1233 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1233 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Common time routines among all ppc machines.
 | |
|  *
 | |
|  * Written by Cort Dougan (cort@cs.nmt.edu) to merge
 | |
|  * Paul Mackerras' version and mine for PReP and Pmac.
 | |
|  * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
 | |
|  * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
 | |
|  *
 | |
|  * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
 | |
|  * to make clock more stable (2.4.0-test5). The only thing
 | |
|  * that this code assumes is that the timebases have been synchronized
 | |
|  * by firmware on SMP and are never stopped (never do sleep
 | |
|  * on SMP then, nap and doze are OK).
 | |
|  * 
 | |
|  * Speeded up do_gettimeofday by getting rid of references to
 | |
|  * xtime (which required locks for consistency). (mikejc@us.ibm.com)
 | |
|  *
 | |
|  * TODO (not necessarily in this file):
 | |
|  * - improve precision and reproducibility of timebase frequency
 | |
|  * measurement at boot time. (for iSeries, we calibrate the timebase
 | |
|  * against the Titan chip's clock.)
 | |
|  * - for astronomical applications: add a new function to get
 | |
|  * non ambiguous timestamps even around leap seconds. This needs
 | |
|  * a new timestamp format and a good name.
 | |
|  *
 | |
|  * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
 | |
|  *             "A Kernel Model for Precision Timekeeping" by Dave Mills
 | |
|  *
 | |
|  *      This program is free software; you can redistribute it and/or
 | |
|  *      modify it under the terms of the GNU General Public License
 | |
|  *      as published by the Free Software Foundation; either version
 | |
|  *      2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/param.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/timex.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/time.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/profile.h>
 | |
| #include <linux/cpu.h>
 | |
| #include <linux/security.h>
 | |
| #include <linux/percpu.h>
 | |
| #include <linux/rtc.h>
 | |
| #include <linux/jiffies.h>
 | |
| #include <linux/posix-timers.h>
 | |
| #include <linux/irq.h>
 | |
| #include <linux/delay.h>
 | |
| #include <linux/perf_event.h>
 | |
| 
 | |
| #include <asm/io.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/nvram.h>
 | |
| #include <asm/cache.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/irq.h>
 | |
| #include <asm/div64.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/vdso_datapage.h>
 | |
| #include <asm/firmware.h>
 | |
| #include <asm/cputime.h>
 | |
| #ifdef CONFIG_PPC_ISERIES
 | |
| #include <asm/iseries/it_lp_queue.h>
 | |
| #include <asm/iseries/hv_call_xm.h>
 | |
| #endif
 | |
| 
 | |
| /* powerpc clocksource/clockevent code */
 | |
| 
 | |
| #include <linux/clockchips.h>
 | |
| #include <linux/clocksource.h>
 | |
| 
 | |
| static cycle_t rtc_read(struct clocksource *);
 | |
| static struct clocksource clocksource_rtc = {
 | |
| 	.name         = "rtc",
 | |
| 	.rating       = 400,
 | |
| 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.mask         = CLOCKSOURCE_MASK(64),
 | |
| 	.shift        = 22,
 | |
| 	.mult         = 0,	/* To be filled in */
 | |
| 	.read         = rtc_read,
 | |
| };
 | |
| 
 | |
| static cycle_t timebase_read(struct clocksource *);
 | |
| static struct clocksource clocksource_timebase = {
 | |
| 	.name         = "timebase",
 | |
| 	.rating       = 400,
 | |
| 	.flags        = CLOCK_SOURCE_IS_CONTINUOUS,
 | |
| 	.mask         = CLOCKSOURCE_MASK(64),
 | |
| 	.shift        = 22,
 | |
| 	.mult         = 0,	/* To be filled in */
 | |
| 	.read         = timebase_read,
 | |
| };
 | |
| 
 | |
| #define DECREMENTER_MAX	0x7fffffff
 | |
| 
 | |
| static int decrementer_set_next_event(unsigned long evt,
 | |
| 				      struct clock_event_device *dev);
 | |
| static void decrementer_set_mode(enum clock_event_mode mode,
 | |
| 				 struct clock_event_device *dev);
 | |
| 
 | |
| static struct clock_event_device decrementer_clockevent = {
 | |
|        .name           = "decrementer",
 | |
|        .rating         = 200,
 | |
|        .shift          = 0,	/* To be filled in */
 | |
|        .mult           = 0,	/* To be filled in */
 | |
|        .irq            = 0,
 | |
|        .set_next_event = decrementer_set_next_event,
 | |
|        .set_mode       = decrementer_set_mode,
 | |
|        .features       = CLOCK_EVT_FEAT_ONESHOT,
 | |
| };
 | |
| 
 | |
| struct decrementer_clock {
 | |
| 	struct clock_event_device event;
 | |
| 	u64 next_tb;
 | |
| };
 | |
| 
 | |
| static DEFINE_PER_CPU(struct decrementer_clock, decrementers);
 | |
| 
 | |
| #ifdef CONFIG_PPC_ISERIES
 | |
| static unsigned long __initdata iSeries_recal_titan;
 | |
| static signed long __initdata iSeries_recal_tb;
 | |
| 
 | |
| /* Forward declaration is only needed for iSereis compiles */
 | |
| static void __init clocksource_init(void);
 | |
| #endif
 | |
| 
 | |
| #define XSEC_PER_SEC (1024*1024)
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| #define SCALE_XSEC(xsec, max)	(((xsec) * max) / XSEC_PER_SEC)
 | |
| #else
 | |
| /* compute ((xsec << 12) * max) >> 32 */
 | |
| #define SCALE_XSEC(xsec, max)	mulhwu((xsec) << 12, max)
 | |
| #endif
 | |
| 
 | |
| unsigned long tb_ticks_per_jiffy;
 | |
| unsigned long tb_ticks_per_usec = 100; /* sane default */
 | |
| EXPORT_SYMBOL(tb_ticks_per_usec);
 | |
| unsigned long tb_ticks_per_sec;
 | |
| EXPORT_SYMBOL(tb_ticks_per_sec);	/* for cputime_t conversions */
 | |
| u64 tb_to_xs;
 | |
| unsigned tb_to_us;
 | |
| 
 | |
| #define TICKLEN_SCALE	NTP_SCALE_SHIFT
 | |
| static u64 last_tick_len;	/* units are ns / 2^TICKLEN_SCALE */
 | |
| static u64 ticklen_to_xs;	/* 0.64 fraction */
 | |
| 
 | |
| /* If last_tick_len corresponds to about 1/HZ seconds, then
 | |
|    last_tick_len << TICKLEN_SHIFT will be about 2^63. */
 | |
| #define TICKLEN_SHIFT	(63 - 30 - TICKLEN_SCALE + SHIFT_HZ)
 | |
| 
 | |
| DEFINE_SPINLOCK(rtc_lock);
 | |
| EXPORT_SYMBOL_GPL(rtc_lock);
 | |
| 
 | |
| static u64 tb_to_ns_scale __read_mostly;
 | |
| static unsigned tb_to_ns_shift __read_mostly;
 | |
| static unsigned long boot_tb __read_mostly;
 | |
| 
 | |
| extern struct timezone sys_tz;
 | |
| static long timezone_offset;
 | |
| 
 | |
| unsigned long ppc_proc_freq;
 | |
| EXPORT_SYMBOL(ppc_proc_freq);
 | |
| unsigned long ppc_tb_freq;
 | |
| 
 | |
| static u64 tb_last_jiffy __cacheline_aligned_in_smp;
 | |
| static DEFINE_PER_CPU(u64, last_jiffy);
 | |
| 
 | |
| #ifdef CONFIG_VIRT_CPU_ACCOUNTING
 | |
| /*
 | |
|  * Factors for converting from cputime_t (timebase ticks) to
 | |
|  * jiffies, milliseconds, seconds, and clock_t (1/USER_HZ seconds).
