1192 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1192 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  Derived from "arch/i386/kernel/process.c"
 | |
|  *    Copyright (C) 1995  Linus Torvalds
 | |
|  *
 | |
|  *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 | |
|  *  Paul Mackerras (paulus@cs.anu.edu.au)
 | |
|  *
 | |
|  *  PowerPC version
 | |
|  *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 | |
|  *
 | |
|  *  This program is free software; you can redistribute it and/or
 | |
|  *  modify it under the terms of the GNU General Public License
 | |
|  *  as published by the Free Software Foundation; either version
 | |
|  *  2 of the License, or (at your option) any later version.
 | |
|  */
 | |
| 
 | |
| #include <linux/errno.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/stddef.h>
 | |
| #include <linux/unistd.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/slab.h>
 | |
| #include <linux/user.h>
 | |
| #include <linux/elf.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/prctl.h>
 | |
| #include <linux/init_task.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/kallsyms.h>
 | |
| #include <linux/mqueue.h>
 | |
| #include <linux/hardirq.h>
 | |
| #include <linux/utsname.h>
 | |
| #include <linux/ftrace.h>
 | |
| #include <linux/kernel_stat.h>
 | |
| #include <linux/personality.h>
 | |
| #include <linux/random.h>
 | |
| 
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/processor.h>
 | |
| #include <asm/mmu.h>
 | |
| #include <asm/prom.h>
 | |
| #include <asm/machdep.h>
 | |
| #include <asm/time.h>
 | |
| #include <asm/syscalls.h>
 | |
| #ifdef CONFIG_PPC64
 | |
| #include <asm/firmware.h>
 | |
| #endif
 | |
| #include <linux/kprobes.h>
 | |
| #include <linux/kdebug.h>
 | |
| 
 | |
| extern unsigned long _get_SP(void);
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| struct task_struct *last_task_used_math = NULL;
 | |
| struct task_struct *last_task_used_altivec = NULL;
 | |
| struct task_struct *last_task_used_vsx = NULL;
 | |
| struct task_struct *last_task_used_spe = NULL;
 | |
| #endif
 | |
| 
 | |
| /*
 | |
|  * Make sure the floating-point register state in the
 | |
|  * the thread_struct is up to date for task tsk.
 | |
|  */
 | |
| void flush_fp_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		/*
 | |
| 		 * We need to disable preemption here because if we didn't,
 | |
| 		 * another process could get scheduled after the regs->msr
 | |
| 		 * test but before we have finished saving the FP registers
 | |
| 		 * to the thread_struct.  That process could take over the
 | |
| 		 * FPU, and then when we get scheduled again we would store
 | |
| 		 * bogus values for the remaining FP registers.
 | |
| 		 */
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_FP) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			/*
 | |
| 			 * This should only ever be called for current or
 | |
| 			 * for a stopped child process.  Since we save away
 | |
| 			 * the FP register state on context switch on SMP,
 | |
| 			 * there is something wrong if a stopped child appears
 | |
| 			 * to still have its FP state in the CPU registers.
 | |
| 			 */
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_fpu(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void enable_kernel_fp(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_FP))
 | |
| 		giveup_fpu(current);
 | |
| 	else
 | |
| 		giveup_fpu(NULL);	/* just enables FP for kernel */
 | |
| #else
 | |
| 	giveup_fpu(last_task_used_math);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_fp);
 | |
| 
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| void enable_kernel_altivec(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC))
 | |
| 		giveup_altivec(current);
 | |
| 	else
 | |
| 		giveup_altivec(NULL);	/* just enable AltiVec for kernel - force */
 | |
| #else
 | |
| 	giveup_altivec(last_task_used_altivec);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_altivec);
 | |
| 
 | |
| /*
 | |
|  * Make sure the VMX/Altivec register state in the
 | |
|  * the thread_struct is up to date for task tsk.
 | |
|  */
 | |
| void flush_altivec_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_VEC) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_altivec(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| 
 | |
| #ifdef CONFIG_VSX
 | |
| #if 0
 | |
| /* not currently used, but some crazy RAID module might want to later */
 | |
| void enable_kernel_vsx(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_VSX))
 | |
| 		giveup_vsx(current);
 | |
| 	else
 | |
| 		giveup_vsx(NULL);	/* just enable vsx for kernel - force */
 | |
| #else
 | |
| 	giveup_vsx(last_task_used_vsx);
 | |
| #endif /* CONFIG_SMP */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_vsx);
 | |
| #endif
 | |
| 
 | |
| void giveup_vsx(struct task_struct *tsk)
 | |
| {
 | |
| 	giveup_fpu(tsk);
 | |
| 	giveup_altivec(tsk);
 | |
| 	__giveup_vsx(tsk);
 | |
| }
 | |
| 
 | |
| void flush_vsx_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_VSX) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_vsx(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_VSX */
 | |
| 
 | |
| #ifdef CONFIG_SPE
 | |
| 
 | |
| void enable_kernel_spe(void)
 | |
| {
 | |
| 	WARN_ON(preemptible());
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE))
 | |
| 		giveup_spe(current);
 | |
| 	else
 | |
| 		giveup_spe(NULL);	/* just enable SPE for kernel - force */
 | |
| #else
 | |
| 	giveup_spe(last_task_used_spe);
 | |
| #endif /* __SMP __ */
 | |
| }
 | |
| EXPORT_SYMBOL(enable_kernel_spe);
 | |
| 
 | |
| void flush_spe_to_thread(struct task_struct *tsk)
 | |
| {
 | |
| 	if (tsk->thread.regs) {
 | |
| 		preempt_disable();
 | |
| 		if (tsk->thread.regs->msr & MSR_SPE) {
 | |
| #ifdef CONFIG_SMP
 | |
| 			BUG_ON(tsk != current);
 | |
| #endif
 | |
| 			giveup_spe(tsk);
 | |
| 		}
 | |
| 		preempt_enable();
 | |
| 	}
 | |
| }
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #ifndef CONFIG_SMP
 | |
| /*
 | |
|  * If we are doing lazy switching of CPU state (FP, altivec or SPE),
 | |
|  * and the current task has some state, discard it.
