820 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			820 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* multi_arith.h: multi-precision integer arithmetic functions, needed
 | |
|    to do extended-precision floating point.
 | |
| 
 | |
|    (c) 1998 David Huggins-Daines.
 | |
| 
 | |
|    Somewhat based on arch/alpha/math-emu/ieee-math.c, which is (c)
 | |
|    David Mosberger-Tang.
 | |
| 
 | |
|    You may copy, modify, and redistribute this file under the terms of
 | |
|    the GNU General Public License, version 2, or any later version, at
 | |
|    your convenience. */
 | |
| 
 | |
| /* Note:
 | |
| 
 | |
|    These are not general multi-precision math routines.  Rather, they
 | |
|    implement the subset of integer arithmetic that we need in order to
 | |
|    multiply, divide, and normalize 128-bit unsigned mantissae.  */
 | |
| 
 | |
| #ifndef MULTI_ARITH_H
 | |
| #define MULTI_ARITH_H
 | |
| 
 | |
| #if 0	/* old code... */
 | |
| 
 | |
| /* Unsigned only, because we don't need signs to multiply and divide. */
 | |
| typedef unsigned int int128[4];
 | |
| 
 | |
| /* Word order */
 | |
| enum {
 | |
| 	MSW128,
 | |
| 	NMSW128,
 | |
| 	NLSW128,
 | |
| 	LSW128
 | |
| };
 | |
| 
 | |
| /* big-endian */
 | |
| #define LO_WORD(ll) (((unsigned int *) &ll)[1])
 | |
| #define HI_WORD(ll) (((unsigned int *) &ll)[0])
 | |
| 
 | |
| /* Convenience functions to stuff various integer values into int128s */
 | |
| 
 | |
| static inline void zero128(int128 a)
 | |
| {
 | |
| 	a[LSW128] = a[NLSW128] = a[NMSW128] = a[MSW128] = 0;
 | |
| }
 | |
| 
 | |
| /* Human-readable word order in the arguments */
 | |
| static inline void set128(unsigned int i3, unsigned int i2, unsigned int i1,
 | |
| 			  unsigned int i0, int128 a)
 | |
| {
 | |
| 	a[LSW128] = i0;
 | |
| 	a[NLSW128] = i1;
 | |
| 	a[NMSW128] = i2;
 | |
| 	a[MSW128] = i3;
 | |
| }
 | |
| 
 | |
| /* Convenience functions (for testing as well) */
 | |
| static inline void int64_to_128(unsigned long long src, int128 dest)
 | |
| {
 | |
| 	dest[LSW128] = (unsigned int) src;
 | |
| 	dest[NLSW128] = src >> 32;
 | |
| 	dest[NMSW128] = dest[MSW128] = 0;
 | |
| }
 | |
| 
 | |
| static inline void int128_to_64(const int128 src, unsigned long long *dest)
 | |
| {
 | |
| 	*dest = src[LSW128] | (long long) src[NLSW128] << 32;
 | |
| }
 | |
| 
 | |
| static inline void put_i128(const int128 a)
 | |
| {
 | |
| 	printk("%08x %08x %08x %08x\n", a[MSW128], a[NMSW128],
 | |
| 	       a[NLSW128], a[LSW128]);
 | |
| }
 | |
| 
 | |
| /* Internal shifters:
 | |
| 
 | |
|    Note that these are only good for 0 < count < 32.
 | |
|  */
 | |
| 
 | |
| static inline void _lsl128(unsigned int count, int128 a)
 | |
| {
 | |
| 	a[MSW128] = (a[MSW128] << count) | (a[NMSW128] >> (32 - count));
 | |
| 	a[NMSW128] = (a[NMSW128] << count) | (a[NLSW128] >> (32 - count));
 | |
| 	a[NLSW128] = (a[NLSW128] << count) | (a[LSW128] >> (32 - count));
 | |
| 	a[LSW128] <<= count;
 | |
| }
 | |
| 
 | |
| static inline void _lsr128(unsigned int count, int128 a)
 | |
| {
 | |
| 	a[LSW128] = (a[LSW128] >> count) | (a[NLSW128] << (32 - count));
 | |
| 	a[NLSW128] = (a[NLSW128] >> count) | (a[NMSW128] << (32 - count));
 | |
| 	a[NMSW128] = (a[NMSW128] >> count) | (a[MSW128] << (32 - count));
 | |
| 	a[MSW128] >>= count;
 | |
| }
 | |
| 
 | |
| /* Should be faster, one would hope */
 | |
| 
 | |
| static inline void lslone128(int128 a)
 | |
| {
 | |
| 	asm volatile ("lsl.l #1,%0\n"
 | |
| 		      "roxl.l #1,%1\n"
