613 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			613 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Common EFI (Extensible Firmware Interface) support functions
 | 
						|
 * Based on Extensible Firmware Interface Specification version 1.0
 | 
						|
 *
 | 
						|
 * Copyright (C) 1999 VA Linux Systems
 | 
						|
 * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
 | 
						|
 * Copyright (C) 1999-2002 Hewlett-Packard Co.
 | 
						|
 *	David Mosberger-Tang <davidm@hpl.hp.com>
 | 
						|
 *	Stephane Eranian <eranian@hpl.hp.com>
 | 
						|
 * Copyright (C) 2005-2008 Intel Co.
 | 
						|
 *	Fenghua Yu <fenghua.yu@intel.com>
 | 
						|
 *	Bibo Mao <bibo.mao@intel.com>
 | 
						|
 *	Chandramouli Narayanan <mouli@linux.intel.com>
 | 
						|
 *	Huang Ying <ying.huang@intel.com>
 | 
						|
 *
 | 
						|
 * Copied from efi_32.c to eliminate the duplicated code between EFI
 | 
						|
 * 32/64 support code. --ying 2007-10-26
 | 
						|
 *
 | 
						|
 * All EFI Runtime Services are not implemented yet as EFI only
 | 
						|
 * supports physical mode addressing on SoftSDV. This is to be fixed
 | 
						|
 * in a future version.  --drummond 1999-07-20
 | 
						|
 *
 | 
						|
 * Implemented EFI runtime services and virtual mode calls.  --davidm
 | 
						|
 *
 | 
						|
 * Goutham Rao: <goutham.rao@intel.com>
 | 
						|
 *	Skip non-WB memory and ignore empty memory ranges.
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/kernel.h>
 | 
						|
#include <linux/init.h>
 | 
						|
#include <linux/efi.h>
 | 
						|
#include <linux/bootmem.h>
 | 
						|
#include <linux/spinlock.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/time.h>
 | 
						|
#include <linux/io.h>
 | 
						|
#include <linux/reboot.h>
 | 
						|
#include <linux/bcd.h>
 | 
						|
 | 
						|
#include <asm/setup.h>
 | 
						|
#include <asm/efi.h>
 | 
						|
#include <asm/time.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/tlbflush.h>
 | 
						|
#include <asm/x86_init.h>
 | 
						|
 | 
						|
#define EFI_DEBUG	1
 | 
						|
#define PFX 		"EFI: "
 | 
						|
 | 
						|
int efi_enabled;
 | 
						|
EXPORT_SYMBOL(efi_enabled);
 | 
						|
 | 
						|
struct efi efi;
 | 
						|
EXPORT_SYMBOL(efi);
 | 
						|
 | 
						|
struct efi_memory_map memmap;
 | 
						|
 | 
						|
static struct efi efi_phys __initdata;
 | 
						|
static efi_system_table_t efi_systab __initdata;
 | 
						|
 | 
						|
static int __init setup_noefi(char *arg)
 | 
						|
{
 | 
						|
	efi_enabled = 0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("noefi", setup_noefi);
 | 
						|
 | 
						|
int add_efi_memmap;
 | 
						|
EXPORT_SYMBOL(add_efi_memmap);
 | 
						|
 | 
						|
static int __init setup_add_efi_memmap(char *arg)
 | 
						|
{
 | 
						|
	add_efi_memmap = 1;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
early_param("add_efi_memmap", setup_add_efi_memmap);
 | 
						|
 | 
						|
 | 
						|
static efi_status_t virt_efi_get_time(efi_time_t *tm, efi_time_cap_t *tc)
 | 
						|
{
 | 
						|
	return efi_call_virt2(get_time, tm, tc);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_set_time(efi_time_t *tm)
 | 
						|
{
 | 
						|
	return efi_call_virt1(set_time, tm);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_get_wakeup_time(efi_bool_t *enabled,
 | 
						|
					     efi_bool_t *pending,
 | 
						|
					     efi_time_t *tm)
