405 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			405 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Memory arbiter functions. Allocates bandwidth through the
 | |
|  * arbiter and sets up arbiter breakpoints.
 | |
|  *
 | |
|  * The algorithm first assigns slots to the clients that has specified
 | |
|  * bandwidth (e.g. ethernet) and then the remaining slots are divided
 | |
|  * on all the active clients.
 | |
|  *
 | |
|  * Copyright (c) 2004-2007 Axis Communications AB.
 | |
|  */
 | |
| 
 | |
| #include <hwregs/reg_map.h>
 | |
| #include <hwregs/reg_rdwr.h>
 | |
| #include <hwregs/marb_defs.h>
 | |
| #include <arbiter.h>
 | |
| #include <hwregs/intr_vect.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/signal.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/spinlock.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| struct crisv32_watch_entry {
 | |
| 	unsigned long instance;
 | |
| 	watch_callback *cb;
 | |
| 	unsigned long start;
 | |
| 	unsigned long end;
 | |
| 	int used;
 | |
| };
 | |
| 
 | |
| #define NUMBER_OF_BP 4
 | |
| #define NBR_OF_CLIENTS 14
 | |
| #define NBR_OF_SLOTS 64
 | |
| #define SDRAM_BANDWIDTH 100000000	/* Some kind of expected value */
 | |
| #define INTMEM_BANDWIDTH 400000000
 | |
| #define NBR_OF_REGIONS 2
 | |
| 
 | |
| static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
 | |
| 	{regi_marb_bp0},
 | |
| 	{regi_marb_bp1},
 | |
| 	{regi_marb_bp2},
 | |
| 	{regi_marb_bp3}
 | |
| };
 | |
| 
 | |
| static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
 | |
| static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
 | |
| static int max_bandwidth[NBR_OF_REGIONS] =
 | |
|     { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
 | |
| 
 | |
| DEFINE_SPINLOCK(arbiter_lock);
 | |
| 
 | |
| static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
 | |
| 
 | |
| /*
 | |
|  * "I'm the arbiter, I know the score.
 | |
|  *  From square one I'll be watching all 64."
 | |
|  * (memory arbiter slots, that is)
 | |
|  *
 | |
|  *  Or in other words:
 | |
|  * Program the memory arbiter slots for "region" according to what's
 | |
|  * in requested_slots[] and active_clients[], while minimizing
 | |
|  * latency. A caller may pass a non-zero positive amount for
 | |
|  * "unused_slots", which must then be the unallocated, remaining
 | |
|  * number of slots, free to hand out to any client.
 | |
|  */
 | |
| 
 | |
| static void crisv32_arbiter_config(int region, int unused_slots)
 | |
| {
 | |
| 	int slot;
 | |
| 	int client;
 | |
| 	int interval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * This vector corresponds to the hardware arbiter slots (see
 | |
| 	 * the hardware documentation for semantics). We initialize
 | |
| 	 * each slot with a suitable sentinel value outside the valid
 | |
| 	 * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
 | |
| 	 * client indexes. Then it's fed to the hardware.
 | |
| 	 */
 | |
| 	s8 val[NBR_OF_SLOTS];
 | |
| 
 | |
| 	for (slot = 0; slot < NBR_OF_SLOTS; slot++)
 | |
| 		val[slot] = -1;
 | |
| 
 | |
| 	for (client = 0; client < NBR_OF_CLIENTS; client++) {
 | |
| 		int pos;
 | |
| 		/* Allocate the requested non-zero number of slots, but
 | |
| 		 * also give clients with zero-requests one slot each
 | |
| 		 * while stocks last. We do the latter here, in client
 | |
| 		 * order. This makes sure zero-request clients are the
 | |
| 		 * first to get to any spare slots, else those slots
 | |
| 		 * could, when bandwidth is allocated close to the limit,
 | |
| 		 * all be allocated to low-index non-zero-request clients
 | |
| 		 * in the default-fill loop below. Another positive but
 | |
| 		 * secondary effect is a somewhat better spread of the
 | |
| 		 * zero-bandwidth clients in the vector, avoiding some of
 | |
| 		 * the latency that could otherwise be caused by the
 | |
| 		 * partitioning of non-zero-bandwidth clients at low
 | |
| 		 * indexes and zero-bandwidth clients at high
 | |
| 		 * indexes. (Note that this spreading can only affect the
 | |
| 		 * unallocated bandwidth.)  All the above only matters for
 | |
| 		 * memory-intensive situations, of course.
