249 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			249 lines
		
	
	
		
			9.2 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * linux/include/asm/dma.h: Defines for using and allocating dma channels.
 | |
|  * Written by Hennus Bergman, 1992.
 | |
|  * High DMA channel support & info by Hannu Savolainen
 | |
|  * and John Boyd, Nov. 1992.
 | |
|  */
 | |
| 
 | |
| #ifndef _ASM_APOLLO_DMA_H
 | |
| #define _ASM_APOLLO_DMA_H
 | |
| 
 | |
| #include <asm/apollohw.h>		/* need byte IO */
 | |
| #include <linux/spinlock.h>		/* And spinlocks */
 | |
| #include <linux/delay.h>
 | |
| 
 | |
| 
 | |
| #define dma_outb(val,addr) (*((volatile unsigned char *)(addr+IO_BASE)) = (val))
 | |
| #define dma_inb(addr)	   (*((volatile unsigned char *)(addr+IO_BASE)))
 | |
| 
 | |
| /*
 | |
|  * NOTES about DMA transfers:
 | |
|  *
 | |
|  *  controller 1: channels 0-3, byte operations, ports 00-1F
 | |
|  *  controller 2: channels 4-7, word operations, ports C0-DF
 | |
|  *
 | |
|  *  - ALL registers are 8 bits only, regardless of transfer size
 | |
|  *  - channel 4 is not used - cascades 1 into 2.
 | |
|  *  - channels 0-3 are byte - addresses/counts are for physical bytes
 | |
|  *  - channels 5-7 are word - addresses/counts are for physical words
 | |
|  *  - transfers must not cross physical 64K (0-3) or 128K (5-7) boundaries
 | |
|  *  - transfer count loaded to registers is 1 less than actual count
 | |
|  *  - controller 2 offsets are all even (2x offsets for controller 1)
 | |
|  *  - page registers for 5-7 don't use data bit 0, represent 128K pages
 | |
|  *  - page registers for 0-3 use bit 0, represent 64K pages
 | |
|  *
 | |
|  * DMA transfers are limited to the lower 16MB of _physical_ memory.
 | |
|  * Note that addresses loaded into registers must be _physical_ addresses,
 | |
|  * not logical addresses (which may differ if paging is active).
 | |
|  *
 | |
|  *  Address mapping for channels 0-3:
 | |
|  *
 | |
|  *   A23 ... A16 A15 ... A8  A7 ... A0    (Physical addresses)
 | |
|  *    |  ...  |   |  ... |   |  ... |
 | |
|  *    |  ...  |   |  ... |   |  ... |
 | |
|  *    |  ...  |   |  ... |   |  ... |
 | |
|  *   P7  ...  P0  A7 ... A0  A7 ... A0
 | |
|  * |    Page    | Addr MSB | Addr LSB |   (DMA registers)
 | |
|  *
 | |
|  *  Address mapping for channels 5-7:
 | |
|  *
 | |
|  *   A23 ... A17 A16 A15 ... A9 A8 A7 ... A1 A0    (Physical addresses)
 | |
|  *    |  ...  |   \   \   ... \  \  \  ... \  \
 | |
|  *    |  ...  |    \   \   ... \  \  \  ... \  (not used)
 | |
|  *    |  ...  |     \   \   ... \  \  \  ... \
 | |
|  *   P7  ...  P1 (0) A7 A6  ... A0 A7 A6 ... A0
 | |
|  * |      Page      |  Addr MSB   |  Addr LSB  |   (DMA registers)
 | |
|  *
 | |
|  * Again, channels 5-7 transfer _physical_ words (16 bits), so addresses
 | |
|  * and counts _must_ be word-aligned (the lowest address bit is _ignored_ at
 | |
|  * the hardware level, so odd-byte transfers aren't possible).