 | 
						|
{
 | 
						|
	return efi_call_virt3(get_wakeup_time,
 | 
						|
			      enabled, pending, tm);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
 | 
						|
{
 | 
						|
	return efi_call_virt2(set_wakeup_time,
 | 
						|
			      enabled, tm);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_get_variable(efi_char16_t *name,
 | 
						|
					  efi_guid_t *vendor,
 | 
						|
					  u32 *attr,
 | 
						|
					  unsigned long *data_size,
 | 
						|
					  void *data)
 | 
						|
{
 | 
						|
	return efi_call_virt5(get_variable,
 | 
						|
			      name, vendor, attr,
 | 
						|
			      data_size, data);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_get_next_variable(unsigned long *name_size,
 | 
						|
					       efi_char16_t *name,
 | 
						|
					       efi_guid_t *vendor)
 | 
						|
{
 | 
						|
	return efi_call_virt3(get_next_variable,
 | 
						|
			      name_size, name, vendor);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_set_variable(efi_char16_t *name,
 | 
						|
					  efi_guid_t *vendor,
 | 
						|
					  unsigned long attr,
 | 
						|
					  unsigned long data_size,
 | 
						|
					  void *data)
 | 
						|
{
 | 
						|
	return efi_call_virt5(set_variable,
 | 
						|
			      name, vendor, attr,
 | 
						|
			      data_size, data);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_get_next_high_mono_count(u32 *count)
 | 
						|
{
 | 
						|
	return efi_call_virt1(get_next_high_mono_count, count);
 | 
						|
}
 | 
						|
 | 
						|
static void virt_efi_reset_system(int reset_type,
 | 
						|
				  efi_status_t status,
 | 
						|
				  unsigned long data_size,
 | 
						|
				  efi_char16_t *data)
 | 
						|
{
 | 
						|
	efi_call_virt4(reset_system, reset_type, status,
 | 
						|
		       data_size, data);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t virt_efi_set_virtual_address_map(
 | 
						|
	unsigned long memory_map_size,
 | 
						|
	unsigned long descriptor_size,
 | 
						|
	u32 descriptor_version,
 | 
						|
	efi_memory_desc_t *virtual_map)
 | 
						|
{
 | 
						|
	return efi_call_virt4(set_virtual_address_map,
 | 
						|
			      memory_map_size, descriptor_size,
 | 
						|
			      descriptor_version, virtual_map);
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t __init phys_efi_set_virtual_address_map(
 | 
						|
	unsigned long memory_map_size,
 | 
						|
	unsigned long descriptor_size,
 | 
						|
	u32 descriptor_version,
 | 
						|
	efi_memory_desc_t *virtual_map)
 | 
						|
{
 | 
						|
	efi_status_t status;
 | 
						|
 | 
						|
	efi_call_phys_prelog();
 | 
						|
	status = efi_call_phys4(efi_phys.set_virtual_address_map,
 | 
						|
				memory_map_size, descriptor_size,
 | 
						|
				descriptor_version, virtual_map);
 | 
						|
	efi_call_phys_epilog();
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
static efi_status_t __init phys_efi_get_time(efi_time_t *tm,
 | 
						|
					     efi_time_cap_t *tc)
 | 
						|
{
 | 
						|
	efi_status_t status;
 | 
						|
 | 
						|
	efi_call_phys_prelog();
 | 
						|
	status = efi_call_phys2(efi_phys.get_time, tm, tc);
 | 
						|
	efi_call_phys_epilog();
 | 
						|
	return status;
 | 
						|
}
 | 
						|
 | 
						|
int efi_set_rtc_mmss(unsigned long nowtime)
 | 
						|
{
 | 
						|
	int real_seconds, real_minutes;
 | 
						|
	efi_status_t 	status;
 | 
						|
	efi_time_t 	eft;