 | |
|  * These are all stored as 0.64 fixed-point binary fractions.
 | |
|  */
 | |
| u64 __cputime_jiffies_factor;
 | |
| EXPORT_SYMBOL(__cputime_jiffies_factor);
 | |
| u64 __cputime_msec_factor;
 | |
| EXPORT_SYMBOL(__cputime_msec_factor);
 | |
| u64 __cputime_sec_factor;
 | |
| EXPORT_SYMBOL(__cputime_sec_factor);
 | |
| u64 __cputime_clockt_factor;
 | |
| EXPORT_SYMBOL(__cputime_clockt_factor);
 | |
| DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 | |
| DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 | |
| 
 | |
| cputime_t cputime_one_jiffy;
 | |
| 
 | |
| static void calc_cputime_factors(void)
 | |
| {
 | |
| 	struct div_result res;
 | |
| 
 | |
| 	div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_jiffies_factor = res.result_low;
 | |
| 	div128_by_32(1000, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_msec_factor = res.result_low;
 | |
| 	div128_by_32(1, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_sec_factor = res.result_low;
 | |
| 	div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 | |
| 	__cputime_clockt_factor = res.result_low;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the PURR on systems that have it, otherwise the timebase.
 | |
|  */
 | |
| static u64 read_purr(void)
 | |
| {
 | |
| 	if (cpu_has_feature(CPU_FTR_PURR))
 | |
| 		return mfspr(SPRN_PURR);
 | |
| 	return mftb();
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read the SPURR on systems that have it, otherwise the purr
 | |
|  */
 | |
| static u64 read_spurr(u64 purr)
 | |
| {
 | |
| 	/*
 | |
| 	 * cpus without PURR won't have a SPURR
 | |
| 	 * We already know the former when we use this, so tell gcc
 | |
| 	 */
 | |
| 	if (cpu_has_feature(CPU_FTR_PURR) && cpu_has_feature(CPU_FTR_SPURR))
 | |
| 		return mfspr(SPRN_SPURR);
 | |
| 	return purr;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Account time for a transition between system, hard irq
 | |
|  * or soft irq state.
 | |
|  */
 | |
| void account_system_vtime(struct task_struct *tsk)
 | |
| {
 | |
| 	u64 now, nowscaled, delta, deltascaled, sys_time;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	now = read_purr();
 | |
| 	nowscaled = read_spurr(now);
 | |
| 	delta = now - get_paca()->startpurr;
 | |
| 	deltascaled = nowscaled - get_paca()->startspurr;
 | |
| 	get_paca()->startpurr = now;
 | |
| 	get_paca()->startspurr = nowscaled;
 | |
| 	if (!in_interrupt()) {
 | |
| 		/* deltascaled includes both user and system time.
 | |
| 		 * Hence scale it based on the purr ratio to estimate
 | |
| 		 * the system time */
 | |
| 		sys_time = get_paca()->system_time;
 | |
| 		if (get_paca()->user_time)
 | |
| 			deltascaled = deltascaled * sys_time /
 | |
| 			     (sys_time + get_paca()->user_time);
 | |
| 		delta += sys_time;
 | |
| 		get_paca()->system_time = 0;
 | |
| 	}
 | |
| 	if (in_irq() || idle_task(smp_processor_id()) != tsk)
 | |
| 		account_system_time(tsk, 0, delta, deltascaled);
 | |
| 	else
 | |
| 		account_idle_time(delta);
 | |
| 	per_cpu(cputime_last_delta, smp_processor_id()) = delta;
 | |
| 	per_cpu(cputime_scaled_last_delta, smp_processor_id()) = deltascaled;
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Transfer the user and system times accumulated in the paca
 | |
|  * by the exception entry and exit code to the generic process
 | |
|  * user and system time records.
 | |
|  * Must be called with interrupts disabled.
 | |
|  */
 | |
| void account_process_tick(struct task_struct *tsk, int user_tick)
 | |
| {
 | |
| 	cputime_t utime, utimescaled;
 | |
| 
 | |
| 	utime = get_paca()->user_time;
 | |
| 	get_paca()->user_time = 0;
 | |
| 	utimescaled = cputime_to_scaled(utime);
 | |
| 	account_user_time(tsk, utime, utimescaled);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Stuff for accounting stolen time.
 | |
|  */
 | |
| struct cpu_purr_data {
 | |
| 	int	initialized;			/* thread is running */
 | |
| 	u64	tb;			/* last TB value read */
 | |
| 	u64	purr;			/* last PURR value read */
 | |
| 	u64	spurr;			/* last SPURR value read */
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Each entry in the cpu_purr_data array is manipulated only by its
 | |
|  * "owner" cpu -- usually in the timer interrupt but also occasionally
 | |
|  * in process context for cpu online.  As long as cpus do not touch
 | |
|  * each others' cpu_purr_data, disabling local interrupts is
 | |
|  * sufficient to serialize accesses.