 | |
|  */
 | |
| void discard_lazy_cpu_state(void)
 | |
| {
 | |
| 	preempt_disable();
 | |
| 	if (last_task_used_math == current)
 | |
| 		last_task_used_math = NULL;
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	if (last_task_used_altivec == current)
 | |
| 		last_task_used_altivec = NULL;
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	if (last_task_used_vsx == current)
 | |
| 		last_task_used_vsx = NULL;
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_SPE
 | |
| 	if (last_task_used_spe == current)
 | |
| 		last_task_used_spe = NULL;
 | |
| #endif
 | |
| 	preempt_enable();
 | |
| }
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| void do_dabr(struct pt_regs *regs, unsigned long address,
 | |
| 		    unsigned long error_code)
 | |
| {
 | |
| 	siginfo_t info;
 | |
| 
 | |
| 	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
 | |
| 			11, SIGSEGV) == NOTIFY_STOP)
 | |
| 		return;
 | |
| 
 | |
| 	if (debugger_dabr_match(regs))
 | |
| 		return;
 | |
| 
 | |
| 	/* Clear the DAC and struct entries.  One shot trigger */
 | |
| #if defined(CONFIG_BOOKE)
 | |
| 	mtspr(SPRN_DBCR0, mfspr(SPRN_DBCR0) & ~(DBSR_DAC1R | DBSR_DAC1W
 | |
| 							| DBCR0_IDM));
 | |
| #endif
 | |
| 
 | |
| 	/* Clear the DABR */
 | |
| 	set_dabr(0);
 | |
| 
 | |
| 	/* Deliver the signal to userspace */
 | |
| 	info.si_signo = SIGTRAP;
 | |
| 	info.si_errno = 0;
 | |
| 	info.si_code = TRAP_HWBKPT;
 | |
| 	info.si_addr = (void __user *)address;
 | |
| 	force_sig_info(SIGTRAP, &info, current);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, current_dabr);
 | |
| 
 | |
| int set_dabr(unsigned long dabr)
 | |
| {
 | |
| 	__get_cpu_var(current_dabr) = dabr;
 | |
| 
 | |
| 	if (ppc_md.set_dabr)
 | |
| 		return ppc_md.set_dabr(dabr);
 | |
| 
 | |
| 	/* XXX should we have a CPU_FTR_HAS_DABR ? */
 | |
| #if defined(CONFIG_BOOKE)
 | |
| 	mtspr(SPRN_DAC1, dabr);
 | |
| #elif defined(CONFIG_PPC_BOOK3S)
 | |
| 	mtspr(SPRN_DABR, dabr);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| DEFINE_PER_CPU(struct cpu_usage, cpu_usage_array);
 | |
| #endif
 | |
| 
 | |
| struct task_struct *__switch_to(struct task_struct *prev,
 | |
| 	struct task_struct *new)
 | |
| {
 | |
| 	struct thread_struct *new_thread, *old_thread;
 | |
| 	unsigned long flags;
 | |
| 	struct task_struct *last;
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	/* avoid complexity of lazy save/restore of fpu
 | |
| 	 * by just saving it every time we switch out if
 | |
| 	 * this task used the fpu during the last quantum.
 | |
| 	 *
 | |
| 	 * If it tries to use the fpu again, it'll trap and
 | |
| 	 * reload its fp regs.  So we don't have to do a restore
 | |
| 	 * every switch, just a save.
 | |
| 	 *  -- Cort
 | |
| 	 */
 | |
| 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_FP))
 | |
| 		giveup_fpu(prev);
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	/*
 | |
| 	 * If the previous thread used altivec in the last quantum
 | |
| 	 * (thus changing altivec regs) then save them.
 | |
| 	 * We used to check the VRSAVE register but not all apps
 | |
| 	 * set it, so we don't rely on it now (and in fact we need
 | |
| 	 * to save & restore VSCR even if VRSAVE == 0).  -- paulus
 | |
| 	 *
 | |
| 	 * On SMP we always save/restore altivec regs just to avoid the
 | |
| 	 * complexity of changing processors.
 | |
| 	 *  -- Cort
 | |
| 	 */
 | |
| 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VEC))
 | |
| 		giveup_altivec(prev);
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	if (prev->thread.regs && (prev->thread.regs->msr & MSR_VSX))
 | |
| 		/* VMX and FPU registers are already save here */
 | |
| 		__giveup_vsx(prev);
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_SPE
 | |
| 	/*
 | |
| 	 * If the previous thread used spe in the last quantum
 | |
| 	 * (thus changing spe regs) then save them.
 | |
| 	 *
 | |
| 	 * On SMP we always save/restore spe regs just to avoid the
 | |
| 	 * complexity of changing processors.