 | |
| 		 */
 | |
| 		if (!requested_slots[region][client]) {
 | |
| 			/*
 | |
| 			 * Skip inactive clients. Also skip zero-slot
 | |
| 			 * allocations in this pass when there are no known
 | |
| 			 * free slots.
 | |
| 			 */
 | |
| 			if (!active_clients[region][client]
 | |
| 			    || unused_slots <= 0)
 | |
| 				continue;
 | |
| 
 | |
| 			unused_slots--;
 | |
| 
 | |
| 			/* Only allocate one slot for this client. */
 | |
| 			interval = NBR_OF_SLOTS;
 | |
| 		} else
 | |
| 			interval =
 | |
| 			    NBR_OF_SLOTS / requested_slots[region][client];
 | |
| 
 | |
| 		pos = 0;
 | |
| 		while (pos < NBR_OF_SLOTS) {
 | |
| 			if (val[pos] >= 0)
 | |
| 				pos++;
 | |
| 			else {
 | |
| 				val[pos] = client;
 | |
| 				pos += interval;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	client = 0;
 | |
| 	for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
 | |
| 		/*
 | |
| 		 * Allocate remaining slots in round-robin
 | |
| 		 * client-number order for active clients. For this
 | |
| 		 * pass, we ignore requested bandwidth and previous
 | |
| 		 * allocations.
 | |
| 		 */
 | |
| 		if (val[slot] < 0) {
 | |
| 			int first = client;
 | |
| 			while (!active_clients[region][client]) {
 | |
| 				client = (client + 1) % NBR_OF_CLIENTS;
 | |
| 				if (client == first)
 | |
| 					break;
 | |
| 			}
 | |
| 			val[slot] = client;
 | |
| 			client = (client + 1) % NBR_OF_CLIENTS;
 | |
| 		}
 | |
| 		if (region == EXT_REGION)
 | |
| 			REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
 | |
| 					val[slot]);
 | |
| 		else if (region == INT_REGION)
 | |
| 			REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
 | |
| 					val[slot]);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| extern char _stext, _etext;
 | |
| 
 | |
| static void crisv32_arbiter_init(void)
 | |
| {
 | |
| 	static int initialized;
 | |
| 
 | |
| 	if (initialized)
 | |
| 		return;
 | |
| 
 | |
| 	initialized = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * CPU caches are always set to active, but with zero
 | |
| 	 * bandwidth allocated. It should be ok to allocate zero
 | |
| 	 * bandwidth for the caches, because DMA for other channels
 | |
| 	 * will supposedly finish, once their programmed amount is
 | |
| 	 * done, and then the caches will get access according to the
 | |
| 	 * "fixed scheme" for unclaimed slots. Though, if for some
 | |
| 	 * use-case somewhere, there's a maximum CPU latency for
 | |
| 	 * e.g. some interrupt, we have to start allocating specific
 | |
| 	 * bandwidth for the CPU caches too.