 | |
| 		      "roxl.l #1,%2\n"
 | |
| 		      "roxl.l #1,%3\n"
 | |
| 		      :
 | |
| 		      "=d" (a[LSW128]),
 | |
| 		      "=d"(a[NLSW128]),
 | |
| 		      "=d"(a[NMSW128]),
 | |
| 		      "=d"(a[MSW128])
 | |
| 		      :
 | |
| 		      "0"(a[LSW128]),
 | |
| 		      "1"(a[NLSW128]),
 | |
| 		      "2"(a[NMSW128]),
 | |
| 		      "3"(a[MSW128]));
 | |
| }
 | |
| 
 | |
| static inline void lsrone128(int128 a)
 | |
| {
 | |
| 	asm volatile ("lsr.l #1,%0\n"
 | |
| 		      "roxr.l #1,%1\n"
 | |
| 		      "roxr.l #1,%2\n"
 | |
| 		      "roxr.l #1,%3\n"
 | |
| 		      :
 | |
| 		      "=d" (a[MSW128]),
 | |
| 		      "=d"(a[NMSW128]),
 | |
| 		      "=d"(a[NLSW128]),
 | |
| 		      "=d"(a[LSW128])
 | |
| 		      :
 | |
| 		      "0"(a[MSW128]),
 | |
| 		      "1"(a[NMSW128]),
 | |
| 		      "2"(a[NLSW128]),
 | |
| 		      "3"(a[LSW128]));
 | |
| }
 | |
| 
 | |
| /* Generalized 128-bit shifters:
 | |
| 
 | |
|    These bit-shift to a multiple of 32, then move whole longwords.  */
 | |
| 
 | |
| static inline void lsl128(unsigned int count, int128 a)
 | |
| {
 | |
| 	int wordcount, i;
 | |
| 
 | |
| 	if (count % 32)
 | |
| 		_lsl128(count % 32, a);
 | |
| 
 | |
| 	if (0 == (wordcount = count / 32))
 | |
| 		return;
 | |
| 
 | |
| 	/* argh, gak, endian-sensitive */
 | |
| 	for (i = 0; i < 4 - wordcount; i++) {
 | |
| 		a[i] = a[i + wordcount];
 | |
| 	}
 | |
| 	for (i = 3; i >= 4 - wordcount; --i) {
 | |
| 		a[i] = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline void lsr128(unsigned int count, int128 a)
 | |
| {
 | |
| 	int wordcount, i;
 | |
| 
 | |
| 	if (count % 32)
 | |
| 		_lsr128(count % 32, a);
 | |
| 
 | |
| 	if (0 == (wordcount = count / 32))
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 3; i >= wordcount; --i) {
 | |
| 		a[i] = a[i - wordcount];
 | |
| 	}
 | |
| 	for (i = 0; i < wordcount; i++) {
 | |
| 		a[i] = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int orl128(int a, int128 b)
 | |
| {
 | |
| 	b[LSW128] |= a;
 | |
| }
 | |
| 
 | |
| static inline int btsthi128(const int128 a)
 | |
| {
 | |
| 	return a[MSW128] & 0x80000000;
 | |
| }
 | |
| 
 | |
| /* test bits (numbered from 0 = LSB) up to and including "top" */
 | |
| static inline int bftestlo128(int top, const int128 a)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	if (top > 31)
 | |
| 		r |= a[LSW128];
 | |
| 	if (top > 63)
 | |
| 		r |= a[NLSW128];
 | |
| 	if (top > 95)
 | |
| 		r |= a[NMSW128];
 | |
| 
 | |
| 	r |= a[3 - (top / 32)] & ((1 << (top % 32 + 1)) - 1);
 | |
| 
 | |
| 	return (r != 0);
 | |
| }
 | |
| 
 | |
| /* Aargh.  We need these because GCC is broken */
 | |
| /* FIXME: do them in assembly, for goodness' sake! */
 | |
| static inline void mask64(int pos, unsigned long long *mask)
 | |
| {
 | |
| 	*mask = 0;
 | |
| 
 | |
| 	if (pos < 32) {
 | |
| 		LO_WORD(*mask) = (1 << pos) - 1;
 | |
| 		return;
 | |
| 	}
 | |
| 	LO_WORD(*mask) = -1;
 | |
| 	HI_WORD(*mask) = (1 << (pos - 32)) - 1;
 | |
| }
 | |
| 
 | |
| static inline void bset64(int pos, unsigned long long *dest)
 | |
| {
 | |
| 	/* This conditional will be optimized away.  Thanks, GCC! */
 | |
| 	if (pos < 32)
 | |
| 		asm volatile ("bset %1,%0":"=m"
 | |
| 			      (LO_WORD(*dest)):"id"(pos));
 | |
| 	else
 | |
| 		asm volatile ("bset %1,%0":"=m"
 | |
| 			      (HI_WORD(*dest)):"id"(pos - 32));
 | |
| }
 | |
| 
 | |
| static inline int btst64(int pos, unsigned long long dest)
 | |
| {
 | |
| 	if (pos < 32)
 | |
| 		return (0 != (LO_WORD(dest) & (1 << pos)));