 | 
						|
	efi_time_cap_t 	cap;
 | 
						|
 | 
						|
	status = efi.get_time(&eft, &cap);
 | 
						|
	if (status != EFI_SUCCESS) {
 | 
						|
		printk(KERN_ERR "Oops: efitime: can't read time!\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	real_seconds = nowtime % 60;
 | 
						|
	real_minutes = nowtime / 60;
 | 
						|
	if (((abs(real_minutes - eft.minute) + 15)/30) & 1)
 | 
						|
		real_minutes += 30;
 | 
						|
	real_minutes %= 60;
 | 
						|
	eft.minute = real_minutes;
 | 
						|
	eft.second = real_seconds;
 | 
						|
 | 
						|
	status = efi.set_time(&eft);
 | 
						|
	if (status != EFI_SUCCESS) {
 | 
						|
		printk(KERN_ERR "Oops: efitime: can't write time!\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long efi_get_time(void)
 | 
						|
{
 | 
						|
	efi_status_t status;
 | 
						|
	efi_time_t eft;
 | 
						|
	efi_time_cap_t cap;
 | 
						|
 | 
						|
	status = efi.get_time(&eft, &cap);
 | 
						|
	if (status != EFI_SUCCESS)
 | 
						|
		printk(KERN_ERR "Oops: efitime: can't read time!\n");
 | 
						|
 | 
						|
	return mktime(eft.year, eft.month, eft.day, eft.hour,
 | 
						|
		      eft.minute, eft.second);
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Tell the kernel about the EFI memory map.  This might include
 | 
						|
 * more than the max 128 entries that can fit in the e820 legacy
 | 
						|
 * (zeropage) memory map.
 | 
						|
 */
 | 
						|
 | 
						|
static void __init do_add_efi_memmap(void)
 | 
						|
{
 | 
						|
	void *p;
 | 
						|
 | 
						|
	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 | 
						|
		efi_memory_desc_t *md = p;
 | 
						|
		unsigned long long start = md->phys_addr;
 | 
						|
		unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
 | 
						|
		int e820_type;
 | 
						|
 | 
						|
		switch (md->type) {
 | 
						|
		case EFI_LOADER_CODE:
 | 
						|
		case EFI_LOADER_DATA:
 | 
						|
		case EFI_BOOT_SERVICES_CODE:
 | 
						|
		case EFI_BOOT_SERVICES_DATA:
 | 
						|
		case EFI_CONVENTIONAL_MEMORY:
 | 
						|
			if (md->attribute & EFI_MEMORY_WB)
 | 
						|
				e820_type = E820_RAM;
 | 
						|
			else
 | 
						|
				e820_type = E820_RESERVED;
 | 
						|
			break;
 | 
						|
		case EFI_ACPI_RECLAIM_MEMORY:
 | 
						|
			e820_type = E820_ACPI;
 | 
						|
			break;
 | 
						|
		case EFI_ACPI_MEMORY_NVS:
 | 
						|
			e820_type = E820_NVS;
 | 
						|
			break;
 | 
						|
		case EFI_UNUSABLE_MEMORY:
 | 
						|
			e820_type = E820_UNUSABLE;
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			/*
 | 
						|
			 * EFI_RESERVED_TYPE EFI_RUNTIME_SERVICES_CODE
 | 
						|
			 * EFI_RUNTIME_SERVICES_DATA EFI_MEMORY_MAPPED_IO
 | 
						|
			 * EFI_MEMORY_MAPPED_IO_PORT_SPACE EFI_PAL_CODE
 | 
						|
			 */
 | 
						|
			e820_type = E820_RESERVED;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
		e820_add_region(start, size, e820_type);
 | 
						|
	}
 | 
						|
	sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
 | 
						|
}
 | 
						|
 | 
						|
void __init efi_reserve_early(void)
 | 
						|
{
 | 
						|
	unsigned long pmap;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	pmap = boot_params.efi_info.efi_memmap;
 | 
						|
#else
 | 
						|
	pmap = (boot_params.efi_info.efi_memmap |
 | 
						|
		((__u64)boot_params.efi_info.efi_memmap_hi<<32));
 | 
						|
#endif
 | 
						|
	memmap.phys_map = (void *)pmap;
 | 
						|
