 			purge_addresses();
 | |
| 		if (count)
 | |
| 			blk_run_address_space(target->bt_mapping);
 | |
| 
 | |
| 	} while (!kthread_should_stop());
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  *	Go through all incore buffers, and release buffers if they belong to
 | |
|  *	the given device. This is used in filesystem error handling to
 | |
|  *	preserve the consistency of its metadata.
 | |
|  */
 | |
| int
 | |
| xfs_flush_buftarg(
 | |
| 	xfs_buftarg_t	*target,
 | |
| 	int		wait)
 | |
| {
 | |
| 	struct list_head tmp;
 | |
| 	xfs_buf_t	*bp, *n;
 | |
| 	int		pincount = 0;
 | |
| 
 | |
| 	xfs_buf_runall_queues(xfsconvertd_workqueue);
 | |
| 	xfs_buf_runall_queues(xfsdatad_workqueue);
 | |
| 	xfs_buf_runall_queues(xfslogd_workqueue);
 | |
| 
 | |
| 	set_bit(XBT_FORCE_FLUSH, &target->bt_flags);
 | |
| 	pincount = xfs_buf_delwri_split(target, &tmp, 0);
 | |
| 
 | |
| 	/*
 | |
| 	 * Dropped the delayed write list lock, now walk the temporary list
 | |
| 	 */
 | |
| 	list_for_each_entry_safe(bp, n, &tmp, b_list) {
 | |
| 		ASSERT(target == bp->b_target);
 | |
| 		if (wait)
 | |
| 			bp->b_flags &= ~XBF_ASYNC;
 | |
| 		else
 | |
| 			list_del_init(&bp->b_list);
 | |
| 
 | |
| 		xfs_buf_iostrategy(bp);
 | |
| 	}
 | |
| 
 | |
| 	if (wait)
 | |
| 		blk_run_address_space(target->bt_mapping);
 | |
| 
 | |
| 	/*
 | |
| 	 * Remaining list items must be flushed before returning
 | |
| 	 */
 | |
| 	while (!list_empty(&tmp)) {
 | |
| 		bp = list_entry(tmp.next, xfs_buf_t, b_list);
 | |
| 
 | |
| 		list_del_init(&bp->b_list);
 | |
| 		xfs_iowait(bp);
 | |
| 		xfs_buf_relse(bp);
 | |
| 	}
 | |
| 
 | |
| 	return pincount;
 | |
| }
 | |
| 
 | |
| int __init
 | |
| xfs_buf_init(void)
 | |
| {
 | |
| #ifdef XFS_BUF_TRACE
 | |
| 	xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_NOFS);
 | |
| #endif
 | |
| 
 | |
| 	xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf",
 | |
| 						KM_ZONE_HWALIGN, NULL);
 | |
| 	if (!xfs_buf_zone)
 | |
| 		goto out_free_trace_buf;
 | |
| 
 | |
| 	xfslogd_workqueue = create_workqueue("xfslogd");
 | |
| 	if (!xfslogd_workqueue)
 | |
| 		goto out_free_buf_zone;
 | |
| 
 | |
| 	xfsdatad_workqueue = create_workqueue("xfsdatad");
 | |
| 	if (!xfsdatad_workqueue)
 | |
| 		goto out_destroy_xfslogd_workqueue;
 | |
| 
 | |
| 	xfsconvertd_workqueue = create_workqueue("xfsconvertd");
 | |
| 	if (!xfsconvertd_workqueue)
 | |
| 		goto out_destroy_xfsdatad_workqueue;
 | |
| 
 | |
| 	register_shrinker(&xfs_buf_shake);
 | |
| 	return 0;
 | |
| 
 | |
|  out_destroy_xfsdatad_workqueue:
 | |
| 	destroy_workqueue(xfsdatad_workqueue);
 | |
|  out_destroy_xfslogd_workqueue:
 | |
| 	destroy_workqueue(xfslogd_workqueue);
 | |
|  out_free_buf_zone:
 | |
| 	kmem_zone_destroy(xfs_buf_zone);
 | |
|  out_free_trace_buf:
 | |
| #ifdef XFS_BUF_TRACE
 | |
| 	ktrace_free(xfs_buf_trace_buf);
 | |
| #endif
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| void
 | |
| xfs_buf_terminate(void)
 | |
| {
 | |
| 	unregister_shrinker(&xfs_buf_shake);
 | |
| 	destroy_workqueue(xfsconvertd_workqueue);
 | |
| 	destroy_workqueue(xfsdatad_workqueue);
 | |
| 	destroy_workqueue(xfslogd_workqueue);
 | |
| 	kmem_zone_destroy(xfs_buf_zone);
 | |
| #ifdef XFS_BUF_TRACE
 | |
| 	ktrace_free(xfs_buf_trace_buf);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_KDB_MODULES
 | |
| struct list_head *
 | |
| xfs_get_buftarg_list(void)
 | |
| {
 | |
| 	return &xfs_buftarg_list;
 | |
| }
 | |
| #endif
 |