 | |
| 	 */
 | |
| 	if ((prev->thread.regs && (prev->thread.regs->msr & MSR_SPE)))
 | |
| 		giveup_spe(prev);
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #else  /* CONFIG_SMP */
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	/* Avoid the trap.  On smp this this never happens since
 | |
| 	 * we don't set last_task_used_altivec -- Cort
 | |
| 	 */
 | |
| 	if (new->thread.regs && last_task_used_altivec == new)
 | |
| 		new->thread.regs->msr |= MSR_VEC;
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_VSX
 | |
| 	if (new->thread.regs && last_task_used_vsx == new)
 | |
| 		new->thread.regs->msr |= MSR_VSX;
 | |
| #endif /* CONFIG_VSX */
 | |
| #ifdef CONFIG_SPE
 | |
| 	/* Avoid the trap.  On smp this this never happens since
 | |
| 	 * we don't set last_task_used_spe
 | |
| 	 */
 | |
| 	if (new->thread.regs && last_task_used_spe == new)
 | |
| 		new->thread.regs->msr |= MSR_SPE;
 | |
| #endif /* CONFIG_SPE */
 | |
| 
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| #if defined(CONFIG_BOOKE)
 | |
| 	/* If new thread DAC (HW breakpoint) is the same then leave it */
 | |
| 	if (new->thread.dabr)
 | |
| 		set_dabr(new->thread.dabr);
 | |
| #else
 | |
| 	if (unlikely(__get_cpu_var(current_dabr) != new->thread.dabr))
 | |
| 		set_dabr(new->thread.dabr);
 | |
| #endif
 | |
| 
 | |
| 
 | |
| 	new_thread = &new->thread;
 | |
| 	old_thread = ¤t->thread;
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| 	/*
 | |
| 	 * Collect processor utilization data per process
 | |
| 	 */
 | |
| 	if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 | |
| 		struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 | |
| 		long unsigned start_tb, current_tb;
 | |
| 		start_tb = old_thread->start_tb;
 | |
| 		cu->current_tb = current_tb = mfspr(SPRN_PURR);
 | |
| 		old_thread->accum_tb += (current_tb - start_tb);
 | |
| 		new_thread->start_tb = current_tb;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	local_irq_save(flags);
 | |
| 
 | |
| 	account_system_vtime(current);
 | |
| 	account_process_vtime(current);
 | |
| 	calculate_steal_time();
 | |
| 
 | |
| 	/*
 | |
| 	 * We can't take a PMU exception inside _switch() since there is a
 | |
| 	 * window where the kernel stack SLB and the kernel stack are out
 | |
| 	 * of sync. Hard disable here.
 | |
| 	 */
 | |
| 	hard_irq_disable();
 | |
| 	last = _switch(old_thread, new_thread);
 | |
| 
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	return last;
 | |
| }
 | |
| 
 | |
| static int instructions_to_print = 16;
 | |
| 
 | |
| static void show_instructions(struct pt_regs *regs)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
 | |
| 			sizeof(int));
 | |
| 
 | |
| 	printk("Instruction dump:");
 | |
| 
 | |
| 	for (i = 0; i < instructions_to_print; i++) {
 | |
| 		int instr;
 | |
| 
 | |
| 		if (!(i % 8))
 | |
| 			printk("\n");
 | |
| 
 | |
| #if !defined(CONFIG_BOOKE)
 | |
| 		/* If executing with the IMMU off, adjust pc rather
 | |
| 		 * than print XXXXXXXX.
 | |
| 		 */
 | |
| 		if (!(regs->msr & MSR_IR))
 | |
| 			pc = (unsigned long)phys_to_virt(pc);
 | |
| #endif
 | |
| 
 | |
| 		/* We use __get_user here *only* to avoid an OOPS on a
 | |
| 		 * bad address because the pc *should* only be a
 | |
| 		 * kernel address.
 | |
| 		 */
 | |
| 		if (!__kernel_text_address(pc) ||
 | |
| 		     __get_user(instr, (unsigned int __user *)pc)) {
 | |
| 			printk("XXXXXXXX ");
 | |
| 		} else {
 | |
| 			if (regs->nip == pc)
 | |
| 				printk("<%08x> ", instr);
 | |
| 			else
 | |
| 				printk("%08x ", instr);
 | |
| 		}
 | |
| 
 | |
| 		pc += sizeof(int);
 | |
| 	}
 | |
| 
 | |
| 	printk("\n");
 | |
| }
 | |
| 
 | |
| static struct regbit {
 | |
| 	unsigned long bit;
 | |
| 	const char *name;
 | |
| } msr_bits[] = {
 | |
| 	{MSR_EE,	"EE"},
 | |
| 	{MSR_PR,	"PR"},
 | |
| 	{MSR_FP,	"FP"},
 | |
| 	{MSR_VEC,	"VEC"},
 | |
| 	{MSR_VSX,	"VSX"},
 | |
| 	{MSR_ME,	"ME"},
 | |
| 	{MSR_CE,	"CE"},
 | |
| 	{MSR_DE,	"DE"},
 | |
| 	{MSR_IR,	"IR"},
 | |
| 	{MSR_DR,	"DR"},
 | |
| 	{0,		NULL}
 | |
| };
 | |
| 
 | |
| static void printbits(unsigned long val, struct regbit *bits)
 | |
| {
 | |
| 	const char *sep = "";
 | |
| 
 | |
| 	printk("<");
 | |
| 	for (; bits->bit; ++bits)
 | |
| 		if (val & bits->bit) {
 | |
| 			printk("%s%s", sep, bits->name);
 | |
| 			sep = ",";
 | |
| 		}
 | |
| 	printk(">");
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| #define REG		"%016lx"