	memmap.nr_map = boot_params.efi_info.efi_memmap_size /
 | 
						|
		boot_params.efi_info.efi_memdesc_size;
 | 
						|
	memmap.desc_version = boot_params.efi_info.efi_memdesc_version;
 | 
						|
	memmap.desc_size = boot_params.efi_info.efi_memdesc_size;
 | 
						|
	reserve_early(pmap, pmap + memmap.nr_map * memmap.desc_size,
 | 
						|
		      "EFI memmap");
 | 
						|
}
 | 
						|
 | 
						|
#if EFI_DEBUG
 | 
						|
static void __init print_efi_memmap(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	void *p;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for (p = memmap.map, i = 0;
 | 
						|
	     p < memmap.map_end;
 | 
						|
	     p += memmap.desc_size, i++) {
 | 
						|
		md = p;
 | 
						|
		printk(KERN_INFO PFX "mem%02u: type=%u, attr=0x%llx, "
 | 
						|
			"range=[0x%016llx-0x%016llx) (%lluMB)\n",
 | 
						|
			i, md->type, md->attribute, md->phys_addr,
 | 
						|
			md->phys_addr + (md->num_pages << EFI_PAGE_SHIFT),
 | 
						|
			(md->num_pages >> (20 - EFI_PAGE_SHIFT)));
 | 
						|
	}
 | 
						|
}
 | 
						|
#endif  /*  EFI_DEBUG  */
 | 
						|
 | 
						|
void __init efi_init(void)
 | 
						|
{
 | 
						|
	efi_config_table_t *config_tables;
 | 
						|
	efi_runtime_services_t *runtime;
 | 
						|
	efi_char16_t *c16;
 | 
						|
	char vendor[100] = "unknown";
 | 
						|
	int i = 0;
 | 
						|
	void *tmp;
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	efi_phys.systab = (efi_system_table_t *)boot_params.efi_info.efi_systab;
 | 
						|
#else
 | 
						|
	efi_phys.systab = (efi_system_table_t *)
 | 
						|
		(boot_params.efi_info.efi_systab |
 | 
						|
		 ((__u64)boot_params.efi_info.efi_systab_hi<<32));
 | 
						|
#endif
 | 
						|
 | 
						|
	efi.systab = early_ioremap((unsigned long)efi_phys.systab,
 | 
						|
				   sizeof(efi_system_table_t));
 | 
						|
	if (efi.systab == NULL)
 | 
						|
		printk(KERN_ERR "Couldn't map the EFI system table!\n");
 | 
						|
	memcpy(&efi_systab, efi.systab, sizeof(efi_system_table_t));
 | 
						|
	early_iounmap(efi.systab, sizeof(efi_system_table_t));
 | 
						|
	efi.systab = &efi_systab;
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Verify the EFI Table
 | 
						|
	 */
 | 
						|
	if (efi.systab->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE)
 | 
						|
		printk(KERN_ERR "EFI system table signature incorrect!\n");
 | 
						|
	if ((efi.systab->hdr.revision >> 16) == 0)
 | 
						|
		printk(KERN_ERR "Warning: EFI system table version "
 | 
						|
		       "%d.%02d, expected 1.00 or greater!\n",
 | 
						|
		       efi.systab->hdr.revision >> 16,
 | 
						|
		       efi.systab->hdr.revision & 0xffff);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Show what we know for posterity
 | 
						|
	 */
 | 
						|
	c16 = tmp = early_ioremap(efi.systab->fw_vendor, 2);
 | 
						|
	if (c16) {
 | 
						|
		for (i = 0; i < sizeof(vendor) - 1 && *c16; ++i)
 | 
						|
			vendor[i] = *c16++;
 | 
						|
		vendor[i] = '\0';
 | 
						|
	} else
 | 
						|
		printk(KERN_ERR PFX "Could not map the firmware vendor!\n");
 | 
						|
	early_iounmap(tmp, 2);
 | 
						|
 | 
						|
	printk(KERN_INFO "EFI v%u.%.02u by %s \n",
 | 
						|
	       efi.systab->hdr.revision >> 16,
 | 
						|
	       efi.systab->hdr.revision & 0xffff, vendor);
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Let's see what config tables the firmware passed to us.