 | |
| 	else
 | |
| 		return (0 != (HI_WORD(dest) & (1 << (pos - 32))));
 | |
| }
 | |
| 
 | |
| static inline void lsl64(int count, unsigned long long *dest)
 | |
| {
 | |
| 	if (count < 32) {
 | |
| 		HI_WORD(*dest) = (HI_WORD(*dest) << count)
 | |
| 		    | (LO_WORD(*dest) >> count);
 | |
| 		LO_WORD(*dest) <<= count;
 | |
| 		return;
 | |
| 	}
 | |
| 	count -= 32;
 | |
| 	HI_WORD(*dest) = LO_WORD(*dest) << count;
 | |
| 	LO_WORD(*dest) = 0;
 | |
| }
 | |
| 
 | |
| static inline void lsr64(int count, unsigned long long *dest)
 | |
| {
 | |
| 	if (count < 32) {
 | |
| 		LO_WORD(*dest) = (LO_WORD(*dest) >> count)
 | |
| 		    | (HI_WORD(*dest) << (32 - count));
 | |
| 		HI_WORD(*dest) >>= count;
 | |
| 		return;
 | |
| 	}
 | |
| 	count -= 32;
 | |
| 	LO_WORD(*dest) = HI_WORD(*dest) >> count;
 | |
| 	HI_WORD(*dest) = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void fp_denormalize(struct fp_ext *reg, unsigned int cnt)
 | |
| {
 | |
| 	reg->exp += cnt;
 | |
| 
 | |
| 	switch (cnt) {
 | |
| 	case 0 ... 8:
 | |
| 		reg->lowmant = reg->mant.m32[1] << (8 - cnt);
 | |
| 		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 | |
| 				   (reg->mant.m32[0] << (32 - cnt));
 | |
| 		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 | |
| 		break;
 | |
| 	case 9 ... 32:
 | |
| 		reg->lowmant = reg->mant.m32[1] >> (cnt - 8);
 | |
| 		if (reg->mant.m32[1] << (40 - cnt))
 | |
| 			reg->lowmant |= 1;
 | |
| 		reg->mant.m32[1] = (reg->mant.m32[1] >> cnt) |
 | |
| 				   (reg->mant.m32[0] << (32 - cnt));
 | |
| 		reg->mant.m32[0] = reg->mant.m32[0] >> cnt;
 | |
| 		break;
 | |
| 	case 33 ... 39:
 | |
| 		asm volatile ("bfextu %1{%2,#8},%0" : "=d" (reg->lowmant)
 | |
| 			: "m" (reg->mant.m32[0]), "d" (64 - cnt));
 | |
| 		if (reg->mant.m32[1] << (40 - cnt))
 | |
| 			reg->lowmant |= 1;
 | |
| 		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 | |
| 		reg->mant.m32[0] = 0;
 | |
| 		break;
 | |
| 	case 40 ... 71:
 | |
| 		reg->lowmant = reg->mant.m32[0] >> (cnt - 40);
 | |
| 		if ((reg->mant.m32[0] << (72 - cnt)) || reg->mant.m32[1])
 | |
| 			reg->lowmant |= 1;
 | |
| 		reg->mant.m32[1] = reg->mant.m32[0] >> (cnt - 32);
 | |
| 		reg->mant.m32[0] = 0;
 | |
| 		break;
 | |
| 	default:
 | |
| 		reg->lowmant = reg->mant.m32[0] || reg->mant.m32[1];
 | |
| 		reg->mant.m32[0] = 0;
 | |
| 		reg->mant.m32[1] = 0;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static inline int fp_overnormalize(struct fp_ext *reg)
 | |
| {
 | |
| 	int shift;
 | |
| 
 | |
| 	if (reg->mant.m32[0]) {
 | |
| 		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[0]));
 | |
| 		reg->mant.m32[0] = (reg->mant.m32[0] << shift) | (reg->mant.m32[1] >> (32 - shift));
 | |
| 		reg->mant.m32[1] = (reg->mant.m32[1] << shift);
 | |
| 	} else {
 | |
| 		asm ("bfffo %1{#0,#32},%0" : "=d" (shift) : "dm" (reg->mant.m32[1]));
 | |
| 		reg->mant.m32[0] = (reg->mant.m32[1] << shift);
 | |
| 		reg->mant.m32[1] = 0;
 | |
| 		shift += 32;
 | |
| 	}
 | |
| 
 | |
| 	return shift;
 | |
| }
 | |
| 
 | |
| static inline int fp_addmant(struct fp_ext *dest, struct fp_ext *src)
 | |
| {
 | |
| 	int carry;
 | |
| 
 | |
| 	/* we assume here, gcc only insert move and a clr instr */
 | |
| 	asm volatile ("add.b %1,%0" : "=d,g" (dest->lowmant)
 | |
| 		: "g,d" (src->lowmant), "0,0" (dest->lowmant));
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[1])
 | |
| 		: "d" (src->mant.m32[1]), "0" (dest->mant.m32[1]));
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->mant.m32[0])