 | |
| #define REGS_PER_LINE	4
 | |
| #define LAST_VOLATILE	13
 | |
| #else
 | |
| #define REG		"%08lx"
 | |
| #define REGS_PER_LINE	8
 | |
| #define LAST_VOLATILE	12
 | |
| #endif
 | |
| 
 | |
| void show_regs(struct pt_regs * regs)
 | |
| {
 | |
| 	int i, trap;
 | |
| 
 | |
| 	printk("NIP: "REG" LR: "REG" CTR: "REG"\n",
 | |
| 	       regs->nip, regs->link, regs->ctr);
 | |
| 	printk("REGS: %p TRAP: %04lx   %s  (%s)\n",
 | |
| 	       regs, regs->trap, print_tainted(), init_utsname()->release);
 | |
| 	printk("MSR: "REG" ", regs->msr);
 | |
| 	printbits(regs->msr, msr_bits);
 | |
| 	printk("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
 | |
| 	trap = TRAP(regs);
 | |
| 	if (trap == 0x300 || trap == 0x600)
 | |
| #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
 | |
| 		printk("DEAR: "REG", ESR: "REG"\n", regs->dar, regs->dsisr);
 | |
| #else
 | |
| 		printk("DAR: "REG", DSISR: "REG"\n", regs->dar, regs->dsisr);
 | |
| #endif
 | |
| 	printk("TASK = %p[%d] '%s' THREAD: %p",
 | |
| 	       current, task_pid_nr(current), current->comm, task_thread_info(current));
 | |
| 
 | |
| #ifdef CONFIG_SMP
 | |
| 	printk(" CPU: %d", raw_smp_processor_id());
 | |
| #endif /* CONFIG_SMP */
 | |
| 
 | |
| 	for (i = 0;  i < 32;  i++) {
 | |
| 		if ((i % REGS_PER_LINE) == 0)
 | |
| 			printk("\nGPR%02d: ", i);
 | |
| 		printk(REG " ", regs->gpr[i]);
 | |
| 		if (i == LAST_VOLATILE && !FULL_REGS(regs))
 | |
| 			break;
 | |
| 	}
 | |
| 	printk("\n");
 | |
| #ifdef CONFIG_KALLSYMS
 | |
| 	/*
 | |
| 	 * Lookup NIP late so we have the best change of getting the
 | |
| 	 * above info out without failing
 | |
| 	 */
 | |
| 	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
 | |
| 	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
 | |
| #endif
 | |
| 	show_stack(current, (unsigned long *) regs->gpr[1]);
 | |
| 	if (!user_mode(regs))
 | |
| 		show_instructions(regs);
 | |
| }
 | |
| 
 | |
| void exit_thread(void)
 | |
| {
 | |
| 	discard_lazy_cpu_state();
 | |
| }
 | |
| 
 | |
| void flush_thread(void)
 | |
| {
 | |
| 	discard_lazy_cpu_state();
 | |
| 
 | |
| 	if (current->thread.dabr) {
 | |
| 		current->thread.dabr = 0;
 | |
| 		set_dabr(0);
 | |
| 
 | |
| #if defined(CONFIG_BOOKE)
 | |
| 		current->thread.dbcr0 &= ~(DBSR_DAC1R | DBSR_DAC1W);
 | |
| #endif
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void
 | |
| release_thread(struct task_struct *t)
 | |
| {
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * This gets called before we allocate a new thread and copy
 | |
|  * the current task into it.
 | |
|  */
 | |
| void prepare_to_copy(struct task_struct *tsk)
 | |
| {
 | |
| 	flush_fp_to_thread(current);
 | |
| 	flush_altivec_to_thread(current);
 | |
| 	flush_vsx_to_thread(current);
 | |
| 	flush_spe_to_thread(current);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Copy a thread..
 | |
|  */
 | |
| int copy_thread(unsigned long clone_flags, unsigned long usp,
 | |
| 		unsigned long unused, struct task_struct *p,
 | |
| 		struct pt_regs *regs)
 | |
| {
 | |
| 	struct pt_regs *childregs, *kregs;
 | |
| 	extern void ret_from_fork(void);
 | |
| 	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
 | |
| 
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 	/* Copy registers */
 | |
| 	sp -= sizeof(struct pt_regs);
 | |
| 	childregs = (struct pt_regs *) sp;
 | |
| 	*childregs = *regs;
 | |
| 	if ((childregs->msr & MSR_PR) == 0) {
 | |
| 		/* for kernel thread, set `current' and stackptr in new task */
 | |
| 		childregs->gpr[1] = sp + sizeof(struct pt_regs);
 | |
| #ifdef CONFIG_PPC32
 | |
| 		childregs->gpr[2] = (unsigned long) p;
 | |
| #else
 | |
| 		clear_tsk_thread_flag(p, TIF_32BIT);
 | |
| #endif
 | |
| 		p->thread.regs = NULL;	/* no user register state */
 | |
| 	} else {
 | |
| 		childregs->gpr[1] = usp;
 | |
| 		p->thread.regs = childregs;
 | |
| 		if (clone_flags & CLONE_SETTLS) {
 | |
| #ifdef CONFIG_PPC64
 | |
| 			if (!test_thread_flag(TIF_32BIT))
 | |
| 				childregs->gpr[13] = childregs->gpr[6];
 | |
| 			else
 | |
| #endif
 | |
| 				childregs->gpr[2] = childregs->gpr[6];
 | |
| 		}
 | |
| 	}
 | |
| 	childregs->gpr[3] = 0;  /* Result from fork() */
 | |
| 	sp -= STACK_FRAME_OVERHEAD;
 | |
| 
 | |
| 	/*
 | |
| 	 * The way this works is that at some point in the future
 | |
| 	 * some task will call _switch to switch to the new task.