 | |
|  *
 | |
|  * Transfer count (_not # bytes_) is limited to 64K, represented as actual
 | |
|  * count - 1 : 64K => 0xFFFF, 1 => 0x0000.  Thus, count is always 1 or more,
 | |
|  * and up to 128K bytes may be transferred on channels 5-7 in one operation.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #define MAX_DMA_CHANNELS	8
 | |
| 
 | |
| /* The maximum address that we can perform a DMA transfer to on this platform */#define MAX_DMA_ADDRESS      (PAGE_OFFSET+0x1000000)
 | |
| 
 | |
| /* 8237 DMA controllers */
 | |
| #define IO_DMA1_BASE	0x10C00	/* 8 bit slave DMA, channels 0..3 */
 | |
| #define IO_DMA2_BASE	0x10D00	/* 16 bit master DMA, ch 4(=slave input)..7 */
 | |
| 
 | |
| /* DMA controller registers */
 | |
| #define DMA1_CMD_REG		(IO_DMA1_BASE+0x08) /* command register (w) */
 | |
| #define DMA1_STAT_REG		(IO_DMA1_BASE+0x08) /* status register (r) */
 | |
| #define DMA1_REQ_REG            (IO_DMA1_BASE+0x09) /* request register (w) */
 | |
| #define DMA1_MASK_REG		(IO_DMA1_BASE+0x0A) /* single-channel mask (w) */
 | |
| #define DMA1_MODE_REG		(IO_DMA1_BASE+0x0B) /* mode register (w) */
 | |
| #define DMA1_CLEAR_FF_REG	(IO_DMA1_BASE+0x0C) /* clear pointer flip-flop (w) */
 | |
| #define DMA1_TEMP_REG           (IO_DMA1_BASE+0x0D) /* Temporary Register (r) */
 | |
| #define DMA1_RESET_REG		(IO_DMA1_BASE+0x0D) /* Master Clear (w) */
 | |
| #define DMA1_CLR_MASK_REG       (IO_DMA1_BASE+0x0E) /* Clear Mask */
 | |
| #define DMA1_MASK_ALL_REG       (IO_DMA1_BASE+0x0F) /* all-channels mask (w) */
 | |
| 
 | |
| #define DMA2_CMD_REG		(IO_DMA2_BASE+0x10) /* command register (w) */
 | |
| #define DMA2_STAT_REG		(IO_DMA2_BASE+0x10) /* status register (r) */
 | |
| #define DMA2_REQ_REG            (IO_DMA2_BASE+0x12) /* request register (w) */
 | |
| #define DMA2_MASK_REG		(IO_DMA2_BASE+0x14) /* single-channel mask (w) */
 | |
| #define DMA2_MODE_REG		(IO_DMA2_BASE+0x16) /* mode register (w) */
 | |
| #define DMA2_CLEAR_FF_REG	(IO_DMA2_BASE+0x18) /* clear pointer flip-flop (w) */
 | |
| #define DMA2_TEMP_REG           (IO_DMA2_BASE+0x1A) /* Temporary Register (r) */
 | |
| #define DMA2_RESET_REG		(IO_DMA2_BASE+0x1A) /* Master Clear (w) */
 | |
| #define DMA2_CLR_MASK_REG       (IO_DMA2_BASE+0x1C) /* Clear Mask */
 | |
| #define DMA2_MASK_ALL_REG       (IO_DMA2_BASE+0x1E) /* all-channels mask (w) */
 | |
| 
 | |
| #define DMA_ADDR_0              (IO_DMA1_BASE+0x00) /* DMA address registers */
 | |
| #define DMA_ADDR_1              (IO_DMA1_BASE+0x02)
 | |
| #define DMA_ADDR_2              (IO_DMA1_BASE+0x04)
 | |
| #define DMA_ADDR_3              (IO_DMA1_BASE+0x06)
 | |
| #define DMA_ADDR_4              (IO_DMA2_BASE+0x00)
 | |
| #define DMA_ADDR_5              (IO_DMA2_BASE+0x04)
 | |
| #define DMA_ADDR_6              (IO_DMA2_BASE+0x08)