 | |
| 		: "d" (src->mant.m32[0]), "0" (dest->mant.m32[0]));
 | |
| 	asm volatile ("addx.l %0,%0" : "=d" (carry) : "0" (0));
 | |
| 
 | |
| 	return carry;
 | |
| }
 | |
| 
 | |
| static inline int fp_addcarry(struct fp_ext *reg)
 | |
| {
 | |
| 	if (++reg->exp == 0x7fff) {
 | |
| 		if (reg->mant.m64)
 | |
| 			fp_set_sr(FPSR_EXC_INEX2);
 | |
| 		reg->mant.m64 = 0;
 | |
| 		fp_set_sr(FPSR_EXC_OVFL);
 | |
| 		return 0;
 | |
| 	}
 | |
| 	reg->lowmant = (reg->mant.m32[1] << 7) | (reg->lowmant ? 1 : 0);
 | |
| 	reg->mant.m32[1] = (reg->mant.m32[1] >> 1) |
 | |
| 			   (reg->mant.m32[0] << 31);
 | |
| 	reg->mant.m32[0] = (reg->mant.m32[0] >> 1) | 0x80000000;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static inline void fp_submant(struct fp_ext *dest, struct fp_ext *src1,
 | |
| 			      struct fp_ext *src2)
 | |
| {
 | |
| 	/* we assume here, gcc only insert move and a clr instr */
 | |
| 	asm volatile ("sub.b %1,%0" : "=d,g" (dest->lowmant)
 | |
| 		: "g,d" (src2->lowmant), "0,0" (src1->lowmant));
 | |
| 	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[1])
 | |
| 		: "d" (src2->mant.m32[1]), "0" (src1->mant.m32[1]));
 | |
| 	asm volatile ("subx.l %1,%0" : "=d" (dest->mant.m32[0])
 | |
| 		: "d" (src2->mant.m32[0]), "0" (src1->mant.m32[0]));
 | |
| }
 | |
| 
 | |
| #define fp_mul64(desth, destl, src1, src2) ({				\
 | |
| 	asm ("mulu.l %2,%1:%0" : "=d" (destl), "=d" (desth)		\
 | |
| 		: "dm" (src1), "0" (src2));				\
 | |
| })
 | |
| #define fp_div64(quot, rem, srch, srcl, div)				\
 | |
| 	asm ("divu.l %2,%1:%0" : "=d" (quot), "=d" (rem)		\
 | |
| 		: "dm" (div), "1" (srch), "0" (srcl))
 | |
| #define fp_add64(dest1, dest2, src1, src2) ({				\
 | |
| 	asm ("add.l %1,%0" : "=d,dm" (dest2)				\
 | |
| 		: "dm,d" (src2), "0,0" (dest2));			\
 | |
| 	asm ("addx.l %1,%0" : "=d" (dest1)				\
 | |
| 		: "d" (src1), "0" (dest1));				\
 | |
| })
 | |
| #define fp_addx96(dest, src) ({						\
 | |
| 	/* we assume here, gcc only insert move and a clr instr */	\
 | |
| 	asm volatile ("add.l %1,%0" : "=d,g" (dest->m32[2])		\
 | |
| 		: "g,d" (temp.m32[1]), "0,0" (dest->m32[2]));		\
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[1])		\
 | |
| 		: "d" (temp.m32[0]), "0" (dest->m32[1]));		\
 | |
| 	asm volatile ("addx.l %1,%0" : "=d" (dest->m32[0])		\
 | |
| 		: "d" (0), "0" (dest->m32[0]));				\
 | |
| })
 | |
| #define fp_sub64(dest, src) ({						\
 | |
| 	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[1])			\
 | |
| 		: "dm,d" (src.m32[1]), "0,0" (dest.m32[1]));		\
 | |
| 	asm ("subx.l %1,%0" : "=d" (dest.m32[0])			\
 | |
| 		: "d" (src.m32[0]), "0" (dest.m32[0]));			\
 | |
| })
 | |
| #define fp_sub96c(dest, srch, srcm, srcl) ({				\
 | |
| 	char carry;							\
 | |
| 	asm ("sub.l %1,%0" : "=d,dm" (dest.m32[2])			\
 | |
| 		: "dm,d" (srcl), "0,0" (dest.m32[2]));			\
 | |
| 	asm ("subx.l %1,%0" : "=d" (dest.m32[1])			\
 | |
| 		: "d" (srcm), "0" (dest.m32[1]));			\
 | |
| 	asm ("subx.l %2,%1; scs %0" : "=d" (carry), "=d" (dest.m32[0])	\
 | |
| 		: "d" (srch), "1" (dest.m32[0]));			\
 | |
| 	carry;								\
 | |
| })
 | |
| 
 | |
| static inline void fp_multiplymant(union fp_mant128 *dest, struct fp_ext *src1,
 | |
| 				   struct fp_ext *src2)
 | |
| {
 | |
| 	union fp_mant64 temp;
 | |
| 
 | |
| 	fp_mul64(dest->m32[0], dest->m32[1], src1->mant.m32[0], src2->mant.m32[0]);
 | |
| 	fp_mul64(dest->m32[2], dest->m32[3], src1->mant.m32[1], src2->mant.m32[1]);
 | |
| 
 | |