 | |
| 	 * That will pop off the stack frame created below and start
 | |
| 	 * the new task running at ret_from_fork.  The new task will
 | |
| 	 * do some house keeping and then return from the fork or clone
 | |
| 	 * system call, using the stack frame created above.
 | |
| 	 */
 | |
| 	sp -= sizeof(struct pt_regs);
 | |
| 	kregs = (struct pt_regs *) sp;
 | |
| 	sp -= STACK_FRAME_OVERHEAD;
 | |
| 	p->thread.ksp = sp;
 | |
| 	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
 | |
| 				_ALIGN_UP(sizeof(struct thread_info), 16);
 | |
| 
 | |
| #ifdef CONFIG_PPC_STD_MMU_64
 | |
| 	if (cpu_has_feature(CPU_FTR_SLB)) {
 | |
| 		unsigned long sp_vsid;
 | |
| 		unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;
 | |
| 
 | |
| 		if (cpu_has_feature(CPU_FTR_1T_SEGMENT))
 | |
| 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
 | |
| 				<< SLB_VSID_SHIFT_1T;
 | |
| 		else
 | |
| 			sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
 | |
| 				<< SLB_VSID_SHIFT;
 | |
| 		sp_vsid |= SLB_VSID_KERNEL | llp;
 | |
| 		p->thread.ksp_vsid = sp_vsid;
 | |
| 	}
 | |
| #endif /* CONFIG_PPC_STD_MMU_64 */
 | |
| 
 | |
| 	/*
 | |
| 	 * The PPC64 ABI makes use of a TOC to contain function 
 | |
| 	 * pointers.  The function (ret_from_except) is actually a pointer
 | |
| 	 * to the TOC entry.  The first entry is a pointer to the actual
 | |
| 	 * function.
 | |
|  	 */
 | |
| #ifdef CONFIG_PPC64
 | |
| 	kregs->nip = *((unsigned long *)ret_from_fork);
 | |
| #else
 | |
| 	kregs->nip = (unsigned long)ret_from_fork;
 | |
| #endif
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set up a thread for executing a new program
 | |
|  */
 | |
| void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
 | |
| {
 | |
| #ifdef CONFIG_PPC64
 | |
| 	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
 | |
| #endif
 | |
| 
 | |
| 	set_fs(USER_DS);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we exec out of a kernel thread then thread.regs will not be
 | |
| 	 * set.  Do it now.
 | |
| 	 */
 | |
| 	if (!current->thread.regs) {
 | |
| 		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
 | |
| 		current->thread.regs = regs - 1;
 | |
| 	}
 | |
| 
 | |
| 	memset(regs->gpr, 0, sizeof(regs->gpr));
 | |
| 	regs->ctr = 0;
 | |
| 	regs->link = 0;
 | |
| 	regs->xer = 0;
 | |
| 	regs->ccr = 0;
 | |
| 	regs->gpr[1] = sp;
 | |
| 
 | |
| 	/*
 | |
| 	 * We have just cleared all the nonvolatile GPRs, so make
 | |
| 	 * FULL_REGS(regs) return true.  This is necessary to allow
 | |
| 	 * ptrace to examine the thread immediately after exec.
 | |
| 	 */
 | |
| 	regs->trap &= ~1UL;
 | |
| 
 | |
| #ifdef CONFIG_PPC32
 | |
| 	regs->mq = 0;
 | |
| 	regs->nip = start;
 | |
| 	regs->msr = MSR_USER;
 | |
| #else
 | |
| 	if (!test_thread_flag(TIF_32BIT)) {
 | |
| 		unsigned long entry, toc;
 | |
| 
 | |
| 		/* start is a relocated pointer to the function descriptor for
 | |
| 		 * the elf _start routine.  The first entry in the function
 | |
| 		 * descriptor is the entry address of _start and the second
 | |
| 		 * entry is the TOC value we need to use.
 | |
| 		 */
 | |
| 		__get_user(entry, (unsigned long __user *)start);
 | |
| 		__get_user(toc, (unsigned long __user *)start+1);
 | |
| 
 | |
| 		/* Check whether the e_entry function descriptor entries
 | |
| 		 * need to be relocated before we can use them.
