384 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			384 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/cris/arch-v32/kernel/time.c
 | |
|  *
 | |
|  *  Copyright (C) 2003-2007 Axis Communications AB
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/timex.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/threads.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <asm/types.h>
 | |
| #include <asm/signal.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/delay.h>
 | |
| #include <asm/rtc.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/irq_regs.h>
 | |
| 
 | |
| #include <hwregs/reg_map.h>
 | |
| #include <hwregs/reg_rdwr.h>
 | |
| #include <hwregs/timer_defs.h>
 | |
| #include <hwregs/intr_vect_defs.h>
 | |
| #ifdef CONFIG_CRIS_MACH_ARTPEC3
 | |
| #include <hwregs/clkgen_defs.h>
 | |
| #endif
 | |
| 
 | |
| /* Watchdog defines */
 | |
| #define ETRAX_WD_KEY_MASK	0x7F /* key is 7 bit */
 | |
| #define ETRAX_WD_HZ		763 /* watchdog counts at 763 Hz */
 | |
| /* Number of 763 counts before watchdog bites */
 | |
| #define ETRAX_WD_CNT		((2*ETRAX_WD_HZ)/HZ + 1)
 | |
| 
 | |
| unsigned long timer_regs[NR_CPUS] =
 | |
| {
 | |
| 	regi_timer0,
 | |
| #ifdef CONFIG_SMP
 | |
| 	regi_timer2
 | |
| #endif
 | |
| };
 | |
| 
 | |
| extern void update_xtime_from_cmos(void);
 | |
| extern int set_rtc_mmss(unsigned long nowtime);
 | |
| extern int have_rtc;
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| static int
 | |
| cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 			void *data);
 | |
| 
 | |
| static struct notifier_block cris_time_freq_notifier_block = {
 | |
| 	.notifier_call = cris_time_freq_notifier,
 | |
| };
 | |
| #endif
 | |
| 
 | |
| unsigned long get_ns_in_jiffie(void)
 | |
| {
 | |
| 	reg_timer_r_tmr0_data data;
 | |
| 	unsigned long ns;
 | |
| 
 | |
| 	data = REG_RD(timer, regi_timer0, r_tmr0_data);
 | |
| 	ns = (TIMER0_DIV - data) * 10;
 | |
| 	return ns;
 | |
| }
 | |
| 
 | |
| unsigned long do_slow_gettimeoffset(void)
 | |
| {
 | |
| 	unsigned long count;
 | |
| 	unsigned long usec_count = 0;
 | |
| 
 | |
| 	/* For the first call after boot */
 | |
| 	static unsigned long count_p = TIMER0_DIV;
 | |
| 	static unsigned long jiffies_p = 0;
 | |
| 
 | |
| 	/* Cache volatile jiffies temporarily; we have IRQs turned off. */
 | |
| 	unsigned long jiffies_t;
 | |
| 
 | |
| 	/* The timer interrupt comes from Etrax timer 0. In order to get
 | |
| 	 * better precision, we check the current value. It might have
 | |
| 	 * underflowed already though. */
 | |
| 	count = REG_RD(timer, regi_timer0, r_tmr0_data);
 | |
| 	jiffies_t = jiffies;
 | |
| 
 | |
| 	/* Avoiding timer inconsistencies (they are rare, but they happen)
 | |
| 	 * There is one problem that must be avoided here:
 | |
| 	 *	1. the timer counter underflows
 | |
| 	 */
 | |
| 	if( jiffies_t == jiffies_p ) {
 | |
| 		if( count > count_p ) {
 | |
| 			/* Timer wrapped, use new count and prescale.
 | |
| 			 * Increase the time corresponding to one jiffy.
 | |
| 			 */
 | |
| 			usec_count = 1000000/HZ;
 | |
| 		}
 | |
| 	} else
 | |
| 		jiffies_p = jiffies_t;
 | |
|         count_p = count;
 | |
| 	/* Convert timer value to usec */
 | |
| 	/* 100 MHz timer, divide by 100 to get usec */
 | |
| 	usec_count +=  (TIMER0_DIV - count) / 100;
 | |
| 	return usec_count;
 | |
| }
 | |
| 
 | |
| /* From timer MDS describing the hardware watchdog:
 | |
|  * 4.3.1 Watchdog Operation
 | |
|  * The watchdog timer is an 8-bit timer with a configurable start value.