 | |
|  */
 | |
| static DEFINE_PER_CPU(struct cpu_purr_data, cpu_purr_data);
 | |
| 
 | |
| static void snapshot_tb_and_purr(void *data)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct cpu_purr_data *p = &__get_cpu_var(cpu_purr_data);
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 	p->tb = get_tb_or_rtc();
 | |
| 	p->purr = mfspr(SPRN_PURR);
 | |
| 	wmb();
 | |
| 	p->initialized = 1;
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Called during boot when all cpus have come up.
 | |
|  */
 | |
| void snapshot_timebases(void)
 | |
| {
 | |
| 	if (!cpu_has_feature(CPU_FTR_PURR))
 | |
| 		return;
 | |
| 	on_each_cpu(snapshot_tb_and_purr, NULL, 1);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Must be called with interrupts disabled.
 | |
|  */
 | |
| void calculate_steal_time(void)
 | |
| {
 | |
| 	u64 tb, purr;
 | |
| 	s64 stolen;
 | |
| 	struct cpu_purr_data *pme;
 | |
| 
 | |
| 	pme = &__get_cpu_var(cpu_purr_data);
 | |
| 	if (!pme->initialized)
 | |
| 		return;		/* !CPU_FTR_PURR or early in early boot */
 | |
| 	tb = mftb();
 | |
| 	purr = mfspr(SPRN_PURR);
 | |
| 	stolen = (tb - pme->tb) - (purr - pme->purr);
 | |
| 	if (stolen > 0) {
 | |
| 		if (idle_task(smp_processor_id()) != current)
 | |
| 			account_steal_time(stolen);
 | |
| 		else
 | |
| 			account_idle_time(stolen);
 | |
| 	}
 | |
| 	pme->tb = tb;
 | |
| 	pme->purr = purr;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC_SPLPAR
 | |
| /*
 | |
|  * Must be called before the cpu is added to the online map when
 | |
|  * a cpu is being brought up at runtime.
 | |
|  */
 | |
| static void snapshot_purr(void)
 | |
| {
 | |
| 	struct cpu_purr_data *pme;
 | |
| 	unsigned long flags;
 | |
| 
 | |
| 	if (!cpu_has_feature(CPU_FTR_PURR))
 | |
| 		return;
 | |
| 	local_irq_save(flags);
 | |
| 	pme = &__get_cpu_var(cpu_purr_data);
 | |
| 	pme->tb = mftb();
 | |
| 	pme->purr = mfspr(SPRN_PURR);
 | |
| 	pme->initialized = 1;
 | |
| 	local_irq_restore(flags);
 | |
| }
 | |
| 
 | |
| #endif /* CONFIG_PPC_SPLPAR */
 | |
| 
 | |
| #else /* ! CONFIG_VIRT_CPU_ACCOUNTING */
 | |
| #define calc_cputime_factors()
 | |
| #define calculate_steal_time()		do { } while (0)
 | |
| #endif
 | |
| 
 | |
| #if !(defined(CONFIG_VIRT_CPU_ACCOUNTING) && defined(CONFIG_PPC_SPLPAR))
 | |
| #define snapshot_purr()			do { } while (0)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Called when a cpu comes up after the system has finished booting,
 | |
|  * i.e. as a result of a hotplug cpu action.
 | |
|  */
 | |
| void snapshot_timebase(void)
 | |
| {
 | |
| 	__get_cpu_var(last_jiffy) = get_tb_or_rtc();
 | |
| 	snapshot_purr();
 | |
| }
 | |
| 
 | |
| void __delay(unsigned long loops)
 | |
| {
 | |
| 	unsigned long start;
 | |
| 	int diff;
 | |
| 
 | |
| 	if (__USE_RTC()) {
 | |
| 		start = get_rtcl();
 | |
| 		do {
 | |
| 			/* the RTCL register wraps at 1000000000 */
 | |
| 			diff = get_rtcl() - start;
 | |
| 			if (diff < 0)
 | |
| 				diff += 1000000000;
 | |
| 		} while (diff < loops);
 | |
| 	} else {
 | |
| 		start = get_tbl();
 | |
| 		while (get_tbl() - start < loops)
 | |
| 			HMT_low();
 | |
| 		HMT_medium();
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL(__delay);
 | |
| 
 | |
| void udelay(unsigned long usecs)
 | |
| {
 | |
| 	__delay(tb_ticks_per_usec * usecs);
 | |
| }
 | |
| EXPORT_SYMBOL(udelay);
 | |
| 
 | |
| static inline void update_gtod(u64 new_tb_stamp, u64 new_stamp_xsec,
 | |
| 			       u64 new_tb_to_xs)
 | |
| {
 | |
| 	/*
 | |
| 	 * tb_update_count is used to allow the userspace gettimeofday code
 | |
| 	 * to assure itself that it sees a consistent view of the tb_to_xs and
 | |
| 	 * stamp_xsec variables.  It reads the tb_update_count, then reads
 | |
| 	 * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 | |
| 	 * the two values of tb_update_count match and are even then the
 | |
| 	 * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 | |
| 	 * loops back and reads them again until this criteria is met.
 | |
| 	 * We expect the caller to have done the first increment of
 | |
| 	 * vdso_data->tb_update_count already.
 | |
| 	 */
 | |
| 	vdso_data->tb_orig_stamp = new_tb_stamp;
 | |
| 	vdso_data->stamp_xsec = new_stamp_xsec;
 | |
| 	vdso_data->tb_to_xs = new_tb_to_xs;
 | |
| 	vdso_data->wtom_clock_sec = wall_to_monotonic.tv_sec;
 | |
| 	vdso_data->wtom_clock_nsec = wall_to_monotonic.tv_nsec;
 | |
| 	vdso_data->stamp_xtime = xtime;
 | |
| 	smp_wmb();
 | |
| 	++(vdso_data->tb_update_count);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| unsigned long profile_pc(struct pt_regs *regs)
 | |
| {
 | |
| 	unsigned long pc = instruction_pointer(regs);
 | |
| 
 | |
| 	if (in_lock_functions(pc))
 | |
| 		return regs->link;
 | |
| 
 | |
| 	return pc;
 | |
| }
 | |
| EXPORT_SYMBOL(profile_pc);
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC_ISERIES
 | |
| 
 | |
| /* 
 | |
|  * This function recalibrates the timebase based on the 49-bit time-of-day
 | |
|  * value in the Titan chip.  The Titan is much more accurate than the value
 | |
|  * returned by the service processor for the timebase frequency.  