 | 
						|
	 */
 | 
						|
	config_tables = early_ioremap(
 | 
						|
		efi.systab->tables,
 | 
						|
		efi.systab->nr_tables * sizeof(efi_config_table_t));
 | 
						|
	if (config_tables == NULL)
 | 
						|
		printk(KERN_ERR "Could not map EFI Configuration Table!\n");
 | 
						|
 | 
						|
	printk(KERN_INFO);
 | 
						|
	for (i = 0; i < efi.systab->nr_tables; i++) {
 | 
						|
		if (!efi_guidcmp(config_tables[i].guid, MPS_TABLE_GUID)) {
 | 
						|
			efi.mps = config_tables[i].table;
 | 
						|
			printk(" MPS=0x%lx ", config_tables[i].table);
 | 
						|
		} else if (!efi_guidcmp(config_tables[i].guid,
 | 
						|
					ACPI_20_TABLE_GUID)) {
 | 
						|
			efi.acpi20 = config_tables[i].table;
 | 
						|
			printk(" ACPI 2.0=0x%lx ", config_tables[i].table);
 | 
						|
		} else if (!efi_guidcmp(config_tables[i].guid,
 | 
						|
					ACPI_TABLE_GUID)) {
 | 
						|
			efi.acpi = config_tables[i].table;
 | 
						|
			printk(" ACPI=0x%lx ", config_tables[i].table);
 | 
						|
		} else if (!efi_guidcmp(config_tables[i].guid,
 | 
						|
					SMBIOS_TABLE_GUID)) {
 | 
						|
			efi.smbios = config_tables[i].table;
 | 
						|
			printk(" SMBIOS=0x%lx ", config_tables[i].table);
 | 
						|
#ifdef CONFIG_X86_UV
 | 
						|
		} else if (!efi_guidcmp(config_tables[i].guid,
 | 
						|
					UV_SYSTEM_TABLE_GUID)) {
 | 
						|
			efi.uv_systab = config_tables[i].table;
 | 
						|
			printk(" UVsystab=0x%lx ", config_tables[i].table);
 | 
						|
#endif
 | 
						|
		} else if (!efi_guidcmp(config_tables[i].guid,
 | 
						|
					HCDP_TABLE_GUID)) {
 | 
						|
			efi.hcdp = config_tables[i].table;
 | 
						|
			printk(" HCDP=0x%lx ", config_tables[i].table);
 | 
						|
		} else if (!efi_guidcmp(config_tables[i].guid,
 | 
						|
					UGA_IO_PROTOCOL_GUID)) {
 | 
						|
			efi.uga = config_tables[i].table;
 | 
						|
			printk(" UGA=0x%lx ", config_tables[i].table);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	printk("\n");
 | 
						|
	early_iounmap(config_tables,
 | 
						|
			  efi.systab->nr_tables * sizeof(efi_config_table_t));
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Check out the runtime services table. We need to map
 | 
						|
	 * the runtime services table so that we can grab the physical
 | 
						|
	 * address of several of the EFI runtime functions, needed to
 | 
						|
	 * set the firmware into virtual mode.
 | 
						|
	 */
 | 
						|
	runtime = early_ioremap((unsigned long)efi.systab->runtime,
 | 
						|
				sizeof(efi_runtime_services_t));
 | 
						|
	if (runtime != NULL) {
 | 
						|
		/*
 | 
						|
		 * We will only need *early* access to the following
 | 
						|
		 * two EFI runtime services before set_virtual_address_map
 | 
						|
		 * is invoked.
 | 
						|
		 */
 | 
						|
		efi_phys.get_time = (efi_get_time_t *)runtime->get_time;
 | 
						|
		efi_phys.set_virtual_address_map =
 | 
						|
			(efi_set_virtual_address_map_t *)
 | 
						|
			runtime->set_virtual_address_map;
 | 
						|
		/*
 | 
						|
		 * Make efi_get_time can be called before entering
 | 
						|
		 * virtual mode.