 | |
|  * Once started the watchdog counts downwards with a frequency of 763 Hz
 | |
|  * (100/131072 MHz). When the watchdog counts down to 1, it generates an
 | |
|  * NMI (Non Maskable Interrupt), and when it counts down to 0, it resets the
 | |
|  * chip.
 | |
|  */
 | |
| /* This gives us 1.3 ms to do something useful when the NMI comes */
 | |
| 
 | |
| /* Right now, starting the watchdog is the same as resetting it */
 | |
| #define start_watchdog reset_watchdog
 | |
| 
 | |
| #if defined(CONFIG_ETRAX_WATCHDOG)
 | |
| static short int watchdog_key = 42;  /* arbitrary 7 bit number */
 | |
| #endif
 | |
| 
 | |
| /* Number of pages to consider "out of memory". It is normal that the memory
 | |
|  * is used though, so set this really low. */
 | |
| #define WATCHDOG_MIN_FREE_PAGES 8
 | |
| 
 | |
| void
 | |
| reset_watchdog(void)
 | |
| {
 | |
| #if defined(CONFIG_ETRAX_WATCHDOG)
 | |
| 	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
 | |
| 
 | |
| 	/* Only keep watchdog happy as long as we have memory left! */
 | |
| 	if(nr_free_pages() > WATCHDOG_MIN_FREE_PAGES) {
 | |
| 		/* Reset the watchdog with the inverse of the old key */
 | |
| 		/* Invert key, which is 7 bits */
 | |
| 		watchdog_key ^= ETRAX_WD_KEY_MASK;
 | |
| 		wd_ctrl.cnt = ETRAX_WD_CNT;
 | |
| 		wd_ctrl.cmd = regk_timer_start;
 | |
| 		wd_ctrl.key = watchdog_key;
 | |
| 		REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
 | |
| 	}
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* stop the watchdog - we still need the correct key */
 | |
| 
 | |
| void
 | |
| stop_watchdog(void)
 | |
| {
 | |
| #if defined(CONFIG_ETRAX_WATCHDOG)
 | |
| 	reg_timer_rw_wd_ctrl wd_ctrl = { 0 };
 | |
| 	watchdog_key ^= ETRAX_WD_KEY_MASK; /* invert key, which is 7 bits */
 | |
| 	wd_ctrl.cnt = ETRAX_WD_CNT;
 | |
| 	wd_ctrl.cmd = regk_timer_stop;
 | |
| 	wd_ctrl.key = watchdog_key;
 | |
| 	REG_WR(timer, regi_timer0, rw_wd_ctrl, wd_ctrl);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| extern void show_registers(struct pt_regs *regs);
 | |
| 
 | |
| void
 | |
| handle_watchdog_bite(struct pt_regs* regs)
 | |
| {
 | |
| #if defined(CONFIG_ETRAX_WATCHDOG)
 | |
| 	extern int cause_of_death;
 | |
| 
 | |
| 	oops_in_progress = 1;
 | |
| 	printk(KERN_WARNING "Watchdog bite\n");
 | |
| 
 | |
| 	/* Check if forced restart or unexpected watchdog */
 | |
| 	if (cause_of_death == 0xbedead) {
 | |
| #ifdef CONFIG_CRIS_MACH_ARTPEC3
 | |
| 		/* There is a bug in Artpec-3 (voodoo TR 78) that requires
 | |
| 		 * us to go to lower frequency for the reset to be reliable
 | |
| 		 */
 | |
| 		reg_clkgen_rw_clk_ctrl ctrl =
 | |
| 			REG_RD(clkgen, regi_clkgen, rw_clk_ctrl);
 | |
| 		ctrl.pll = 0;
 | |
| 		REG_WR(clkgen, regi_clkgen, rw_clk_ctrl, ctrl);
 | |
| #endif
 | |
| 		while(1);
 | |
| 	}
 | |
| 
 | |
| 	/* Unexpected watchdog, stop the watchdog and dump registers. */
 | |
| 	stop_watchdog();
 | |
| 	printk(KERN_WARNING "Oops: bitten by watchdog\n");
 | |
| 	show_registers(regs);
 | |
| 	oops_in_progress = 0;
 | |
| #ifndef CONFIG_ETRAX_WATCHDOG_NICE_DOGGY
 | |
| 	reset_watchdog();
 | |
| #endif
 | |
| 	while(1) /* nothing */;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| /* Last time the cmos clock got updated. */
 | |
| static long last_rtc_update = 0;
 | |
| 
 | |
| /*
 | |
|  * timer_interrupt() needs to keep up the real-time clock,
 | |
|  * as well as call the "do_timer()" routine every clocktick.