 | |
|  */
 | |
| 
 | |
| static int __init iSeries_tb_recal(void)
 | |
| {
 | |
| 	struct div_result divres;
 | |
| 	unsigned long titan, tb;
 | |
| 
 | |
| 	/* Make sure we only run on iSeries */
 | |
| 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	tb = get_tb();
 | |
| 	titan = HvCallXm_loadTod();
 | |
| 	if ( iSeries_recal_titan ) {
 | |
| 		unsigned long tb_ticks = tb - iSeries_recal_tb;
 | |
| 		unsigned long titan_usec = (titan - iSeries_recal_titan) >> 12;
 | |
| 		unsigned long new_tb_ticks_per_sec   = (tb_ticks * USEC_PER_SEC)/titan_usec;
 | |
| 		unsigned long new_tb_ticks_per_jiffy =
 | |
| 			DIV_ROUND_CLOSEST(new_tb_ticks_per_sec, HZ);
 | |
| 		long tick_diff = new_tb_ticks_per_jiffy - tb_ticks_per_jiffy;
 | |
| 		char sign = '+';		
 | |
| 		/* make sure tb_ticks_per_sec and tb_ticks_per_jiffy are consistent */
 | |
| 		new_tb_ticks_per_sec = new_tb_ticks_per_jiffy * HZ;
 | |
| 
 | |
| 		if ( tick_diff < 0 ) {
 | |
| 			tick_diff = -tick_diff;
 | |
| 			sign = '-';
 | |
| 		}
 | |
| 		if ( tick_diff ) {
 | |
| 			if ( tick_diff < tb_ticks_per_jiffy/25 ) {
 | |
| 				printk( "Titan recalibrate: new tb_ticks_per_jiffy = %lu (%c%ld)\n",
 | |
| 						new_tb_ticks_per_jiffy, sign, tick_diff );
 | |
| 				tb_ticks_per_jiffy = new_tb_ticks_per_jiffy;
 | |
| 				tb_ticks_per_sec   = new_tb_ticks_per_sec;
 | |
| 				calc_cputime_factors();
 | |
| 				div128_by_32( XSEC_PER_SEC, 0, tb_ticks_per_sec, &divres );
 | |
| 				tb_to_xs = divres.result_low;
 | |
| 				vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 | |
| 				vdso_data->tb_to_xs = tb_to_xs;
 | |
| 				setup_cputime_one_jiffy();
 | |
| 			}
 | |
| 			else {
 | |
| 				printk( "Titan recalibrate: FAILED (difference > 4 percent)\n"
 | |
| 					"                   new tb_ticks_per_jiffy = %lu\n"
 | |
| 					"                   old tb_ticks_per_jiffy = %lu\n",
 | |
| 					new_tb_ticks_per_jiffy, tb_ticks_per_jiffy );
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	iSeries_recal_titan = titan;
 | |
| 	iSeries_recal_tb = tb;
 | |
| 
 | |
| 	/* Called here as now we know accurate values for the timebase */
 | |
| 	clocksource_init();
 | |
| 	return 0;
 | |
| }
 | |
| late_initcall(iSeries_tb_recal);
 | |
| 
 | |
| /* Called from platform early init */
 | |
| void __init iSeries_time_init_early(void)
 | |
| {
 | |
| 	iSeries_recal_tb = get_tb();
 | |
| 	iSeries_recal_titan = HvCallXm_loadTod();
 | |
| }
 | |
| #endif /* CONFIG_PPC_ISERIES */
 | |
| 
 | |
| #if defined(CONFIG_PERF_EVENTS) && defined(CONFIG_PPC32)
 | |
| DEFINE_PER_CPU(u8, perf_event_pending);
 | |
| 
 | |
| void set_perf_event_pending(void)
 | |
| {
 | |
| 	get_cpu_var(perf_event_pending) = 1;
 | |
| 	set_dec(1);
 | |
| 	put_cpu_var(perf_event_pending);
 | |
| }
 | |
| 
 | |
| #define test_perf_event_pending()	__get_cpu_var(perf_event_pending)
 | |
| #define clear_perf_event_pending()	__get_cpu_var(perf_event_pending) = 0
 | |
| 
 | |
| #else  /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
 | |
| 
 | |
| #define test_perf_event_pending()	0
 | |
| #define clear_perf_event_pending()
 | |
| 
 | |
| #endif /* CONFIG_PERF_EVENTS && CONFIG_PPC32 */
 | |
| 
 | |
| /*
 | |
|  * For iSeries shared processors, we have to let the hypervisor
 | |
|  * set the hardware decrementer.  We set a virtual decrementer
 | |
|  * in the lppaca and call the hypervisor if the virtual
 | |
|  * decrementer is less than the current value in the hardware
 | |
|  * decrementer. (almost always the new decrementer value will
 | |
|  * be greater than the current hardware decementer so the hypervisor
 | |
|  * call will not be needed)
 | |
|  */
 | |
| 
 | |
| /*
 | |
|  * timer_interrupt - gets called when the decrementer overflows,
 | |
|  * with interrupts disabled.
 | |
|  */
 | |
| void timer_interrupt(struct pt_regs * regs)
 | |
| {
 | |
| 	struct pt_regs *old_regs;
 | |
| 	struct decrementer_clock *decrementer =  &__get_cpu_var(decrementers);
 | |
| 	struct clock_event_device *evt = &decrementer->event;
 | |
| 	u64 now;
 | |
| 
 | |
| 	/* Ensure a positive value is written to the decrementer, or else
 | |
| 	 * some CPUs will continuue to take decrementer exceptions */
 | |
| 	set_dec(DECREMENTER_MAX);
 | |
| 
 | |
| #ifdef CONFIG_PPC32
 | |
| 	if (test_perf_event_pending()) {
 | |
| 		clear_perf_event_pending();
 | |
| 		perf_event_do_pending();
 | |
| 	}
 | |
| 	if (atomic_read(&ppc_n_lost_interrupts) != 0)
 | |
| 		do_IRQ(regs);
 | |
| #endif
 | |
| 
 | |
| 	now = get_tb_or_rtc();
 | |
| 	if (now < decrementer->next_tb) {
 | |
| 		/* not time for this event yet */
 | |
| 		now = decrementer->next_tb - now;
 | |
| 		if (now <= DECREMENTER_MAX)
 | |
| 			set_dec((int)now);
 | |
| 		return;
 | |
| 	}
 | |
| 	old_regs = set_irq_regs(regs);
 | |
| 	irq_enter();
 | |
| 
 | |
| 	calculate_steal_time();
 | |
| 
 | |
| #ifdef CONFIG_PPC_ISERIES
 | |
| 	if (firmware_has_feature(FW_FEATURE_ISERIES))
 | |
| 		get_lppaca()->int_dword.fields.decr_int = 0;
 | |
| #endif
 | |
| 
 | |
| 	if (evt->event_handler)
 | |
| 		evt->event_handler(evt);
 | |
| 
 | |
| #ifdef CONFIG_PPC_ISERIES
 | |
| 	if (firmware_has_feature(FW_FEATURE_ISERIES) && hvlpevent_is_pending())
 | |
| 		process_hvlpevents();
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/* collect purr register values often, for accurate calculations */
 | |
| 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 | |
| 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 | |
| 		cu->current_tb = mfspr(SPRN_PURR);
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	irq_exit();
 | |
| 	set_irq_regs(old_regs);
 | |
| }
 | |
| 
 | |
| void wakeup_decrementer(void)
 | |
| {
 | |
| 	unsigned long ticks;
 | |
| 
 | |
| 	/*
 | |
| 	 * The timebase gets saved on sleep and restored on wakeup,
 | |
| 	 * so all we need to do is to reset the decrementer.