 | |
| 		 */
 | |
| 		if (load_addr != 0) {
 | |
| 			entry += load_addr;
 | |
| 			toc   += load_addr;
 | |
| 		}
 | |
| 		regs->nip = entry;
 | |
| 		regs->gpr[2] = toc;
 | |
| 		regs->msr = MSR_USER64;
 | |
| 	} else {
 | |
| 		regs->nip = start;
 | |
| 		regs->gpr[2] = 0;
 | |
| 		regs->msr = MSR_USER32;
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| 	discard_lazy_cpu_state();
 | |
| #ifdef CONFIG_VSX
 | |
| 	current->thread.used_vsr = 0;
 | |
| #endif
 | |
| 	memset(current->thread.fpr, 0, sizeof(current->thread.fpr));
 | |
| 	current->thread.fpscr.val = 0;
 | |
| #ifdef CONFIG_ALTIVEC
 | |
| 	memset(current->thread.vr, 0, sizeof(current->thread.vr));
 | |
| 	memset(¤t->thread.vscr, 0, sizeof(current->thread.vscr));
 | |
| 	current->thread.vscr.u[3] = 0x00010000; /* Java mode disabled */
 | |
| 	current->thread.vrsave = 0;
 | |
| 	current->thread.used_vr = 0;
 | |
| #endif /* CONFIG_ALTIVEC */
 | |
| #ifdef CONFIG_SPE
 | |
| 	memset(current->thread.evr, 0, sizeof(current->thread.evr));
 | |
| 	current->thread.acc = 0;
 | |
| 	current->thread.spefscr = 0;
 | |
| 	current->thread.used_spe = 0;
 | |
| #endif /* CONFIG_SPE */
 | |
| }
 | |
| 
 | |
| #define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
 | |
| 		| PR_FP_EXC_RES | PR_FP_EXC_INV)
 | |
| 
 | |
| int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
 | |
| {
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 
 | |
| 	/* This is a bit hairy.  If we are an SPE enabled  processor
 | |
| 	 * (have embedded fp) we store the IEEE exception enable flags in
 | |
| 	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
 | |
| 	 * mode (asyn, precise, disabled) for 'Classic' FP. */
 | |
| 	if (val & PR_FP_EXC_SW_ENABLE) {
 | |
| #ifdef CONFIG_SPE
 | |
| 		if (cpu_has_feature(CPU_FTR_SPE)) {
 | |
| 			tsk->thread.fpexc_mode = val &
 | |
| 				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
 | |
| 			return 0;
 | |
| 		} else {
 | |
| 			return -EINVAL;
 | |
| 		}
 | |
| #else
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	}
 | |
| 
 | |
| 	/* on a CONFIG_SPE this does not hurt us.  The bits that
 | |
| 	 * __pack_fe01 use do not overlap with bits used for
 | |
| 	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
 | |
| 	 * on CONFIG_SPE implementations are reserved so writing to
 | |
| 	 * them does not change anything */
 | |
| 	if (val > PR_FP_EXC_PRECISE)
 | |
| 		return -EINVAL;
 | |
| 	tsk->thread.fpexc_mode = __pack_fe01(val);
 | |
| 	if (regs != NULL && (regs->msr & MSR_FP) != 0)
 | |
| 		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
 | |
| 			| tsk->thread.fpexc_mode;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
 | |
| {
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
 | |
| #ifdef CONFIG_SPE
 | |
| 		if (cpu_has_feature(CPU_FTR_SPE))
 | |
| 			val = tsk->thread.fpexc_mode;
 | |
| 		else
 | |
| 			return -EINVAL;
 | |
| #else
 | |
| 		return -EINVAL;
 | |
| #endif
 | |
| 	else
 | |
| 		val = __unpack_fe01(tsk->thread.fpexc_mode);
 | |
| 	return put_user(val, (unsigned int __user *) adr);
 | |
| }
 | |
| 
 | |
| int set_endian(struct task_struct *tsk, unsigned int val)
 | |
| {
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 
 | |
| 	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
 | |
| 	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (regs == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (val == PR_ENDIAN_BIG)
 | |
| 		regs->msr &= ~MSR_LE;
 | |
| 	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
 | |
| 		regs->msr |= MSR_LE;
 | |
| 	else
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_endian(struct task_struct *tsk, unsigned long adr)
 | |
| {
 | |
| 	struct pt_regs *regs = tsk->thread.regs;
 | |
| 	unsigned int val;
 | |
| 
 | |
| 	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
 | |
| 	    !cpu_has_feature(CPU_FTR_REAL_LE))
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (regs == NULL)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	if (regs->msr & MSR_LE) {
 | |
| 		if (cpu_has_feature(CPU_FTR_REAL_LE))
 | |
| 			val = PR_ENDIAN_LITTLE;
 | |
| 		else
 | |
| 			val = PR_ENDIAN_PPC_LITTLE;
 | |
| 	} else
 | |
| 		val = PR_ENDIAN_BIG;
 | |
| 
 | |
| 	return put_user(val, (unsigned int __user *)adr);
 | |
| }
 | |
| 
 | |
| int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
 | |
| {
 | |
| 	tsk->thread.align_ctl = val;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
 | |
| {
 | |
| 	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
 | |
| }
 | |
| 
 | |
| #define TRUNC_PTR(x)	((typeof(x))(((unsigned long)(x)) & 0xffffffff))
 | |
| 
 | |
| int sys_clone(unsigned long clone_flags, unsigned long usp,
 | |
| 	      int __user *parent_tidp, void __user *child_threadptr,
 | |
| 	      int __user *child_tidp, int p6,
 | |
| 	      struct pt_regs *regs)
 | |
| {
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 	if (usp == 0)
 | |
| 		usp = regs->gpr[1];	/* stack pointer for child */
 | |
| #ifdef CONFIG_PPC64
 | |
| 	if (test_thread_flag(TIF_32BIT)) {
 | |
| 		parent_tidp = TRUNC_PTR(parent_tidp);
 | |
| 		child_tidp = TRUNC_PTR(child_tidp);
 | |
| 	}
 | |
| #endif
 | |
|  	return do_fork(clone_flags, usp, regs, 0, parent_tidp, child_tidp);
 | |
| }
 | |
| 
 | |
| int sys_fork(unsigned long p1, unsigned long p2, unsigned long p3,
 | |
| 	     unsigned long p4, unsigned long p5, unsigned long p6,
 | |
| 	     struct pt_regs *regs)
 | |
| {
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 	return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
 | |
| }
 | |
| 
 | |
| int sys_vfork(unsigned long p1, unsigned long p2, unsigned long p3,
 | |
| 	      unsigned long p4, unsigned long p5, unsigned long p6,
 | |
| 	      struct pt_regs *regs)
 | |
| {
 | |
| 	CHECK_FULL_REGS(regs);
 | |
| 	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
 | |
| 			regs, 0, NULL, NULL);
 | |
| }
 | |
| 
 | |
| int sys_execve(unsigned long a0, unsigned long a1, unsigned long a2,
 | |
| 	       unsigned long a3, unsigned long a4, unsigned long a5,
 | |
| 	       struct pt_regs *regs)
 | |
| {
 | |
| 	int error;
 | |
| 	char *filename;
 | |
| 
 | |
| 	filename = getname((char __user *) a0);
 | |
| 	error = PTR_ERR(filename);
 | |
| 	if (IS_ERR(filename))
 | |
| 		goto out;
 | |
| 	flush_fp_to_thread(current);
 | |
| 	flush_altivec_to_thread(current);
 | |
| 	flush_spe_to_thread(current);
 | |
| 	error = do_execve(filename, (char __user * __user *) a1,
 | |
| 			  (char __user * __user *) a2, regs);
 | |
| 	putname(filename);
 | |
| out:
 | |
| 	return error;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_IRQSTACKS
 | |
| static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
 | |
| 				  unsigned long nbytes)
 | |
| {
 | |
| 	unsigned long stack_page;
 | |
| 	unsigned long cpu = task_cpu(p);
 | |
| 
 | |
| 	/*
 | |
| 	 * Avoid crashing if the stack has overflowed and corrupted
 | |
| 	 * task_cpu(p), which is in the thread_info struct.