 | 
						|
		 */
 | 
						|
		efi.get_time = phys_efi_get_time;
 | 
						|
	} else
 | 
						|
		printk(KERN_ERR "Could not map the EFI runtime service "
 | 
						|
		       "table!\n");
 | 
						|
	early_iounmap(runtime, sizeof(efi_runtime_services_t));
 | 
						|
 | 
						|
	/* Map the EFI memory map */
 | 
						|
	memmap.map = early_ioremap((unsigned long)memmap.phys_map,
 | 
						|
				   memmap.nr_map * memmap.desc_size);
 | 
						|
	if (memmap.map == NULL)
 | 
						|
		printk(KERN_ERR "Could not map the EFI memory map!\n");
 | 
						|
	memmap.map_end = memmap.map + (memmap.nr_map * memmap.desc_size);
 | 
						|
 | 
						|
	if (memmap.desc_size != sizeof(efi_memory_desc_t))
 | 
						|
		printk(KERN_WARNING
 | 
						|
		  "Kernel-defined memdesc doesn't match the one from EFI!\n");
 | 
						|
 | 
						|
	if (add_efi_memmap)
 | 
						|
		do_add_efi_memmap();
 | 
						|
 | 
						|
#ifdef CONFIG_X86_32
 | 
						|
	x86_platform.get_wallclock = efi_get_time;
 | 
						|
	x86_platform.set_wallclock = efi_set_rtc_mmss;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* Setup for EFI runtime service */
 | 
						|
	reboot_type = BOOT_EFI;
 | 
						|
 | 
						|
#if EFI_DEBUG
 | 
						|
	print_efi_memmap();
 | 
						|
#endif
 | 
						|
}
 | 
						|
 | 
						|
static void __init runtime_code_page_mkexec(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	void *p;
 | 
						|
	u64 addr, npages;
 | 
						|
 | 
						|
	/* Make EFI runtime service code area executable */
 | 
						|
	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 | 
						|
		md = p;
 | 
						|
 | 
						|
		if (md->type != EFI_RUNTIME_SERVICES_CODE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		addr = md->virt_addr;
 | 
						|
		npages = md->num_pages;
 | 
						|
		memrange_efi_to_native(&addr, &npages);
 | 
						|
		set_memory_x(addr, npages);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This function will switch the EFI runtime services to virtual mode.
 | 
						|
 * Essentially, look through the EFI memmap and map every region that
 | 
						|
 * has the runtime attribute bit set in its memory descriptor and update
 | 
						|
 * that memory descriptor with the virtual address obtained from ioremap().
 | 
						|
 * This enables the runtime services to be called without having to
 | 
						|
 * thunk back into physical mode for every invocation.
 | 
						|
 */
 | 
						|
void __init efi_enter_virtual_mode(void)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	efi_status_t status;
 | 
						|
	unsigned long size;
 | 
						|
	u64 end, systab, addr, npages, end_pfn;
 | 
						|
	void *p, *va;
 | 
						|
 | 
						|
	efi.systab = NULL;
 | 
						|
	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 | 
						|
		md = p;
 | 
						|
		if (!(md->attribute & EFI_MEMORY_RUNTIME))
 | 
						|
			continue;
 | 
						|
 | 
						|
		size = md->num_pages << EFI_PAGE_SHIFT;
 | 
						|
		end = md->phys_addr + size;
 | 
						|
 | 
						|
		end_pfn = PFN_UP(end);
 | 
						|
		if (end_pfn <= max_low_pfn_mapped
 | 
						|
		    || (end_pfn > (1UL << (32 - PAGE_SHIFT))
 | 
						|
			&& end_pfn <= max_pfn_mapped))
 | 
						|
			va = __va(md->phys_addr);
 | 
						|
		else
 | 
						|
			va = efi_ioremap(md->phys_addr, size, md->type);
 | 
						|
 | 
						|
		md->virt_addr = (u64) (unsigned long) va;
 | 
						|