 | |
| 	 */
 | |
| 	ticks = tb_ticks_since(__get_cpu_var(last_jiffy));
 | |
| 	if (ticks < tb_ticks_per_jiffy)
 | |
| 		ticks = tb_ticks_per_jiffy - ticks;
 | |
| 	else
 | |
| 		ticks = 1;
 | |
| 	set_dec(ticks);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SUSPEND
 | |
| void generic_suspend_disable_irqs(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	/* Disable the decrementer, so that it doesn't interfere
 | |
| 	 * with suspending.
 | |
| 	 */
 | |
| 
 | |
| 	set_dec(0x7fffffff);
 | |
| 	local_irq_disable();
 | |
| 	set_dec(0x7fffffff);
 | |
| }
 | |
| 
 | |
| void generic_suspend_enable_irqs(void)
 | |
| {
 | |
| 	wakeup_decrementer();
 | |
| 
 | |
| 	local_irq_enable();
 | |
| 	preempt_enable();
 | |
| }
 | |
| 
 | |
| /* Overrides the weak version in kernel/power/main.c */
 | |
| void arch_suspend_disable_irqs(void)
 | |
| {
 | |
| 	if (ppc_md.suspend_disable_irqs)
 | |
| 		ppc_md.suspend_disable_irqs();
 | |
| 	generic_suspend_disable_irqs();
 | |
| }
 | |
| 
 | |
| /* Overrides the weak version in kernel/power/main.c */
 | |
| void arch_suspend_enable_irqs(void)
 | |
| {
 | |
| 	generic_suspend_enable_irqs();
 | |
| 	if (ppc_md.suspend_enable_irqs)
 | |
| 		ppc_md.suspend_enable_irqs();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| void __init smp_space_timers(unsigned int max_cpus)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 previous_tb = per_cpu(last_jiffy, boot_cpuid);
 | |
| 
 | |
| 	/* make sure tb > per_cpu(last_jiffy, cpu) for all cpus always */
 | |
| 	previous_tb -= tb_ticks_per_jiffy;
 | |
| 
 | |
| 	for_each_possible_cpu(i) {
 | |
| 		if (i == boot_cpuid)
 | |
| 			continue;
 | |
| 		per_cpu(last_jiffy, i) = previous_tb;
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Scheduler clock - returns current time in nanosec units.
 | |
|  *
 | |
|  * Note: mulhdu(a, b) (multiply high double unsigned) returns
 | |
|  * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 | |
|  * are 64-bit unsigned numbers.
 | |
|  */
 | |
| unsigned long long sched_clock(void)
 | |
| {
 | |
| 	if (__USE_RTC())
 | |
| 		return get_rtc();
 | |
| 	return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 | |
| }
 | |
| 
 | |
| static int __init get_freq(char *name, int cells, unsigned long *val)
 | |
| {
 | |
| 	struct device_node *cpu;
 | |
| 	const unsigned int *fp;
 | |
| 	int found = 0;
 | |
| 
 | |
| 	/* The cpu node should have timebase and clock frequency properties */
 | |
| 	cpu = of_find_node_by_type(NULL, "cpu");
 | |
| 
 | |
| 	if (cpu) {
 | |
| 		fp = of_get_property(cpu, name, NULL);
 | |
| 		if (fp) {
 | |
| 			found = 1;
 | |
| 			*val = of_read_ulong(fp, cells);
 | |
| 		}
 | |
| 
 | |
| 		of_node_put(cpu);
 | |
| 	}
 | |
| 
 | |
| 	return found;
 | |
| }
 | |
| 
 | |
| /* should become __cpuinit when secondary_cpu_time_init also is */
 | |
| void start_cpu_decrementer(void)
 | |
| {
 | |
| #if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 | |
| 	/* Clear any pending timer interrupts */
 | |
| 	mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 | |
| 
 | |
| 	/* Enable decrementer interrupt */
 | |
| 	mtspr(SPRN_TCR, TCR_DIE);
 | |
| #endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 | |
| }
 | |
| 
 | |
| void __init generic_calibrate_decr(void)
 | |
| {
 | |
| 	ppc_tb_freq = DEFAULT_TB_FREQ;		/* hardcoded default */
 | |
| 
 | |
| 	if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 | |
| 	    !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 | |
| 
 | |
| 		printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 | |
| 				"(not found)\n");
 | |
| 	}
 | |
| 
 | |
| 	ppc_proc_freq = DEFAULT_PROC_FREQ;	/* hardcoded default */
 | |
| 
 | |
| 	if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 | |
| 	    !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 | |
| 
 | |
| 		printk(KERN_ERR "WARNING: Estimating processor frequency "
 | |
| 				"(not found)\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int update_persistent_clock(struct timespec now)
 | |
| {
 | |
| 	struct rtc_time tm;
 | |
| 
 | |
| 	if (!ppc_md.set_rtc_time)
 | |
| 		return 0;
 | |
| 
 | |
| 	to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 | |
| 	tm.tm_year -= 1900;
 | |
| 	tm.tm_mon -= 1;
 | |
| 
 | |
| 	return ppc_md.set_rtc_time(&tm);
 | |
| }
 | |
| 
 | |
| static void __read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	struct rtc_time tm;
 | |
| 	static int first = 1;
 | |
| 
 | |
| 	ts->tv_nsec = 0;
 | |
| 	/* XXX this is a litle fragile but will work okay in the short term */
 | |
| 	if (first) {
 | |
| 		first = 0;
 | |
| 		if (ppc_md.time_init)
 | |
| 			timezone_offset = ppc_md.time_init();
 | |
| 
 | |
| 		/* get_boot_time() isn't guaranteed to be safe to call late */
 | |
| 		if (ppc_md.get_boot_time) {
 | |
| 			ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 	if (!ppc_md.get_rtc_time) {
 | |
| 		ts->tv_sec = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 	ppc_md.get_rtc_time(&tm);
 | |
| 
 | |
| 	ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 | |
| 			    tm.tm_hour, tm.tm_min, tm.tm_sec);
 | |
| }
 | |
| 
 | |
| void read_persistent_clock(struct timespec *ts)
 | |
| {
 | |
| 	__read_persistent_clock(ts);
 | |
| 
 | |
| 	/* Sanitize it in case real time clock is set below EPOCH */
 | |
| 	if (ts->tv_sec < 0) {
 | |
| 		ts->tv_sec = 0;
 | |
