469 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			469 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Blackfin architecture-dependent process handling
 | 
						|
 *
 | 
						|
 * Copyright 2004-2009 Analog Devices Inc.
 | 
						|
 *
 | 
						|
 * Licensed under the GPL-2 or later
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/module.h>
 | 
						|
#include <linux/smp_lock.h>
 | 
						|
#include <linux/unistd.h>
 | 
						|
#include <linux/user.h>
 | 
						|
#include <linux/uaccess.h>
 | 
						|
#include <linux/sched.h>
 | 
						|
#include <linux/tick.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/err.h>
 | 
						|
 | 
						|
#include <asm/blackfin.h>
 | 
						|
#include <asm/fixed_code.h>
 | 
						|
#include <asm/mem_map.h>
 | 
						|
 | 
						|
asmlinkage void ret_from_fork(void);
 | 
						|
 | 
						|
/* Points to the SDRAM backup memory for the stack that is currently in
 | 
						|
 * L1 scratchpad memory.
 | 
						|
 */
 | 
						|
void *current_l1_stack_save;
 | 
						|
 | 
						|
/* The number of tasks currently using a L1 stack area.  The SRAM is
 | 
						|
 * allocated/deallocated whenever this changes from/to zero.
 | 
						|
 */
 | 
						|
int nr_l1stack_tasks;
 | 
						|
 | 
						|
/* Start and length of the area in L1 scratchpad memory which we've allocated
 | 
						|
 * for process stacks.
 | 
						|
 */
 | 
						|
void *l1_stack_base;
 | 
						|
unsigned long l1_stack_len;
 | 
						|
 | 
						|
/*
 | 
						|
 * Powermanagement idle function, if any..
 | 
						|
 */
 | 
						|
void (*pm_idle)(void) = NULL;
 | 
						|
EXPORT_SYMBOL(pm_idle);
 | 
						|
 | 
						|
void (*pm_power_off)(void) = NULL;
 | 
						|
EXPORT_SYMBOL(pm_power_off);
 | 
						|
 | 
						|
/*
 | 
						|
 * The idle loop on BFIN
 | 
						|
 */
 | 
						|
#ifdef CONFIG_IDLE_L1
 | 
						|
static void default_idle(void)__attribute__((l1_text));
 | 
						|
void cpu_idle(void)__attribute__((l1_text));
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * This is our default idle handler.  We need to disable
 | 
						|
 * interrupts here to ensure we don't miss a wakeup call.
 | 
						|
 */
 | 
						|
static void default_idle(void)
 | 
						|
{
 | 
						|
#ifdef CONFIG_IPIPE
 | 
						|
	ipipe_suspend_domain();
 | 
						|
#endif
 | 
						|
	local_irq_disable_hw();
 | 
						|
	if (!need_resched())
 | 
						|
		idle_with_irq_disabled();
 | 
						|
 | 
						|
	local_irq_enable_hw();
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * The idle thread.  We try to conserve power, while trying to keep
 | 
						|
 * overall latency low.  The architecture specific idle is passed
 | 
						|
 * a value to indicate the level of "idleness" of the system.
 | 
						|
 */
 | 
						|
void cpu_idle(void)
 | 
						|
{
 | 
						|
	/* endless idle loop with no priority at all */
 | 
						|
	while (1) {
 | 
						|
		void (*idle)(void) = pm_idle;
 | 
						|
 | 
						|
#ifdef CONFIG_HOTPLUG_CPU
 | 
						|
		if (cpu_is_offline(smp_processor_id()))
 | 
						|
			cpu_die();
 | 
						|
#endif
 | 
						|
		if (!idle)
 | 
						|
			idle = default_idle;
 | 
						|
		tick_nohz_stop_sched_tick(1);
 | 
						|
		while (!need_resched())
 | 
						|
			idle();
 | 
						|
		tick_nohz_restart_sched_tick();
 | 
						|
		preempt_enable_no_resched();
 | 
						|
		schedule();
 | 
						|
		preempt_disable();
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
/* Fill in the fpu structure for a core dump.  */
 | 
						|
 | 
						|
int dump_fpu(struct pt_regs *regs, elf_fpregset_t * fpregs)
 | 
						|
{
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * This gets run with P1 containing the
 | 
						|
 * function to call, and R1 containing
 | 
						|
 * the "args".  Note P0 is clobbered on the way here.