 | |
| 	 */
 | |
| 	if (cpu < NR_CPUS && cpu_possible(cpu)) {
 | |
| 		stack_page = (unsigned long) hardirq_ctx[cpu];
 | |
| 		if (sp >= stack_page + sizeof(struct thread_struct)
 | |
| 		    && sp <= stack_page + THREAD_SIZE - nbytes)
 | |
| 			return 1;
 | |
| 
 | |
| 		stack_page = (unsigned long) softirq_ctx[cpu];
 | |
| 		if (sp >= stack_page + sizeof(struct thread_struct)
 | |
| 		    && sp <= stack_page + THREAD_SIZE - nbytes)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| #else
 | |
| #define valid_irq_stack(sp, p, nb)	0
 | |
| #endif /* CONFIG_IRQSTACKS */
 | |
| 
 | |
| int validate_sp(unsigned long sp, struct task_struct *p,
 | |
| 		       unsigned long nbytes)
 | |
| {
 | |
| 	unsigned long stack_page = (unsigned long)task_stack_page(p);
 | |
| 
 | |
| 	if (sp >= stack_page + sizeof(struct thread_struct)
 | |
| 	    && sp <= stack_page + THREAD_SIZE - nbytes)
 | |
| 		return 1;
 | |
| 
 | |
| 	return valid_irq_stack(sp, p, nbytes);
 | |
| }
 | |
| 
 | |
| EXPORT_SYMBOL(validate_sp);
 | |
| 
 | |
| unsigned long get_wchan(struct task_struct *p)
 | |
| {
 | |
| 	unsigned long ip, sp;
 | |
| 	int count = 0;
 | |
| 
 | |
| 	if (!p || p == current || p->state == TASK_RUNNING)
 | |
| 		return 0;
 | |
| 
 | |
| 	sp = p->thread.ksp;
 | |
| 	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
 | |
| 		return 0;
 | |
| 
 | |
| 	do {
 | |
| 		sp = *(unsigned long *)sp;
 | |
| 		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
 | |
| 			return 0;
 | |
| 		if (count > 0) {
 | |
| 			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
 | |
| 			if (!in_sched_functions(ip))
 | |
| 				return ip;
 | |
| 		}
 | |
| 	} while (count++ < 16);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;
 | |
| 
 | |
| void show_stack(struct task_struct *tsk, unsigned long *stack)
 | |
| {
 | |
| 	unsigned long sp, ip, lr, newsp;
 | |
| 	int count = 0;
 | |
| 	int firstframe = 1;
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 	int curr_frame = current->curr_ret_stack;
 | |
| 	extern void return_to_handler(void);
 | |
| 	unsigned long rth = (unsigned long)return_to_handler;
 | |
| 	unsigned long mrth = -1;
 | |
| #ifdef CONFIG_PPC64
 | |
| 	extern void mod_return_to_handler(void);
 | |
| 	rth = *(unsigned long *)rth;
 | |
| 	mrth = (unsigned long)mod_return_to_handler;
 | |
| 	mrth = *(unsigned long *)mrth;
 | |
| #endif
 | |
| #endif
 | |
| 
 | |
| 	sp = (unsigned long) stack;
 | |
| 	if (tsk == NULL)
 | |
| 		tsk = current;
 | |
| 	if (sp == 0) {
 | |
| 		if (tsk == current)
 | |
| 			asm("mr %0,1" : "=r" (sp));
 | |
| 		else
 | |
| 			sp = tsk->thread.ksp;
 | |
| 	}
 | |
| 
 | |
| 	lr = 0;
 | |
| 	printk("Call Trace:\n");
 | |
| 	do {
 | |
| 		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
 | |
| 			return;
 | |
| 
 | |
| 		stack = (unsigned long *) sp;
 | |
| 		newsp = stack[0];
 | |
| 		ip = stack[STACK_FRAME_LR_SAVE];
 | |
| 		if (!firstframe || ip != lr) {
 | |
| 			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
 | |
| #ifdef CONFIG_FUNCTION_GRAPH_TRACER
 | |
| 			if ((ip == rth || ip == mrth) && curr_frame >= 0) {
 | |
| 				printk(" (%pS)",
 | |
| 				       (void *)current->ret_stack[curr_frame].ret);
 | |
| 				curr_frame--;
 | |
| 			}
 | |
| #endif
 | |
| 			if (firstframe)
 | |
| 				printk(" (unreliable)");
 | |
| 			printk("\n");
 | |
| 		}
 | |
| 		firstframe = 0;
 | |
| 
 | |
| 		/*
 | |
| 		 * See if this is an exception frame.