| 		ts->tv_nsec = 0;
 | |
| 	}
 | |
| 		
 | |
| }
 | |
| 
 | |
| /* clocksource code */
 | |
| static cycle_t rtc_read(struct clocksource *cs)
 | |
| {
 | |
| 	return (cycle_t)get_rtc();
 | |
| }
 | |
| 
 | |
| static cycle_t timebase_read(struct clocksource *cs)
 | |
| {
 | |
| 	return (cycle_t)get_tb();
 | |
| }
 | |
| 
 | |
| void update_vsyscall(struct timespec *wall_time, struct clocksource *clock)
 | |
| {
 | |
| 	u64 t2x, stamp_xsec;
 | |
| 
 | |
| 	if (clock != &clocksource_timebase)
 | |
| 		return;
 | |
| 
 | |
| 	/* Make userspace gettimeofday spin until we're done. */
 | |
| 	++vdso_data->tb_update_count;
 | |
| 	smp_mb();
 | |
| 
 | |
| 	/* XXX this assumes clock->shift == 22 */
 | |
| 	/* 4611686018 ~= 2^(20+64-22) / 1e9 */
 | |
| 	t2x = (u64) clock->mult * 4611686018ULL;
 | |
| 	stamp_xsec = (u64) xtime.tv_nsec * XSEC_PER_SEC;
 | |
| 	do_div(stamp_xsec, 1000000000);
 | |
| 	stamp_xsec += (u64) xtime.tv_sec * XSEC_PER_SEC;
 | |
| 	update_gtod(clock->cycle_last, stamp_xsec, t2x);
 | |
| }
 | |
| 
 | |
| void update_vsyscall_tz(void)
 | |
| {
 | |
| 	/* Make userspace gettimeofday spin until we're done. */
 | |
| 	++vdso_data->tb_update_count;
 | |
| 	smp_mb();
 | |
| 	vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 | |
| 	vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 | |
| 	smp_mb();
 | |
| 	++vdso_data->tb_update_count;
 | |
| }
 | |
| 
 | |
| static void __init clocksource_init(void)
 | |
| {
 | |
| 	struct clocksource *clock;
 | |
| 
 | |
| 	if (__USE_RTC())
 | |
| 		clock = &clocksource_rtc;
 | |
| 	else
 | |
| 		clock = &clocksource_timebase;
 | |
| 
 | |
| 	clock->mult = clocksource_hz2mult(tb_ticks_per_sec, clock->shift);
 | |
| 
 | |
| 	if (clocksource_register(clock)) {
 | |
| 		printk(KERN_ERR "clocksource: %s is already registered\n",
 | |
| 		       clock->name);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 | |
| 	       clock->name, clock->mult, clock->shift);
 | |
| }
 | |
| 
 | |
| static int decrementer_set_next_event(unsigned long evt,
 | |
| 				      struct clock_event_device *dev)
 | |
| {
 | |
| 	__get_cpu_var(decrementers).next_tb = get_tb_or_rtc() + evt;
 | |
| 	set_dec(evt);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void decrementer_set_mode(enum clock_event_mode mode,
 | |
| 				 struct clock_event_device *dev)
 | |
| {
 | |
| 	if (mode != CLOCK_EVT_MODE_ONESHOT)
 | |
| 		decrementer_set_next_event(DECREMENTER_MAX, dev);
 | |
| }
 | |
| 
 | |
| static void __init setup_clockevent_multiplier(unsigned long hz)
 | |
| {
 | |
| 	u64 mult, shift = 32;
 | |
| 
 | |
| 	while (1) {
 | |
| 		mult = div_sc(hz, NSEC_PER_SEC, shift);
 | |
| 		if (mult && (mult >> 32UL) == 0UL)
 | |
| 			break;
 | |
| 
 | |
| 		shift--;
 | |
| 	}
 | |
| 
 | |
| 	decrementer_clockevent.shift = shift;
 | |
| 	decrementer_clockevent.mult = mult;
 | |
| }
 | |
| 
 | |
| static void register_decrementer_clockevent(int cpu)
 | |
| {
 | |
| 	struct clock_event_device *dec = &per_cpu(decrementers, cpu).event;
 | |
| 
 | |
| 	*dec = decrementer_clockevent;
 | |
| 	dec->cpumask = cpumask_of(cpu);
 | |
| 
 | |
| 	printk(KERN_DEBUG "clockevent: %s mult[%lx] shift[%d] cpu[%d]\n",
 | |
| 	       dec->name, dec->mult, dec->shift, cpu);
 | |
| 
 | |
| 	clockevents_register_device(dec);
 | |
| }
 | |
| 
 | |
| static void __init init_decrementer_clockevent(void)
 | |
| {
 | |
| 	int cpu = smp_processor_id();
 | |
| 
 | |
| 	setup_clockevent_multiplier(ppc_tb_freq);
 | |
| 	decrementer_clockevent.max_delta_ns =
 | |
| 		clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 | |
| 	decrementer_clockevent.min_delta_ns =
 | |
| 		clockevent_delta2ns(2, &decrementer_clockevent);
 | |
| 
 | |
| 	register_decrementer_clockevent(cpu);
 | |
| }
 | |
| 
 | |
| void secondary_cpu_time_init(void)
 | |
| {
 | |
| 	/* Start the decrementer on CPUs that have manual control
 | |
| 	 * such as BookE
 | |
| 	 */
 | |
| 	start_cpu_decrementer();
 | |
| 
 | |
| 	/* FIME: Should make unrelatred change to move snapshot_timebase
 | |
| 	 * call here ! */
 | |
| 	register_decrementer_clockevent(smp_processor_id());
 | |
| }
 | |
| 
 | |
| /* This function is only called on the boot processor */
 | |
| void __init time_init(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	struct div_result res;
 | |
| 	u64 scale, x;
 | |
| 	unsigned shift;
 | |
| 
 | |
| 	if (__USE_RTC()) {
 | |
| 		/* 601 processor: dec counts down by 128 every 128ns */
 | |
| 		ppc_tb_freq = 1000000000;
 | |
| 		tb_last_jiffy = get_rtcl();
 | |
| 	} else {
 | |
| 		/* Normal PowerPC with timebase register */
 | |
| 		ppc_md.calibrate_decr();
 | |
| 		printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 | |
| 		       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 | |
| 		printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 | |
| 		       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 | |
| 		tb_last_jiffy = get_tb();
 | |
| 	}
 | |
| 
 | |
| 	tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 | |
| 	tb_ticks_per_sec = ppc_tb_freq;
 | |
| 	tb_ticks_per_usec = ppc_tb_freq / 1000000;
 | |
| 	tb_to_us = mulhwu_scale_factor(ppc_tb_freq, 1000000);
 | |
| 	calc_cputime_factors();
 | |
| 	setup_cputime_one_jiffy();
 | |
| 
 | |
| 	/*
 | |
| 	 * Calculate the length of each tick in ns.  It will not be
 | |
| 	 * exactly 1e9/HZ unless ppc_tb_freq is divisible by HZ.