 | 
						|
 */
 | 
						|
void kernel_thread_helper(void);
 | 
						|
__asm__(".section .text\n"
 | 
						|
	".align 4\n"
 | 
						|
	"_kernel_thread_helper:\n\t"
 | 
						|
	"\tsp += -12;\n\t"
 | 
						|
	"\tr0 = r1;\n\t" "\tcall (p1);\n\t" "\tcall _do_exit;\n" ".previous");
 | 
						|
 | 
						|
/*
 | 
						|
 * Create a kernel thread.
 | 
						|
 */
 | 
						|
pid_t kernel_thread(int (*fn) (void *), void *arg, unsigned long flags)
 | 
						|
{
 | 
						|
	struct pt_regs regs;
 | 
						|
 | 
						|
	memset(®s, 0, sizeof(regs));
 | 
						|
 | 
						|
	regs.r1 = (unsigned long)arg;
 | 
						|
	regs.p1 = (unsigned long)fn;
 | 
						|
	regs.pc = (unsigned long)kernel_thread_helper;
 | 
						|
	regs.orig_p0 = -1;
 | 
						|
	/* Set bit 2 to tell ret_from_fork we should be returning to kernel
 | 
						|
	   mode.  */
 | 
						|
	regs.ipend = 0x8002;
 | 
						|
	__asm__ __volatile__("%0 = syscfg;":"=da"(regs.syscfg):);
 | 
						|
	return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, ®s, 0, NULL,
 | 
						|
		       NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(kernel_thread);
 | 
						|
 | 
						|
/*
 | 
						|
 * Do necessary setup to start up a newly executed thread.
 | 
						|
 *
 | 
						|
 * pass the data segment into user programs if it exists,
 | 
						|
 * it can't hurt anything as far as I can tell
 | 
						|
 */
 | 
						|
void start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 | 
						|
{
 | 
						|
	set_fs(USER_DS);
 | 
						|
	regs->pc = new_ip;
 | 
						|
	if (current->mm)
 | 
						|
		regs->p5 = current->mm->start_data;
 | 
						|
#ifndef CONFIG_SMP
 | 
						|
	task_thread_info(current)->l1_task_info.stack_start =
 | 
						|
		(void *)current->mm->context.stack_start;
 | 
						|
	task_thread_info(current)->l1_task_info.lowest_sp = (void *)new_sp;
 | 
						|
	memcpy(L1_SCRATCH_TASK_INFO, &task_thread_info(current)->l1_task_info,
 | 
						|
	       sizeof(*L1_SCRATCH_TASK_INFO));
 | 
						|
#endif
 | 
						|
	wrusp(new_sp);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL_GPL(start_thread);
 | 
						|
 | 
						|
void flush_thread(void)
 | 
						|
{
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage int bfin_vfork(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, rdusp(), regs, 0, NULL,
 | 
						|
		       NULL);
 | 
						|
}
 | 
						|
 | 
						|
asmlinkage int bfin_clone(struct pt_regs *regs)
 | 
						|
{
 | 
						|
	unsigned long clone_flags;
 | 
						|
	unsigned long newsp;
 | 
						|
 | 
						|
#ifdef __ARCH_SYNC_CORE_DCACHE
 | 
						|
	if (current->rt.nr_cpus_allowed == num_possible_cpus()) {
 | 
						|
		current->cpus_allowed = cpumask_of_cpu(smp_processor_id());
 | 
						|
		current->rt.nr_cpus_allowed = 1;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* syscall2 puts clone_flags in r0 and usp in r1 */
 | 
						|
	clone_flags = regs->r0;
 | 
						|
	newsp = regs->r1;
 | 
						|
	if (!newsp)
 | 
						|
		newsp = rdusp();
 | 
						|
	else
 | 
						|
		newsp -= 12;
 | 
						|
	return do_fork(clone_flags, newsp, regs, 0, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
int
 | 
						|
copy_thread(unsigned long clone_flags,
 | 
						|
	    unsigned long usp, unsigned long topstk,
 | 
						|
	    struct task_struct *p, struct pt_regs *regs)
 | 
						|
{
 | 
						|
	struct pt_regs *childregs;
 | 
						|
 | 
						|
	childregs = (struct pt_regs *) (task_stack_page(p) + THREAD_SIZE) - 1;
 | 
						|
	*childregs = *regs;
 | 
						|
	childregs->r0 = 0;
 | 
						|
 | 
						|
	p->thread.usp = usp;
 | 
						|
	p->thread.ksp = (unsigned long)childregs;
 | 
						|
	p->thread.pc = (unsigned long)ret_from_fork;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * sys_execve() executes a new program.