 | |
| 		 * We look for the "regshere" marker in the current frame.
 | |
| 		 */
 | |
| 		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
 | |
| 		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
 | |
| 			struct pt_regs *regs = (struct pt_regs *)
 | |
| 				(sp + STACK_FRAME_OVERHEAD);
 | |
| 			lr = regs->link;
 | |
| 			printk("--- Exception: %lx at %pS\n    LR = %pS\n",
 | |
| 			       regs->trap, (void *)regs->nip, (void *)lr);
 | |
| 			firstframe = 1;
 | |
| 		}
 | |
| 
 | |
| 		sp = newsp;
 | |
| 	} while (count++ < kstack_depth_to_print);
 | |
| }
 | |
| 
 | |
| void dump_stack(void)
 | |
| {
 | |
| 	show_stack(current, NULL);
 | |
| }
 | |
| EXPORT_SYMBOL(dump_stack);
 | |
| 
 | |
| #ifdef CONFIG_PPC64
 | |
| void ppc64_runlatch_on(void)
 | |
| {
 | |
| 	unsigned long ctrl;
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_CTRL) && !test_thread_flag(TIF_RUNLATCH)) {
 | |
| 		HMT_medium();
 | |
| 
 | |
| 		ctrl = mfspr(SPRN_CTRLF);
 | |
| 		ctrl |= CTRL_RUNLATCH;
 | |
| 		mtspr(SPRN_CTRLT, ctrl);
 | |
| 
 | |
| 		set_thread_flag(TIF_RUNLATCH);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void ppc64_runlatch_off(void)
 | |
| {
 | |
| 	unsigned long ctrl;
 | |
| 
 | |
| 	if (cpu_has_feature(CPU_FTR_CTRL) && test_thread_flag(TIF_RUNLATCH)) {
 | |
| 		HMT_medium();
 | |
| 
 | |
| 		clear_thread_flag(TIF_RUNLATCH);
 | |
| 
 | |
| 		ctrl = mfspr(SPRN_CTRLF);
 | |
| 		ctrl &= ~CTRL_RUNLATCH;
 | |
| 		mtspr(SPRN_CTRLT, ctrl);
 | |
| 	}
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if THREAD_SHIFT < PAGE_SHIFT
 | |
| 
 | |
| static struct kmem_cache *thread_info_cache;
 | |
| 
 | |
| struct thread_info *alloc_thread_info(struct task_struct *tsk)
 | |
| {
 | |
| 	struct thread_info *ti;
 | |
| 
 | |
| 	ti = kmem_cache_alloc(thread_info_cache, GFP_KERNEL);
 | |
| 	if (unlikely(ti == NULL))
 | |
| 		return NULL;
 | |
| #ifdef CONFIG_DEBUG_STACK_USAGE
 | |
| 	memset(ti, 0, THREAD_SIZE);
 | |
| #endif
 | |
| 	return ti;
 | |
| }
 | |
| 
 | |
| void free_thread_info(struct thread_info *ti)
 | |
| {
 | |
| 	kmem_cache_free(thread_info_cache, ti);
 | |
| }
 | |
| 
 | |
| void thread_info_cache_init(void)
 | |
| {
 | |
| 	thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
 | |
| 					      THREAD_SIZE, 0, NULL);
 | |
| 	BUG_ON(thread_info_cache == NULL);
 | |
| }
 | |
| 
 | |
| #endif /* THREAD_SHIFT < PAGE_SHIFT */
 | |
| 
 | |
| unsigned long arch_align_stack(unsigned long sp)
 | |
| {
 | |
| 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 | |
| 		sp -= get_random_int() & ~PAGE_MASK;
 | |
| 	return sp & ~0xf;
 | |
| }
 | |
| 
 | |
| static inline unsigned long brk_rnd(void)
 | |
| {
 | |
|         unsigned long rnd = 0;
 | |
| 
 | |
| 	/* 8MB for 32bit, 1GB for 64bit */
 | |
| 	if (is_32bit_task())
 | |
| 		rnd = (long)(get_random_int() % (1<<(23-PAGE_SHIFT)));
 | |
| 	else
 | |
| 		rnd = (long)(get_random_int() % (1<<(30-PAGE_SHIFT)));
 | |
| 
 | |
| 	return rnd << PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| unsigned long arch_randomize_brk(struct mm_struct *mm)
 | |
| {
 | |
| 	unsigned long base = mm->brk;
 | |
| 	unsigned long ret;
 | |
| 
 | |
| #ifdef CONFIG_PPC_STD_MMU_64
 | |
| 	/*
 | |
| 	 * If we are using 1TB segments and we are allowed to randomise
 | |
| 	 * the heap, we can put it above 1TB so it is backed by a 1TB
 | |
| 	 * segment. Otherwise the heap will be in the bottom 1TB
 | |
| 	 * which always uses 256MB segments and this may result in a
 | |
| 	 * performance penalty.
 | |
| 	 */
 | |
| 	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
 | |
| 		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
 | |
| #endif
 | |
| 
 | |
| 	ret = PAGE_ALIGN(base + brk_rnd());
 | |
| 
 | |
| 	if (ret < mm->brk)
 | |
| 		return mm->brk;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| unsigned long randomize_et_dyn(unsigned long base)
 | |
| {
 | |
| 	unsigned long ret = PAGE_ALIGN(base + brk_rnd());
 | |
| 
 | |
| 	if (ret < base)
 | |
| 		return base;
 | |
| 
 | |
| 	return ret;
 | |
| }
 |