 | |
| #define DMA_ADDR_7              (IO_DMA2_BASE+0x0C)
 | |
| 
 | |
| #define DMA_CNT_0               (IO_DMA1_BASE+0x01)   /* DMA count registers */
 | |
| #define DMA_CNT_1               (IO_DMA1_BASE+0x03)
 | |
| #define DMA_CNT_2               (IO_DMA1_BASE+0x05)
 | |
| #define DMA_CNT_3               (IO_DMA1_BASE+0x07)
 | |
| #define DMA_CNT_4               (IO_DMA2_BASE+0x02)
 | |
| #define DMA_CNT_5               (IO_DMA2_BASE+0x06)
 | |
| #define DMA_CNT_6               (IO_DMA2_BASE+0x0A)
 | |
| #define DMA_CNT_7               (IO_DMA2_BASE+0x0E)
 | |
| 
 | |
| #define DMA_MODE_READ	0x44	/* I/O to memory, no autoinit, increment, single mode */
 | |
| #define DMA_MODE_WRITE	0x48	/* memory to I/O, no autoinit, increment, single mode */
 | |
| #define DMA_MODE_CASCADE 0xC0   /* pass thru DREQ->HRQ, DACK<-HLDA only */
 | |
| 
 | |
| #define DMA_AUTOINIT	0x10
 | |
| 
 | |
| #define DMA_8BIT 0
 | |
| #define DMA_16BIT 1
 | |
| #define DMA_BUSMASTER 2
 | |
| 
 | |
| extern spinlock_t  dma_spin_lock;
 | |
| 
 | |
| static __inline__ unsigned long claim_dma_lock(void)
 | |
| {
 | |
| 	unsigned long flags;
 | |
| 	spin_lock_irqsave(&dma_spin_lock, flags);
 | |
| 	return flags;
 | |
| }
 | |
| 
 | |
| static __inline__ void release_dma_lock(unsigned long flags)
 | |
| {
 | |
| 	spin_unlock_irqrestore(&dma_spin_lock, flags);
 | |
| }
 | |
| 
 | |
| /* enable/disable a specific DMA channel */
 | |
| static __inline__ void enable_dma(unsigned int dmanr)
 | |
| {
 | |
| 	if (dmanr<=3)
 | |
| 		dma_outb(dmanr,  DMA1_MASK_REG);
 | |
| 	else
 | |
| 		dma_outb(dmanr & 3,  DMA2_MASK_REG);
 | |
| }
 | |
| 
 | |
| static __inline__ void disable_dma(unsigned int dmanr)
 | |
| {
 | |
| 	if (dmanr<=3)
 | |
| 		dma_outb(dmanr | 4,  DMA1_MASK_REG);
 | |
| 	else
 | |
| 		dma_outb((dmanr & 3) | 4,  DMA2_MASK_REG);
 | |
| }
 | |
| 
 | |
| /* Clear the 'DMA Pointer Flip Flop'.
 | |
|  * Write 0 for LSB/MSB, 1 for MSB/LSB access.
 | |
|  * Use this once to initialize the FF to a known state.
 | |
|  * After that, keep track of it. :-)
 | |
|  * --- In order to do that, the DMA routines below should ---
 | |
|  * --- only be used while holding the DMA lock ! ---
 | |
|  */
 | |
| static __inline__ void clear_dma_ff(unsigned int dmanr)
 | |
| {
 | |
| 	if (dmanr<=3)
 | |
| 		dma_outb(0,  DMA1_CLEAR_FF_REG);
 | |
| 	else
 | |
| 		dma_outb(0,  DMA2_CLEAR_FF_REG);
 | |
| }
 | |
| 
 | |
| /* set mode (above) for a specific DMA channel */
 | |
| static __inline__ void set_dma_mode(unsigned int dmanr, char mode)
 | |
| {
 | |
| 	if (dmanr<=3)
 | |
| 		dma_outb(mode | dmanr,  DMA1_MODE_REG);
 | |
| 	else
 | |
| 		dma_outb(mode | (dmanr&3),  DMA2_MODE_REG);
 | |
| }
 | |
| 
 | |
| /* Set transfer address & page bits for specific DMA channel.