 | 
						|
 */
 | 
						|
 | 
						|
asmlinkage int sys_execve(char __user *name, char __user * __user *argv, char __user * __user *envp)
 | 
						|
{
 | 
						|
	int error;
 | 
						|
	char *filename;
 | 
						|
	struct pt_regs *regs = (struct pt_regs *)((&name) + 6);
 | 
						|
 | 
						|
	lock_kernel();
 | 
						|
	filename = getname(name);
 | 
						|
	error = PTR_ERR(filename);
 | 
						|
	if (IS_ERR(filename))
 | 
						|
		goto out;
 | 
						|
	error = do_execve(filename, argv, envp, regs);
 | 
						|
	putname(filename);
 | 
						|
 out:
 | 
						|
	unlock_kernel();
 | 
						|
	return error;
 | 
						|
}
 | 
						|
 | 
						|
unsigned long get_wchan(struct task_struct *p)
 | 
						|
{
 | 
						|
	unsigned long fp, pc;
 | 
						|
	unsigned long stack_page;
 | 
						|
	int count = 0;
 | 
						|
	if (!p || p == current || p->state == TASK_RUNNING)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	stack_page = (unsigned long)p;
 | 
						|
	fp = p->thread.usp;
 | 
						|
	do {
 | 
						|
		if (fp < stack_page + sizeof(struct thread_info) ||
 | 
						|
		    fp >= 8184 + stack_page)
 | 
						|
			return 0;
 | 
						|
		pc = ((unsigned long *)fp)[1];
 | 
						|
		if (!in_sched_functions(pc))
 | 
						|
			return pc;
 | 
						|
		fp = *(unsigned long *)fp;
 | 
						|
	}
 | 
						|
	while (count++ < 16);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
void finish_atomic_sections (struct pt_regs *regs)
 | 
						|
{
 | 
						|
	int __user *up0 = (int __user *)regs->p0;
 | 
						|
 | 
						|
	switch (regs->pc) {
 | 
						|
	case ATOMIC_XCHG32 + 2:
 | 
						|
		put_user(regs->r1, up0);
 | 
						|
		regs->pc = ATOMIC_XCHG32 + 4;
 | 
						|
		break;
 | 
						|
 | 
						|
	case ATOMIC_CAS32 + 2:
 | 
						|
	case ATOMIC_CAS32 + 4:
 | 
						|
		if (regs->r0 == regs->r1)
 | 
						|
	case ATOMIC_CAS32 + 6:
 | 
						|
			put_user(regs->r2, up0);
 | 
						|
		regs->pc = ATOMIC_CAS32 + 8;
 | 
						|
		break;
 | 
						|
 | 
						|
	case ATOMIC_ADD32 + 2:
 | 
						|
		regs->r0 = regs->r1 + regs->r0;
 | 
						|
		/* fall through */
 | 
						|
	case ATOMIC_ADD32 + 4:
 | 
						|
		put_user(regs->r0, up0);
 | 
						|
		regs->pc = ATOMIC_ADD32 + 6;
 | 
						|
		break;
 | 
						|
 | 
						|
	case ATOMIC_SUB32 + 2:
 | 
						|
		regs->r0 = regs->r1 - regs->r0;
 | 
						|
		/* fall through */
 | 
						|
	case ATOMIC_SUB32 + 4:
 | 
						|
		put_user(regs->r0, up0);
 | 
						|
		regs->pc = ATOMIC_SUB32 + 6;
 | 
						|
		break;
 | 
						|
 | 
						|
	case ATOMIC_IOR32 + 2:
 | 
						|
		regs->r0 = regs->r1 | regs->r0;
 | 
						|
		/* fall through */
 | 
						|
	case ATOMIC_IOR32 + 4:
 | 
						|
		put_user(regs->r0, up0);
 | 
						|
		regs->pc = ATOMIC_IOR32 + 6;
 | 
						|
		break;
 | 
						|
 | 
						|
	case ATOMIC_AND32 + 2:
 | 
						|
		regs->r0 = regs->r1 & regs->r0;
 | 
						|
		/* fall through */
 | 
						|
	case ATOMIC_AND32 + 4:
 | 
						|
		put_user(regs->r0, up0);
 | 
						|
		regs->pc = ATOMIC_AND32 + 6;
 | 
						|
		break;
 | 
						|
 | 
						|
	case ATOMIC_XOR32 + 2:
 | 
						|
		regs->r0 = regs->r1 ^ regs->r0;
 | 
						|
		/* fall through */
 | 
						|
	case ATOMIC_XOR32 + 4:
 | 
						|
		put_user(regs->r0, up0);
 | 
						|
		regs->pc = ATOMIC_XOR32 + 6;
 | 
						|
		break;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static inline
 | 
						|
int in_mem(unsigned long addr, unsigned long size,
 | 
						|
           unsigned long start, unsigned long end)
 | 
						|
{
 | 
						|
	return addr >= start && addr + size <= end;
 | 
						|
}
 | 
						|
static inline
 | 
						|
int in_mem_const_off(unsigned long addr, unsigned long size, unsigned long off,
 | 
						|
                     unsigned long const_addr, unsigned long const_size)
 | 
						|
{
 | 
						|
	return const_size &&
 | 
						|
	       in_mem(addr, size, const_addr + off, const_addr + const_size);
 | 
						|
}
 | 
						|
static inline
 | 
						|
int in_mem_const(unsigned long addr, unsigned long size,
 | 
						|
                 unsigned long const_addr, unsigned long const_size)
 | 
						|
{
 | 
						|
	return in_mem_const_off(addr, size, 0, const_addr, const_size);
 | 
						|
}
 | 
						|
#define IN_ASYNC(bnum, bctlnum) \
 | 
						|
({ \
 | 
						|
	(bfin_read_EBIU_AMGCTL() & 0xe) < ((bnum + 1) << 1) ? -EFAULT : \
 | 
						|
	bfin_read_EBIU_AMBCTL##bctlnum() & B##bnum##RDYEN ? -EFAULT : \
 | 
						|
	BFIN_MEM_ACCESS_CORE; \
 | 
						|
})
 | 
						|
 | 
						|
int bfin_mem_access_type(unsigned long addr, unsigned long size)
 | 
						|
{
 | 
						|
	int cpu = raw_smp_processor_id();
 | 
						|
 | 
						|
	/* Check that things do not wrap around */
 | 
						|
	if (addr > ULONG_MAX - size)
 | 
						|
		return -EFAULT;
 | 
						|
 | 
						|
	if (in_mem(addr, size, FIXED_CODE_START, physical_mem_end))
 | 
						|
		return BFIN_MEM_ACCESS_CORE;
 | 
						|
 | 
						|
	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
 | 
						|
		return cpu == 0 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
 | 
						|
	if (in_mem_const(addr, size, L1_SCRATCH_START, L1_SCRATCH_LENGTH))
 | 
						|
		return cpu == 0 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
 | 
						|
	if (in_mem_const(addr, size, L1_DATA_A_START, L1_DATA_A_LENGTH))
 | 
						|
		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 | 
						|
	if (in_mem_const(addr, size, L1_DATA_B_START, L1_DATA_B_LENGTH))
 | 
						|
		return cpu == 0 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 | 
						|
#ifdef COREB_L1_CODE_START
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
 | 
						|
		return cpu == 1 ? BFIN_MEM_ACCESS_ITEST : BFIN_MEM_ACCESS_IDMA;
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
 | 
						|
		return cpu == 1 ? BFIN_MEM_ACCESS_CORE_ONLY : -EFAULT;
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
 | 
						|
		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
 | 
						|
		return cpu == 1 ? BFIN_MEM_ACCESS_CORE : BFIN_MEM_ACCESS_IDMA;
 | 
						|
#endif
 | 
						|
	if (in_mem_const(addr, size, L2_START, L2_LENGTH))
 | 
						|
		return BFIN_MEM_ACCESS_CORE;
 | 
						|
 | 
						|
	if (addr >= SYSMMR_BASE)
 | 
						|
		return BFIN_MEM_ACCESS_CORE_ONLY;
 | 
						|
 | 
						|
	/* We can't read EBIU banks that aren't enabled or we end up hanging
 | 
						|
	 * on the access to the async space.