| 	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[0], src2->mant.m32[1]);
 | |
| 	fp_addx96(dest, temp);
 | |
| 
 | |
| 	fp_mul64(temp.m32[0], temp.m32[1], src1->mant.m32[1], src2->mant.m32[0]);
 | |
| 	fp_addx96(dest, temp);
 | |
| }
 | |
| 
 | |
| static inline void fp_dividemant(union fp_mant128 *dest, struct fp_ext *src,
 | |
| 				 struct fp_ext *div)
 | |
| {
 | |
| 	union fp_mant128 tmp;
 | |
| 	union fp_mant64 tmp64;
 | |
| 	unsigned long *mantp = dest->m32;
 | |
| 	unsigned long fix, rem, first, dummy;
 | |
| 	int i;
 | |
| 
 | |
| 	/* the algorithm below requires dest to be smaller than div,
 | |
| 	   but both have the high bit set */
 | |
| 	if (src->mant.m64 >= div->mant.m64) {
 | |
| 		fp_sub64(src->mant, div->mant);
 | |
| 		*mantp = 1;
 | |
| 	} else
 | |
| 		*mantp = 0;
 | |
| 	mantp++;
 | |
| 
 | |
| 	/* basic idea behind this algorithm: we can't divide two 64bit numbers
 | |
| 	   (AB/CD) directly, but we can calculate AB/C0, but this means this
 | |
| 	   quotient is off by C0/CD, so we have to multiply the first result
 | |
| 	   to fix the result, after that we have nearly the correct result
 | |
| 	   and only a few corrections are needed. */
 | |
| 
 | |
| 	/* C0/CD can be precalculated, but it's an 64bit division again, but
 | |
| 	   we can make it a bit easier, by dividing first through C so we get
 | |
| 	   10/1D and now only a single shift and the value fits into 32bit. */
 | |
| 	fix = 0x80000000;
 | |
| 	dummy = div->mant.m32[1] / div->mant.m32[0] + 1;
 | |
| 	dummy = (dummy >> 1) | fix;
 | |
| 	fp_div64(fix, dummy, fix, 0, dummy);
 | |
| 	fix--;
 | |
| 
 | |
| 	for (i = 0; i < 3; i++, mantp++) {
 | |
| 		if (src->mant.m32[0] == div->mant.m32[0]) {
 | |
| 			fp_div64(first, rem, 0, src->mant.m32[1], div->mant.m32[0]);
 | |
| 
 | |
| 			fp_mul64(*mantp, dummy, first, fix);
 | |
| 			*mantp += fix;
 | |
| 		} else {
 | |
| 			fp_div64(first, rem, src->mant.m32[0], src->mant.m32[1], div->mant.m32[0]);
 | |
| 
 | |
| 			fp_mul64(*mantp, dummy, first, fix);
 | |
| 		}
 | |
| 
 | |
| 		fp_mul64(tmp.m32[0], tmp.m32[1], div->mant.m32[0], first - *mantp);
 | |
| 		fp_add64(tmp.m32[0], tmp.m32[1], 0, rem);
 | |
| 		tmp.m32[2] = 0;
 | |
| 
 | |
| 		fp_mul64(tmp64.m32[0], tmp64.m32[1], *mantp, div->mant.m32[1]);
 | |
| 		fp_sub96c(tmp, 0, tmp64.m32[0], tmp64.m32[1]);
 | |
| 
 | |
| 		src->mant.m32[0] = tmp.m32[1];
 | |
| 		src->mant.m32[1] = tmp.m32[2];
 | |
| 
 | |
| 		while (!fp_sub96c(tmp, 0, div->mant.m32[0], div->mant.m32[1])) {
 | |
| 			src->mant.m32[0] = tmp.m32[1];
 | |
| 			src->mant.m32[1] = tmp.m32[2];
 | |
| 			*mantp += 1;
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if 0
 | |
| static inline unsigned int fp_fls128(union fp_mant128 *src)
 | |
| {
 | |
| 	unsigned long data;
 | |
| 	unsigned int res, off;
 | |
| 
 | |
| 	if ((data = src->m32[0]))
 | |
| 		off = 0;
 | |
| 	else if ((data = src->m32[1]))
 | |
| 		off = 32;
 | |
| 	else if ((data = src->m32[2]))
 | |
| 		off = 64;
 | |
| 	else if ((data = src->m32[3]))
 | |
| 		off = 96;
 | |
| 	else
 | |
| 		return 128;
 | |
| 
 | |
| 	asm ("bfffo %1{#0,#32},%0" : "=d" (res) : "dm" (data));
 | |
| 	return res + off;
 | |
| }
 | |
| 
 | |
| static inline void fp_shiftmant128(union fp_mant128 *src, int shift)
 | |
| {
 | |
| 	unsigned long sticky;
 | |
| 
 | |
| 	switch (shift) {
 | |
| 	case 0:
 | |
| 		return;
 | |
| 	case 1:
 | |
| 		asm volatile ("lsl.l #1,%0"
 | |