 | |
|  * Assumes dma flipflop is clear.
 | |
|  */
 | |
| static __inline__ void set_dma_addr(unsigned int dmanr, unsigned int a)
 | |
| {
 | |
| 	if (dmanr <= 3)  {
 | |
| 	    dma_outb( a & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 | |
|             dma_outb( (a>>8) & 0xff, ((dmanr&3)<<1) + IO_DMA1_BASE );
 | |
| 	}  else  {
 | |
| 	    dma_outb( (a>>1) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 | |
| 	    dma_outb( (a>>9) & 0xff, ((dmanr&3)<<2) + IO_DMA2_BASE );
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Set transfer size (max 64k for DMA1..3, 128k for DMA5..7) for
 | |
|  * a specific DMA channel.
 | |
|  * You must ensure the parameters are valid.
 | |
|  * NOTE: from a manual: "the number of transfers is one more
 | |
|  * than the initial word count"! This is taken into account.
 | |
|  * Assumes dma flip-flop is clear.
 | |
|  * NOTE 2: "count" represents _bytes_ and must be even for channels 5-7.
 | |
|  */
 | |
| static __inline__ void set_dma_count(unsigned int dmanr, unsigned int count)
 | |
| {
 | |
|         count--;
 | |
| 	if (dmanr <= 3)  {
 | |
| 	    dma_outb( count & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 | |
| 	    dma_outb( (count>>8) & 0xff, ((dmanr&3)<<1) + 1 + IO_DMA1_BASE );
 | |
|         } else {
 | |
| 	    dma_outb( (count>>1) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 | |
| 	    dma_outb( (count>>9) & 0xff, ((dmanr&3)<<2) + 2 + IO_DMA2_BASE );
 | |
|         }
 | |
| }
 | |
| 
 | |
| 
 | |
| /* Get DMA residue count. After a DMA transfer, this
 | |
|  * should return zero. Reading this while a DMA transfer is
 | |
|  * still in progress will return unpredictable results.
 | |
|  * If called before the channel has been used, it may return 1.
 | |
|  * Otherwise, it returns the number of _bytes_ left to transfer.
 | |
|  *
 | |
|  * Assumes DMA flip-flop is clear.
 | |
|  */
 | |
| static __inline__ int get_dma_residue(unsigned int dmanr)
 | |
| {
 | |
| 	unsigned int io_port = (dmanr<=3)? ((dmanr&3)<<1) + 1 + IO_DMA1_BASE
 | |
| 					 : ((dmanr&3)<<2) + 2 + IO_DMA2_BASE;
 | |
| 
 | |
| 	/* using short to get 16-bit wrap around */
 | |
| 	unsigned short count;
 | |
| 
 | |
| 	count = 1 + dma_inb(io_port);
 | |
| 	count += dma_inb(io_port) << 8;
 | |
| 
 | |
| 	return (dmanr<=3)? count : (count<<1);
 | |
| }
 | |
| 
 | |
| 
 | |
| /* These are in kernel/dma.c: */
 | |
| extern int request_dma(unsigned int dmanr, const char * device_id);	/* reserve a DMA channel */
 | |
| extern void free_dma(unsigned int dmanr);	/* release it again */
 | |
| 
 | |
| /* These are in arch/m68k/apollo/dma.c: */
 | |
| extern unsigned short dma_map_page(unsigned long phys_addr,int count,int type);
 | |
| extern void dma_unmap_page(unsigned short dma_addr);
 | |
| 
 | |
| #endif /* _ASM_APOLLO_DMA_H */
 |