 | 
						|
	 */
 | 
						|
	if (in_mem_const(addr, size, ASYNC_BANK0_BASE, ASYNC_BANK0_SIZE))
 | 
						|
		return IN_ASYNC(0, 0);
 | 
						|
	if (in_mem_const(addr, size, ASYNC_BANK1_BASE, ASYNC_BANK1_SIZE))
 | 
						|
		return IN_ASYNC(1, 0);
 | 
						|
	if (in_mem_const(addr, size, ASYNC_BANK2_BASE, ASYNC_BANK2_SIZE))
 | 
						|
		return IN_ASYNC(2, 1);
 | 
						|
	if (in_mem_const(addr, size, ASYNC_BANK3_BASE, ASYNC_BANK3_SIZE))
 | 
						|
		return IN_ASYNC(3, 1);
 | 
						|
 | 
						|
	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
 | 
						|
		return BFIN_MEM_ACCESS_CORE;
 | 
						|
	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
 | 
						|
		return BFIN_MEM_ACCESS_DMA;
 | 
						|
 | 
						|
	return -EFAULT;
 | 
						|
}
 | 
						|
 | 
						|
#if defined(CONFIG_ACCESS_CHECK)
 | 
						|
#ifdef CONFIG_ACCESS_OK_L1
 | 
						|
__attribute__((l1_text))
 | 
						|
#endif
 | 
						|
/* Return 1 if access to memory range is OK, 0 otherwise */
 | 
						|
int _access_ok(unsigned long addr, unsigned long size)
 | 
						|
{
 | 
						|
	if (size == 0)
 | 
						|
		return 1;
 | 
						|
	/* Check that things do not wrap around */
 | 
						|
	if (addr > ULONG_MAX - size)
 | 
						|
		return 0;
 | 
						|
	if (segment_eq(get_fs(), KERNEL_DS))
 | 
						|
		return 1;
 | 
						|
#ifdef CONFIG_MTD_UCLINUX
 | 
						|
	if (1)
 | 
						|
#else
 | 
						|
	if (0)
 | 
						|
#endif
 | 
						|
	{
 | 
						|
		if (in_mem(addr, size, memory_start, memory_end))
 | 
						|
			return 1;
 | 
						|
		if (in_mem(addr, size, memory_mtd_end, physical_mem_end))
 | 
						|
			return 1;
 | 
						|
# ifndef CONFIG_ROMFS_ON_MTD
 | 
						|
		if (0)
 | 
						|
# endif
 | 
						|
			/* For XIP, allow user space to use pointers within the ROMFS.  */
 | 
						|
			if (in_mem(addr, size, memory_mtd_start, memory_mtd_end))
 | 
						|
				return 1;
 | 
						|
	} else {
 | 
						|
		if (in_mem(addr, size, memory_start, physical_mem_end))
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	if (in_mem(addr, size, (unsigned long)__init_begin, (unsigned long)__init_end))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (in_mem_const(addr, size, L1_CODE_START, L1_CODE_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const_off(addr, size, _etext_l1 - _stext_l1, L1_CODE_START, L1_CODE_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const_off(addr, size, _ebss_l1 - _sdata_l1, L1_DATA_A_START, L1_DATA_A_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const_off(addr, size, _ebss_b_l1 - _sdata_b_l1, L1_DATA_B_START, L1_DATA_B_LENGTH))
 | 
						|
		return 1;
 | 
						|
#ifdef COREB_L1_CODE_START
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_CODE_START, COREB_L1_CODE_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_SCRATCH_START, L1_SCRATCH_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_DATA_A_START, COREB_L1_DATA_A_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const(addr, size, COREB_L1_DATA_B_START, COREB_L1_DATA_B_LENGTH))
 | 
						|
		return 1;
 | 
						|
#endif
 | 
						|
	if (in_mem_const_off(addr, size, _ebss_l2 - _stext_l2, L2_START, L2_LENGTH))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	if (in_mem_const(addr, size, BOOT_ROM_START, BOOT_ROM_LENGTH))
 | 
						|
		return 1;
 | 
						|
	if (in_mem_const(addr, size, L1_ROM_START, L1_ROM_LENGTH))
 | 
						|
		return 1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(_access_ok);
 | 
						|
#endif /* CONFIG_ACCESS_CHECK */
 |