| 			: "=d" (src->m32[3]) : "0" (src->m32[3]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (src->m32[2]) : "0" (src->m32[2]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (src->m32[1]) : "0" (src->m32[1]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (src->m32[0]) : "0" (src->m32[0]));
 | |
| 		return;
 | |
| 	case 2 ... 31:
 | |
| 		src->m32[0] = (src->m32[0] << shift) | (src->m32[1] >> (32 - shift));
 | |
| 		src->m32[1] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift));
 | |
| 		src->m32[2] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift));
 | |
| 		src->m32[3] = (src->m32[3] << shift);
 | |
| 		return;
 | |
| 	case 32 ... 63:
 | |
| 		shift -= 32;
 | |
| 		src->m32[0] = (src->m32[1] << shift) | (src->m32[2] >> (32 - shift));
 | |
| 		src->m32[1] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift));
 | |
| 		src->m32[2] = (src->m32[3] << shift);
 | |
| 		src->m32[3] = 0;
 | |
| 		return;
 | |
| 	case 64 ... 95:
 | |
| 		shift -= 64;
 | |
| 		src->m32[0] = (src->m32[2] << shift) | (src->m32[3] >> (32 - shift));
 | |
| 		src->m32[1] = (src->m32[3] << shift);
 | |
| 		src->m32[2] = src->m32[3] = 0;
 | |
| 		return;
 | |
| 	case 96 ... 127:
 | |
| 		shift -= 96;
 | |
| 		src->m32[0] = (src->m32[3] << shift);
 | |
| 		src->m32[1] = src->m32[2] = src->m32[3] = 0;
 | |
| 		return;
 | |
| 	case -31 ... -1:
 | |
| 		shift = -shift;
 | |
| 		sticky = 0;
 | |
| 		if (src->m32[3] << (32 - shift))
 | |
| 			sticky = 1;
 | |
| 		src->m32[3] = (src->m32[3] >> shift) | (src->m32[2] << (32 - shift)) | sticky;
 | |
| 		src->m32[2] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift));
 | |
| 		src->m32[1] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift));
 | |
| 		src->m32[0] = (src->m32[0] >> shift);
 | |
| 		return;
 | |
| 	case -63 ... -32:
 | |
| 		shift = -shift - 32;
 | |
| 		sticky = 0;
 | |
| 		if ((src->m32[2] << (32 - shift)) || src->m32[3])
 | |
| 			sticky = 1;
 | |
| 		src->m32[3] = (src->m32[2] >> shift) | (src->m32[1] << (32 - shift)) | sticky;
 | |
| 		src->m32[2] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift));
 | |
| 		src->m32[1] = (src->m32[0] >> shift);
 | |
| 		src->m32[0] = 0;
 | |
| 		return;
 | |
| 	case -95 ... -64:
 | |
| 		shift = -shift - 64;
 | |
| 		sticky = 0;
 | |
| 		if ((src->m32[1] << (32 - shift)) || src->m32[2] || src->m32[3])
 | |
| 			sticky = 1;
 | |
| 		src->m32[3] = (src->m32[1] >> shift) | (src->m32[0] << (32 - shift)) | sticky;
 | |
| 		src->m32[2] = (src->m32[0] >> shift);
 | |
| 		src->m32[1] = src->m32[0] = 0;
 | |
| 		return;
 | |
| 	case -127 ... -96:
 | |
| 		shift = -shift - 96;
 | |
| 		sticky = 0;
 | |
| 		if ((src->m32[0] << (32 - shift)) || src->m32[1] || src->m32[2] || src->m32[3])
 | |
| 			sticky = 1;
 | |
| 		src->m32[3] = (src->m32[0] >> shift) | sticky;
 | |
| 		src->m32[2] = src->m32[1] = src->m32[0] = 0;
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (shift < 0 && (src->m32[0] || src->m32[1] || src->m32[2] || src->m32[3]))
 | |
| 		src->m32[3] = 1;
 | |
| 	else
 | |
| 		src->m32[3] = 0;
 | |
| 	src->m32[2] = 0;
 | |
| 	src->m32[1] = 0;
 | |
| 	src->m32[0] = 0;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static inline void fp_putmant128(struct fp_ext *dest, union fp_mant128 *src,
 | |
| 				 int shift)
 | |
| {
 | |
| 	unsigned long tmp;
 | |
| 
 | |
| 	switch (shift) {
 | |
| 	case 0:
 | |
| 		dest->mant.m64 = src->m64[0];
 | |
| 		dest->lowmant = src->m32[2] >> 24;
 | |
| 		if (src->m32[3] || (src->m32[2] << 8))