 | |
| 	 */
 | |
| 	active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
 | |
| 	crisv32_arbiter_config(EXT_REGION, 0);
 | |
| 	crisv32_arbiter_config(INT_REGION, 0);
 | |
| 
 | |
| 	if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED,
 | |
| 			"arbiter", NULL))
 | |
| 		printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
 | |
| 
 | |
| #ifndef CONFIG_ETRAX_KGDB
 | |
| 	/* Global watch for writes to kernel text segment. */
 | |
| 	crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
 | |
| 			      arbiter_all_clients, arbiter_all_write, NULL);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Main entry for bandwidth allocation. */
 | |
| 
 | |
| int crisv32_arbiter_allocate_bandwidth(int client, int region,
 | |
| 				       unsigned long bandwidth)
 | |
| {
 | |
| 	int i;
 | |
| 	int total_assigned = 0;
 | |
| 	int total_clients = 0;
 | |
| 	int req;
 | |
| 
 | |
| 	crisv32_arbiter_init();
 | |
| 
 | |
| 	for (i = 0; i < NBR_OF_CLIENTS; i++) {
 | |
| 		total_assigned += requested_slots[region][i];
 | |
| 		total_clients += active_clients[region][i];
 | |
| 	}
 | |
| 
 | |
| 	/* Avoid division by 0 for 0-bandwidth requests. */
 | |
| 	req = bandwidth == 0
 | |
| 	    ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
 | |
| 
 | |
| 	/*
 | |
| 	 * We make sure that there are enough slots only for non-zero
 | |
| 	 * requests. Requesting 0 bandwidth *may* allocate slots,
 | |
| 	 * though if all bandwidth is allocated, such a client won't
 | |
| 	 * get any and will have to rely on getting memory access
 | |
| 	 * according to the fixed scheme that's the default when one
 | |
| 	 * of the slot-allocated clients doesn't claim their slot.
 | |
| 	 */
 | |
| 	if (total_assigned + req > NBR_OF_SLOTS)
 | |
| 		return -ENOMEM;
 | |
| 
 | |
| 	active_clients[region][client] = 1;
 | |
| 	requested_slots[region][client] = req;
 | |
| 	crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Main entry for bandwidth deallocation.
 | |
|  *
 | |
|  * Strictly speaking, for a somewhat constant set of clients where
 | |
|  * each client gets a constant bandwidth and is just enabled or
 | |
|  * disabled (somewhat dynamically), no action is necessary here to
 | |
|  * avoid starvation for non-zero-allocation clients, as the allocated
 | |
|  * slots will just be unused. However, handing out those unused slots
 | |
|  * to active clients avoids needless latency if the "fixed scheme"
 | |
|  * would give unclaimed slots to an eager low-index client.
 | |
|  */
 | |
| 
 | |
| void crisv32_arbiter_deallocate_bandwidth(int client, int region)
 | |
| {
 | |
| 	int i;
 | |
| 	int total_assigned = 0;
 | |
| 
 | |
| 	requested_slots[region][client] = 0;
 | |
| 	active_clients[region][client] = 0;
 | |
| 
 | |
| 	for (i = 0; i < NBR_OF_CLIENTS; i++)
 | |
| 		total_assigned += requested_slots[region][i];
 | |
| 
 | |
| 	crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
 | |
| }
 | |
| 
 | |
| int crisv32_arbiter_watch(unsigned long start, unsigned long size,
 | |
| 			  unsigned long clients, unsigned long accesses,
 | |
| 			  watch_callback *cb)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	crisv32_arbiter_init();
 | |
| 
 | |
| 	if (start > 0x80000000) {
 | |
| 		printk(KERN_ERR "Arbiter: %lX doesn't look like a "
 | |
| 			"physical address", start);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&arbiter_lock);
 | |
| 
 | |
| 	for (i = 0; i < NUMBER_OF_BP; i++) {
 | |
| 		if (!watches[i].used) {
 | |
| 			reg_marb_rw_intr_mask intr_mask =
 | |
| 			    REG_RD(marb, regi_marb, rw_intr_mask);
 | |
| 
 | |
| 			watches[i].used = 1;
 | |
| 			watches[i].start = start;
 | |
| 			watches[i].end = start + size;
 | |
| 			watches[i].cb = cb;
 | |
| 
 | |
| 			REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
 | |
| 				   watches[i].start);
 | |