 | |
| 	 * We compute 1e9 * tb_ticks_per_jiffy / ppc_tb_freq,
 | |
| 	 * rounded up.
 | |
| 	 */
 | |
| 	x = (u64) NSEC_PER_SEC * tb_ticks_per_jiffy + ppc_tb_freq - 1;
 | |
| 	do_div(x, ppc_tb_freq);
 | |
| 	tick_nsec = x;
 | |
| 	last_tick_len = x << TICKLEN_SCALE;
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute ticklen_to_xs, which is a factor which gets multiplied
 | |
| 	 * by (last_tick_len << TICKLEN_SHIFT) to get a tb_to_xs value.
 | |
| 	 * It is computed as:
 | |
| 	 * ticklen_to_xs = 2^N / (tb_ticks_per_jiffy * 1e9)
 | |
| 	 * where N = 64 + 20 - TICKLEN_SCALE - TICKLEN_SHIFT
 | |
| 	 * which turns out to be N = 51 - SHIFT_HZ.
 | |
| 	 * This gives the result as a 0.64 fixed-point fraction.
 | |
| 	 * That value is reduced by an offset amounting to 1 xsec per
 | |
| 	 * 2^31 timebase ticks to avoid problems with time going backwards
 | |
| 	 * by 1 xsec when we do timer_recalc_offset due to losing the
 | |
| 	 * fractional xsec.  That offset is equal to ppc_tb_freq/2^51
 | |
| 	 * since there are 2^20 xsec in a second.
 | |
| 	 */
 | |
| 	div128_by_32((1ULL << 51) - ppc_tb_freq, 0,
 | |
| 		     tb_ticks_per_jiffy << SHIFT_HZ, &res);
 | |
| 	div128_by_32(res.result_high, res.result_low, NSEC_PER_SEC, &res);
 | |
| 	ticklen_to_xs = res.result_low;
 | |
| 
 | |
| 	/* Compute tb_to_xs from tick_nsec */
 | |
| 	tb_to_xs = mulhdu(last_tick_len << TICKLEN_SHIFT, ticklen_to_xs);
 | |
| 
 | |
| 	/*
 | |
| 	 * Compute scale factor for sched_clock.
 | |
| 	 * The calibrate_decr() function has set tb_ticks_per_sec,
 | |
| 	 * which is the timebase frequency.
 | |
| 	 * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 | |
| 	 * the 128-bit result as a 64.64 fixed-point number.
 | |
| 	 * We then shift that number right until it is less than 1.0,
 | |
| 	 * giving us the scale factor and shift count to use in
 | |
| 	 * sched_clock().
 | |
| 	 */
 | |
| 	div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 | |
| 	scale = res.result_low;
 | |
| 	for (shift = 0; res.result_high != 0; ++shift) {
 | |
| 		scale = (scale >> 1) | (res.result_high << 63);
 | |
| 		res.result_high >>= 1;
 | |
| 	}
 | |
| 	tb_to_ns_scale = scale;
 | |
| 	tb_to_ns_shift = shift;
 | |
| 	/* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 | |
| 	boot_tb = get_tb_or_rtc();
 | |
| 
 | |
| 	write_seqlock_irqsave(&xtime_lock, flags);
 | |
| 
 | |
| 	/* If platform provided a timezone (pmac), we correct the time */
 | |
|         if (timezone_offset) {
 | |
| 		sys_tz.tz_minuteswest = -timezone_offset / 60;
 | |
| 		sys_tz.tz_dsttime = 0;
 | |
|         }
 | |
| 
 | |
| 	vdso_data->tb_orig_stamp = tb_last_jiffy;
 | |
| 	vdso_data->tb_update_count = 0;
 | |
| 	vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 | |
| 	vdso_data->stamp_xsec = (u64) xtime.tv_sec * XSEC_PER_SEC;
 | |
| 	vdso_data->tb_to_xs = tb_to_xs;
 | |
| 
 | |
| 	write_sequnlock_irqrestore(&xtime_lock, flags);
 | |
| 
 | |
| 	/* Start the decrementer on CPUs that have manual control
 | |
| 	 * such as BookE
 | |
| 	 */
 | |
| 	start_cpu_decrementer();
 | |
| 
 | |
| 	/* Register the clocksource, if we're not running on iSeries */
 | |
| 	if (!firmware_has_feature(FW_FEATURE_ISERIES))
 | |
| 		clocksource_init();
 | |
| 
 | |
| 	init_decrementer_clockevent();
 | |
| }
 | |
| 
 | |
| 
 | |
| #define FEBRUARY	2
 | |
| #define	STARTOFTIME	1970
 | |
| #define SECDAY		86400L
 | |
| #define SECYR		(SECDAY * 365)
 | |
| #define	leapyear(year)		((year) % 4 == 0 && \
 | |
| 				 ((year) % 100 != 0 || (year) % 400 == 0))
 | |
| #define	days_in_year(a) 	(leapyear(a) ? 366 : 365)
 | |
| #define	days_in_month(a) 	(month_days[(a) - 1])
 | |
| 
 | |
| static int month_days[12] = {
 | |
| 	31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 | |
|  */
 | |
| void GregorianDay(struct rtc_time * tm)
 | |
| {
 | |
| 	int leapsToDate;
 | |
| 	int lastYear;
 | |
| 	int day;
 | |
| 	int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 | |
| 
 | |
| 	lastYear = tm->tm_year - 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Number of leap corrections to apply up to end of last year
 | |
| 	 */
 | |
| 	leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
 | |
| 
 | |
| 	/*
 | |
| 	 * This year is a leap year if it is divisible by 4 except when it is
 | |
| 	 * divisible by 100 unless it is divisible by 400