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		asm volatile ("lsl.l #1,%0"
 | |
| 			: "=d" (tmp) : "0" (src->m32[2]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[1]) : "0" (src->m32[1]));
 | |
| 		asm volatile ("roxl.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[0]) : "0" (src->m32[0]));
 | |
| 		dest->lowmant = tmp >> 24;
 | |
| 		if (src->m32[3] || (tmp << 8))
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	case 31:
 | |
| 		asm volatile ("lsr.l #1,%1; roxr.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[0])
 | |
| 			: "d" (src->m32[0]), "0" (src->m32[1]));
 | |
| 		asm volatile ("roxr.l #1,%0"
 | |
| 			: "=d" (dest->mant.m32[1]) : "0" (src->m32[2]));
 | |
| 		asm volatile ("roxr.l #1,%0"
 | |
| 			: "=d" (tmp) : "0" (src->m32[3]));
 | |
| 		dest->lowmant = tmp >> 24;
 | |
| 		if (src->m32[3] << 7)
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	case 32:
 | |
| 		dest->mant.m32[0] = src->m32[1];
 | |
| 		dest->mant.m32[1] = src->m32[2];
 | |
| 		dest->lowmant = src->m32[3] >> 24;
 | |
| 		if (src->m32[3] << 8)
 | |
| 			dest->lowmant |= 1;
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| #if 0 /* old code... */
 | |
| static inline int fls(unsigned int a)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	asm volatile ("bfffo %1{#0,#32},%0"
 | |
| 		      : "=d" (r) : "md" (a));
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /* fls = "find last set" (cf. ffs(3)) */
 | |
| static inline int fls128(const int128 a)
 | |
| {
 | |
| 	if (a[MSW128])
 | |
| 		return fls(a[MSW128]);
 | |
| 	if (a[NMSW128])
 | |
| 		return fls(a[NMSW128]) + 32;
 | |
| 	/* XXX: it probably never gets beyond this point in actual
 | |
| 	   use, but that's indicative of a more general problem in the
 | |
| 	   algorithm (i.e. as per the actual 68881 implementation, we
 | |
| 	   really only need at most 67 bits of precision [plus
 | |
| 	   overflow]) so I'm not going to fix it. */
 | |
| 	if (a[NLSW128])
 | |
| 		return fls(a[NLSW128]) + 64;
 | |
| 	if (a[LSW128])
 | |
| 		return fls(a[LSW128]) + 96;
 | |
| 	else
 | |
| 		return -1;
 | |
| }
 | |
| 
 | |
| static inline int zerop128(const int128 a)
 | |
| {
 | |
| 	return !(a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]);
 | |
| }
 | |
| 
 | |
| static inline int nonzerop128(const int128 a)
 | |
| {
 | |
| 	return (a[LSW128] | a[NLSW128] | a[NMSW128] | a[MSW128]);
 | |
| }
 | |
| 
 | |
| /* Addition and subtraction */
 | |
| /* Do these in "pure" assembly, because "extended" asm is unmanageable
 | |
|    here */
 | |
| static inline void add128(const int128 a, int128 b)
 | |
| {
 | |
| 	/* rotating carry flags */
 | |
| 	unsigned int carry[2];
 | |
| 
 | |
| 	carry[0] = a[LSW128] > (0xffffffff - b[LSW128]);
 | |
| 	b[LSW128] += a[LSW128];
 | |
| 
 | |
| 	carry[1] = a[NLSW128] > (0xffffffff - b[NLSW128] - carry[0]);
 | |
| 	b[NLSW128] = a[NLSW128] + b[NLSW128] + carry[0];
 | |
| 
 | |
| 	carry[0] = a[NMSW128] > (0xffffffff - b[NMSW128] - carry[1]);
 | |
| 	b[NMSW128] = a[NMSW128] + b[NMSW128] + carry[1];
 | |
| 
 | |
| 	b[MSW128] = a[MSW128] + b[MSW128] + carry[0];
 | |
| }
 | |
| 
 | |
| /* Note: assembler semantics: "b -= a" */
 | |
| static inline void sub128(const int128 a, int128 b)
 | |
| {
 | |
| 	/* rotating borrow flags */
 | |
| 	unsigned int borrow[2];
 | |
| 
 | |
| 	borrow[0] = b[LSW128] < a[LSW128];
 | |
| 	b[LSW128] -= a[LSW128];
 | |
| 
 | |
| 	borrow[1] = b[NLSW128] < a[NLSW128] + borrow[0];
 | |
| 	b[NLSW128] = b[NLSW128] - a[NLSW128] - borrow[0];