| 			REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
 | |
| 				   watches[i].end);
 | |
| 			REG_WR_INT(marb_bp, watches[i].instance, rw_op,
 | |
| 				   accesses);
 | |
| 			REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
 | |
| 				   clients);
 | |
| 
 | |
| 			if (i == 0)
 | |
| 				intr_mask.bp0 = regk_marb_yes;
 | |
| 			else if (i == 1)
 | |
| 				intr_mask.bp1 = regk_marb_yes;
 | |
| 			else if (i == 2)
 | |
| 				intr_mask.bp2 = regk_marb_yes;
 | |
| 			else if (i == 3)
 | |
| 				intr_mask.bp3 = regk_marb_yes;
 | |
| 
 | |
| 			REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
 | |
| 			spin_unlock(&arbiter_lock);
 | |
| 
 | |
| 			return i;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&arbiter_lock);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int crisv32_arbiter_unwatch(int id)
 | |
| {
 | |
| 	reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
 | |
| 
 | |
| 	crisv32_arbiter_init();
 | |
| 
 | |
| 	spin_lock(&arbiter_lock);
 | |
| 
 | |
| 	if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
 | |
| 		spin_unlock(&arbiter_lock);
 | |
| 		return -EINVAL;
 | |
| 	}
 | |
| 
 | |
| 	memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
 | |
| 
 | |
| 	if (id == 0)
 | |
| 		intr_mask.bp0 = regk_marb_no;
 | |
| 	else if (id == 1)
 | |
| 		intr_mask.bp2 = regk_marb_no;
 | |
| 	else if (id == 2)
 | |
| 		intr_mask.bp2 = regk_marb_no;
 | |
| 	else if (id == 3)
 | |
| 		intr_mask.bp3 = regk_marb_no;
 | |
| 
 | |
| 	REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
 | |
| 
 | |
| 	spin_unlock(&arbiter_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| extern void show_registers(struct pt_regs *regs);
 | |
| 
 | |
| static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
 | |
| {
 | |
| 	reg_marb_r_masked_intr masked_intr =
 | |
| 	    REG_RD(marb, regi_marb, r_masked_intr);
 | |
| 	reg_marb_bp_r_brk_clients r_clients;
 | |
| 	reg_marb_bp_r_brk_addr r_addr;
 | |
| 	reg_marb_bp_r_brk_op r_op;
 | |
| 	reg_marb_bp_r_brk_first_client r_first;
 | |
| 	reg_marb_bp_r_brk_size r_size;
 | |
| 	reg_marb_bp_rw_ack ack = { 0 };
 | |
| 	reg_marb_rw_ack_intr ack_intr = {
 | |
| 		.bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
 | |
| 	};
 | |
| 	struct crisv32_watch_entry *watch;
 | |
| 
 | |
| 	if (masked_intr.bp0) {
 | |
| 		watch = &watches[0];
 | |
| 		ack_intr.bp0 = regk_marb_yes;
 | |
| 	} else if (masked_intr.bp1) {
 | |
| 		watch = &watches[1];
 | |
| 		ack_intr.bp1 = regk_marb_yes;
 | |
| 	} else if (masked_intr.bp2) {
 | |
| 		watch = &watches[2];
 | |
| 		ack_intr.bp2 = regk_marb_yes;
 | |
| 	} else if (masked_intr.bp3) {
 | |
| 		watch = &watches[3];
 | |
| 		ack_intr.bp3 = regk_marb_yes;
 | |
| 	} else {
 | |
| 		return IRQ_NONE;
 | |
| 	}
 | |
| 
 | |
| 	/* Retrieve all useful information and print it. */
 | |
| 	r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
 | |
| 	r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
 | |
| 	r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
 | |
| 	r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
 | |
| 	r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
 | |
| 
 | |
| 	printk(KERN_INFO "Arbiter IRQ\n");
 | |
| 	printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
 | |
| 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
 | |
| 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
 | |
| 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
 | |
| 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
 | |
| 	       REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
 | |
| 
 | |
| 	REG_WR(marb_bp, watch->instance, rw_ack, ack);
 | |
| 	REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
 | |
| 
 | |
| 	printk(KERN_INFO "IRQ occured at %lX\n", get_irq_regs()->erp);
 | |
| 
 | |
| 	if (watch->cb)
 | |
| 		watch->cb();
 | |
| 
 | |
| 	return IRQ_HANDLED;
 | |
| }
 |