 | 
						|
		if (!va) {
 | 
						|
			printk(KERN_ERR PFX "ioremap of 0x%llX failed!\n",
 | 
						|
			       (unsigned long long)md->phys_addr);
 | 
						|
			continue;
 | 
						|
		}
 | 
						|
 | 
						|
		if (!(md->attribute & EFI_MEMORY_WB)) {
 | 
						|
			addr = md->virt_addr;
 | 
						|
			npages = md->num_pages;
 | 
						|
			memrange_efi_to_native(&addr, &npages);
 | 
						|
			set_memory_uc(addr, npages);
 | 
						|
		}
 | 
						|
 | 
						|
		systab = (u64) (unsigned long) efi_phys.systab;
 | 
						|
		if (md->phys_addr <= systab && systab < end) {
 | 
						|
			systab += md->virt_addr - md->phys_addr;
 | 
						|
			efi.systab = (efi_system_table_t *) (unsigned long) systab;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	BUG_ON(!efi.systab);
 | 
						|
 | 
						|
	status = phys_efi_set_virtual_address_map(
 | 
						|
		memmap.desc_size * memmap.nr_map,
 | 
						|
		memmap.desc_size,
 | 
						|
		memmap.desc_version,
 | 
						|
		memmap.phys_map);
 | 
						|
 | 
						|
	if (status != EFI_SUCCESS) {
 | 
						|
		printk(KERN_ALERT "Unable to switch EFI into virtual mode "
 | 
						|
		       "(status=%lx)!\n", status);
 | 
						|
		panic("EFI call to SetVirtualAddressMap() failed!");
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
	 * Now that EFI is in virtual mode, update the function
 | 
						|
	 * pointers in the runtime service table to the new virtual addresses.
 | 
						|
	 *
 | 
						|
	 * Call EFI services through wrapper functions.
 | 
						|
	 */
 | 
						|
	efi.get_time = virt_efi_get_time;
 | 
						|
	efi.set_time = virt_efi_set_time;
 | 
						|
	efi.get_wakeup_time = virt_efi_get_wakeup_time;
 | 
						|
	efi.set_wakeup_time = virt_efi_set_wakeup_time;
 | 
						|
	efi.get_variable = virt_efi_get_variable;
 | 
						|
	efi.get_next_variable = virt_efi_get_next_variable;
 | 
						|
	efi.set_variable = virt_efi_set_variable;
 | 
						|
	efi.get_next_high_mono_count = virt_efi_get_next_high_mono_count;
 | 
						|
	efi.reset_system = virt_efi_reset_system;
 | 
						|
	efi.set_virtual_address_map = virt_efi_set_virtual_address_map;
 | 
						|
	if (__supported_pte_mask & _PAGE_NX)
 | 
						|
		runtime_code_page_mkexec();
 | 
						|
	early_iounmap(memmap.map, memmap.nr_map * memmap.desc_size);
 | 
						|
	memmap.map = NULL;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Convenience functions to obtain memory types and attributes
 | 
						|
 */
 | 
						|
u32 efi_mem_type(unsigned long phys_addr)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	void *p;
 | 
						|
 | 
						|
	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 | 
						|
		md = p;
 | 
						|
		if ((md->phys_addr <= phys_addr) &&
 | 
						|
		    (phys_addr < (md->phys_addr +
 | 
						|
				  (md->num_pages << EFI_PAGE_SHIFT))))
 | 
						|
			return md->type;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
u64 efi_mem_attributes(unsigned long phys_addr)
 | 
						|
{
 | 
						|
	efi_memory_desc_t *md;
 | 
						|
	void *p;
 | 
						|
 | 
						|
	for (p = memmap.map; p < memmap.map_end; p += memmap.desc_size) {
 | 
						|
		md = p;
 | 
						|
		if ((md->phys_addr <= phys_addr) &&
 | 
						|
		    (phys_addr < (md->phys_addr +
 | 
						|
				  (md->num_pages << EFI_PAGE_SHIFT))))
 | 
						|
			return md->attribute;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 |