 | |
| 	 *
 | |
| 	 * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
 | |
| 	 */
 | |
| 	day = tm->tm_mon > 2 && leapyear(tm->tm_year);
 | |
| 
 | |
| 	day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
 | |
| 		   tm->tm_mday;
 | |
| 
 | |
| 	tm->tm_wday = day % 7;
 | |
| }
 | |
| 
 | |
| void to_tm(int tim, struct rtc_time * tm)
 | |
| {
 | |
| 	register int    i;
 | |
| 	register long   hms, day;
 | |
| 
 | |
| 	day = tim / SECDAY;
 | |
| 	hms = tim % SECDAY;
 | |
| 
 | |
| 	/* Hours, minutes, seconds are easy */
 | |
| 	tm->tm_hour = hms / 3600;
 | |
| 	tm->tm_min = (hms % 3600) / 60;
 | |
| 	tm->tm_sec = (hms % 3600) % 60;
 | |
| 
 | |
| 	/* Number of years in days */
 | |
| 	for (i = STARTOFTIME; day >= days_in_year(i); i++)
 | |
| 		day -= days_in_year(i);
 | |
| 	tm->tm_year = i;
 | |
| 
 | |
| 	/* Number of months in days left */
 | |
| 	if (leapyear(tm->tm_year))
 | |
| 		days_in_month(FEBRUARY) = 29;
 | |
| 	for (i = 1; day >= days_in_month(i); i++)
 | |
| 		day -= days_in_month(i);
 | |
| 	days_in_month(FEBRUARY) = 28;
 | |
| 	tm->tm_mon = i;
 | |
| 
 | |
| 	/* Days are what is left over (+1) from all that. */
 | |
| 	tm->tm_mday = day + 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * Determine the day of week
 | |
| 	 */
 | |
| 	GregorianDay(tm);
 | |
| }
 | |
| 
 | |
| /* Auxiliary function to compute scaling factors */
 | |
| /* Actually the choice of a timebase running at 1/4 the of the bus
 | |
|  * frequency giving resolution of a few tens of nanoseconds is quite nice.
 | |
|  * It makes this computation very precise (27-28 bits typically) which
 | |
|  * is optimistic considering the stability of most processor clock
 | |
|  * oscillators and the precision with which the timebase frequency
 | |
|  * is measured but does not harm.
 | |
|  */
 | |
| unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale)
 | |
| {
 | |
|         unsigned mlt=0, tmp, err;
 | |
|         /* No concern for performance, it's done once: use a stupid
 | |
|          * but safe and compact method to find the multiplier.
 | |
|          */
 | |
|   
 | |
|         for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
 | |
|                 if (mulhwu(inscale, mlt|tmp) < outscale)
 | |
| 			mlt |= tmp;
 | |
|         }
 | |
|   
 | |
|         /* We might still be off by 1 for the best approximation.
 | |
|          * A side effect of this is that if outscale is too large
 | |
|          * the returned value will be zero.
 | |
|          * Many corner cases have been checked and seem to work,
 | |
|          * some might have been forgotten in the test however.
 | |
|          */
 | |
|   
 | |
|         err = inscale * (mlt+1);
 | |
|         if (err <= inscale/2)
 | |
| 		mlt++;
 | |
|         return mlt;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
 | |
|  * result.
 | |
|  */
 | |
| void div128_by_32(u64 dividend_high, u64 dividend_low,
 | |
| 		  unsigned divisor, struct div_result *dr)
 | |
| {
 | |
| 	unsigned long a, b, c, d;
 | |
| 	unsigned long w, x, y, z;
 | |
| 	u64 ra, rb, rc;
 | |
| 
 | |
| 	a = dividend_high >> 32;
 | |
| 	b = dividend_high & 0xffffffff;
 | |
| 	c = dividend_low >> 32;
 | |
| 	d = dividend_low & 0xffffffff;
 | |
| 
 | |
| 	w = a / divisor;
 | |
| 	ra = ((u64)(a - (w * divisor)) << 32) + b;
 | |
| 
 | |
| 	rb = ((u64) do_div(ra, divisor) << 32) + c;
 | |
| 	x = ra;
 | |
| 
 | |
| 	rc = ((u64) do_div(rb, divisor) << 32) + d;
 | |
| 	y = rb;
 | |
| 
 | |
| 	do_div(rc, divisor);
 | |
| 	z = rc;
 | |
| 
 | |
| 	dr->result_high = ((u64)w << 32) + x;
 | |
| 	dr->result_low  = ((u64)y << 32) + z;
 | |
| 
 | |
| }
 | |
| 
 | |
| /* We don't need to calibrate delay, we use the CPU timebase for that */
 | |
| void calibrate_delay(void)
 | |
| {
 | |
| 	/* Some generic code (such as spinlock debug) use loops_per_jiffy
 | |
| 	 * as the number of __delay(1) in a jiffy, so make it so
 | |
| 	 */
 | |
| 	loops_per_jiffy = tb_ticks_per_jiffy;
 | |
| }
 | |
| 
 | |
| static int __init rtc_init(void)
 | |
| {
 | |
| 	struct platform_device *pdev;
 | |
| 
 | |
| 	if (!ppc_md.get_rtc_time)
 | |
| 		return -ENODEV;
 | |
| 
 | |
| 	pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
 | |
| 	if (IS_ERR(pdev))
 | |
| 		return PTR_ERR(pdev);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| module_init(rtc_init);
 |