 | |
|  */
 | |
| extern void cris_do_profile(struct pt_regs *regs);
 | |
| 
 | |
| static inline irqreturn_t
 | |
| timer_interrupt(int irq, void *dev_id)
 | |
| {
 | |
| 	struct pt_regs *regs = get_irq_regs();
 | |
| 	int cpu = smp_processor_id();
 | |
| 	reg_timer_r_masked_intr masked_intr;
 | |
| 	reg_timer_rw_ack_intr ack_intr = { 0 };
 | |
| 
 | |
| 	/* Check if the timer interrupt is for us (a tmr0 int) */
 | |
| 	masked_intr = REG_RD(timer, timer_regs[cpu], r_masked_intr);
 | |
| 	if (!masked_intr.tmr0)
 | |
| 		return IRQ_NONE;
 | |
| 
 | |
| 	/* Acknowledge the timer irq. */
 | |
| 	ack_intr.tmr0 = 1;
 | |
| 	REG_WR(timer, timer_regs[cpu], rw_ack_intr, ack_intr);
 | |
| 
 | |
| 	/* Reset watchdog otherwise it resets us! */
 | |
| 	reset_watchdog();
 | |
| 
 | |
|         /* Update statistics. */
 | |
| 	update_process_times(user_mode(regs));
 | |
| 
 | |
| 	cris_do_profile(regs); /* Save profiling information */
 | |
| 
 | |
| 	/* The master CPU is responsible for the time keeping. */
 | |
| 	if (cpu != 0)
 | |
| 		return IRQ_HANDLED;
 | |
| 
 | |
| 	/* Call the real timer interrupt handler */
 | |
| 	do_timer(1);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we have an externally synchronized Linux clock, then update
 | |
| 	 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
 | |
| 	 * called as close as possible to 500 ms before the new second starts.
 | |
| 	 *
 | |
| 	 * The division here is not time critical since it will run once in
 | |
| 	 * 11 minutes
 | |
| 	 */
 | |
| 	if ((time_status & STA_UNSYNC) == 0 &&
 | |
| 	    xtime.tv_sec > last_rtc_update + 660 &&
 | |
| 	    (xtime.tv_nsec / 1000) >= 500000 - (tick_nsec / 1000) / 2 &&
 | |
| 	    (xtime.tv_nsec / 1000) <= 500000 + (tick_nsec / 1000) / 2) {
 | |
| 		if (set_rtc_mmss(xtime.tv_sec) == 0)
 | |
| 			last_rtc_update = xtime.tv_sec;
 | |
| 		else
 | |
| 			/* Do it again in 60 s */
 | |
| 			last_rtc_update = xtime.tv_sec - 600;
 | |
| 	}
 | |
|         return IRQ_HANDLED;
 | |
| }
 | |
| 
 | |
| /* Timer is IRQF_SHARED so drivers can add stuff to the timer irq chain.
 | |
|  * It needs to be IRQF_DISABLED to make the jiffies update work properly.
 | |
|  */
 | |
| static struct irqaction irq_timer = {
 | |
| 	.handler = timer_interrupt,
 | |
| 	.flags = IRQF_SHARED | IRQF_DISABLED,
 | |
| 	.name = "timer"
 | |
| };
 | |
| 
 | |
| void __init
 | |
| cris_timer_init(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 	reg_timer_rw_tmr0_ctrl tmr0_ctrl = { 0 };
 | |
| 	reg_timer_rw_tmr0_div tmr0_div = TIMER0_DIV;
 | |
| 	reg_timer_rw_intr_mask timer_intr_mask;
 | |
| 
 | |
| 	/* Setup the etrax timers.
 | |
| 	 * Base frequency is 100MHz, divider 1000000 -> 100 HZ
 | |
| 	 * We use timer0, so timer1 is free.
 | |
| 	 * The trig timer is used by the fasttimer API if enabled.