 | |
| 
 | |
| 	borrow[0] = b[NMSW128] < a[NMSW128] + borrow[1];
 | |
| 	b[NMSW128] = b[NMSW128] - a[NMSW128] - borrow[1];
 | |
| 
 | |
| 	b[MSW128] = b[MSW128] - a[MSW128] - borrow[0];
 | |
| }
 | |
| 
 | |
| /* Poor man's 64-bit expanding multiply */
 | |
| static inline void mul64(unsigned long long a, unsigned long long b, int128 c)
 | |
| {
 | |
| 	unsigned long long acc;
 | |
| 	int128 acc128;
 | |
| 
 | |
| 	zero128(acc128);
 | |
| 	zero128(c);
 | |
| 
 | |
| 	/* first the low words */
 | |
| 	if (LO_WORD(a) && LO_WORD(b)) {
 | |
| 		acc = (long long) LO_WORD(a) * LO_WORD(b);
 | |
| 		c[NLSW128] = HI_WORD(acc);
 | |
| 		c[LSW128] = LO_WORD(acc);
 | |
| 	}
 | |
| 	/* Next the high words */
 | |
| 	if (HI_WORD(a) && HI_WORD(b)) {
 | |
| 		acc = (long long) HI_WORD(a) * HI_WORD(b);
 | |
| 		c[MSW128] = HI_WORD(acc);
 | |
| 		c[NMSW128] = LO_WORD(acc);
 | |
| 	}
 | |
| 	/* The middle words */
 | |
| 	if (LO_WORD(a) && HI_WORD(b)) {
 | |
| 		acc = (long long) LO_WORD(a) * HI_WORD(b);
 | |
| 		acc128[NMSW128] = HI_WORD(acc);
 | |
| 		acc128[NLSW128] = LO_WORD(acc);
 | |
| 		add128(acc128, c);
 | |
| 	}
 | |
| 	/* The first and last words */
 | |
| 	if (HI_WORD(a) && LO_WORD(b)) {
 | |
| 		acc = (long long) HI_WORD(a) * LO_WORD(b);
 | |
| 		acc128[NMSW128] = HI_WORD(acc);
 | |
| 		acc128[NLSW128] = LO_WORD(acc);
 | |
| 		add128(acc128, c);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* Note: unsigned */
 | |
| static inline int cmp128(int128 a, int128 b)
 | |
| {
 | |
| 	if (a[MSW128] < b[MSW128])
 | |
| 		return -1;
 | |
| 	if (a[MSW128] > b[MSW128])
 | |
| 		return 1;
 | |
| 	if (a[NMSW128] < b[NMSW128])
 | |
| 		return -1;
 | |
| 	if (a[NMSW128] > b[NMSW128])
 | |
| 		return 1;
 | |
| 	if (a[NLSW128] < b[NLSW128])
 | |
| 		return -1;
 | |
| 	if (a[NLSW128] > b[NLSW128])
 | |
| 		return 1;
 | |
| 
 | |
| 	return (signed) a[LSW128] - b[LSW128];
 | |
| }
 | |
| 
 | |
| inline void div128(int128 a, int128 b, int128 c)
 | |
| {
 | |
| 	int128 mask;
 | |
| 
 | |
| 	/* Algorithm:
 | |
| 
 | |
| 	   Shift the divisor until it's at least as big as the
 | |
| 	   dividend, keeping track of the position to which we've
 | |
| 	   shifted it, i.e. the power of 2 which we've multiplied it
 | |
| 	   by.
 | |
| 
 | |
| 	   Then, for this power of 2 (the mask), and every one smaller
 | |
| 	   than it, subtract the mask from the dividend and add it to
 | |
| 	   the quotient until the dividend is smaller than the raised
 | |
| 	   divisor.  At this point, divide the dividend and the mask
 | |
| 	   by 2 (i.e. shift one place to the right).  Lather, rinse,
 | |
| 	   and repeat, until there are no more powers of 2 left. */
 | |
| 
 | |
| 	/* FIXME: needless to say, there's room for improvement here too. */
 | |
| 
 | |
| 	/* Shift up */
 | |
| 	/* XXX: since it just has to be "at least as big", we can
 | |
| 	   probably eliminate this horribly wasteful loop.  I will
 | |
| 	   have to prove this first, though */
 | |
| 	set128(0, 0, 0, 1, mask);
 | |
| 	while (cmp128(b, a) < 0 && !btsthi128(b)) {
 | |
| 		lslone128(b);
 | |
| 		lslone128(mask);
 | |
| 	}
 | |
| 
 | |
| 	/* Shift down */
 | |
| 	zero128(c);
 | |
| 	do {
 | |
| 		if (cmp128(a, b) >= 0) {
 | |
| 			sub128(b, a);
 | |
| 			add128(mask, c);
 | |
| 		}
 | |
| 		lsrone128(mask);
 | |
| 		lsrone128(b);
 | |
| 	} while (nonzerop128(mask));
 | |
| 
 | |
| 	/* The remainder is in a... */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif	/* MULTI_ARITH_H */
 |