 | |
| 	 */
 | |
| 
 | |
| 	tmr0_ctrl.op = regk_timer_ld;
 | |
| 	tmr0_ctrl.freq = regk_timer_f100;
 | |
| 	REG_WR(timer, timer_regs[cpu], rw_tmr0_div, tmr0_div);
 | |
| 	REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Load */
 | |
| 	tmr0_ctrl.op = regk_timer_run;
 | |
| 	REG_WR(timer, timer_regs[cpu], rw_tmr0_ctrl, tmr0_ctrl); /* Start */
 | |
| 
 | |
| 	/* Enable the timer irq. */
 | |
| 	timer_intr_mask = REG_RD(timer, timer_regs[cpu], rw_intr_mask);
 | |
| 	timer_intr_mask.tmr0 = 1;
 | |
| 	REG_WR(timer, timer_regs[cpu], rw_intr_mask, timer_intr_mask);
 | |
| }
 | |
| 
 | |
| void __init
 | |
| time_init(void)
 | |
| {
 | |
| 	reg_intr_vect_rw_mask intr_mask;
 | |
| 
 | |
| 	/* Probe for the RTC and read it if it exists.
 | |
| 	 * Before the RTC can be probed the loops_per_usec variable needs
 | |
| 	 * to be initialized to make usleep work. A better value for
 | |
| 	 * loops_per_usec is calculated by the kernel later once the
 | |
| 	 * clock has started.
 | |
| 	 */
 | |
| 	loops_per_usec = 50;
 | |
| 
 | |
| 	if(RTC_INIT() < 0) {
 | |
| 		/* No RTC, start at 1980 */
 | |
| 		xtime.tv_sec = 0;
 | |
| 		xtime.tv_nsec = 0;
 | |
| 		have_rtc = 0;
 | |
| 	} else {
 | |
| 		/* Get the current time */
 | |
| 		have_rtc = 1;
 | |
| 		update_xtime_from_cmos();
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Initialize wall_to_monotonic such that adding it to
 | |
| 	 * xtime will yield zero, the tv_nsec field must be normalized
 | |
| 	 * (i.e., 0 <= nsec < NSEC_PER_SEC).
 | |
| 	 */
 | |
| 	set_normalized_timespec(&wall_to_monotonic, -xtime.tv_sec, -xtime.tv_nsec);
 | |
| 
 | |
| 	/* Start CPU local timer. */
 | |
| 	cris_timer_init();
 | |
| 
 | |
| 	/* Enable the timer irq in global config. */
 | |
| 	intr_mask = REG_RD_VECT(intr_vect, regi_irq, rw_mask, 1);
 | |
| 	intr_mask.timer0 = 1;
 | |
| 	REG_WR_VECT(intr_vect, regi_irq, rw_mask, 1, intr_mask);
 | |
| 
 | |
| 	/* Now actually register the timer irq handler that calls
 | |
| 	 * timer_interrupt(). */
 | |
| 	setup_irq(TIMER0_INTR_VECT, &irq_timer);
 | |
| 
 | |
| 	/* Enable watchdog if we should use one. */
 | |
| 
 | |
| #if defined(CONFIG_ETRAX_WATCHDOG)
 | |
| 	printk(KERN_INFO "Enabling watchdog...\n");
 | |
| 	start_watchdog();
 | |
| 
 | |
| 	/* If we use the hardware watchdog, we want to trap it as an NMI
 | |
| 	 * and dump registers before it resets us.  For this to happen, we
 | |
| 	 * must set the "m" NMI enable flag (which once set, is unset only
 | |
| 	 * when an NMI is taken). */
 | |
| 	{
 | |
| 		unsigned long flags;
 | |
| 		local_save_flags(flags);
 | |
| 		flags |= (1<<30); /* NMI M flag is at bit 30 */
 | |
| 		local_irq_restore(flags);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| 	cpufreq_register_notifier(&cris_time_freq_notifier_block,
 | |
| 		CPUFREQ_TRANSITION_NOTIFIER);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_CPU_FREQ
 | |
| static int
 | |
| cris_time_freq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 			void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freqs = data;
 | |
| 	if (val == CPUFREQ_POSTCHANGE) {
 | |
| 		reg_timer_r_tmr0_data data;
 | |
| 		reg_timer_rw_tmr0_div div = (freqs->new * 500) / HZ;
 | |
| 		do {
 | |
| 			data = REG_RD(timer, timer_regs[freqs->cpu],
 | |
| 				r_tmr0_data);
 | |
| 		} while (data > 20);
 | |
| 		REG_WR(timer, timer_regs[freqs->cpu], rw_tmr0_div, div);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| #endif
 |