976 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			976 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  *  linux/arch/x86_64/mm/init.c
 | |
|  *
 | |
|  *  Copyright (C) 1995  Linus Torvalds
 | |
|  *  Copyright (C) 2000  Pavel Machek <pavel@suse.cz>
 | |
|  *  Copyright (C) 2002,2003 Andi Kleen <ak@suse.de>
 | |
|  */
 | |
| 
 | |
| #include <linux/signal.h>
 | |
| #include <linux/sched.h>
 | |
| #include <linux/kernel.h>
 | |
| #include <linux/errno.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/ptrace.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/smp.h>
 | |
| #include <linux/init.h>
 | |
| #include <linux/initrd.h>
 | |
| #include <linux/pagemap.h>
 | |
| #include <linux/bootmem.h>
 | |
| #include <linux/proc_fs.h>
 | |
| #include <linux/pci.h>
 | |
| #include <linux/pfn.h>
 | |
| #include <linux/poison.h>
 | |
| #include <linux/dma-mapping.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/memory_hotplug.h>
 | |
| #include <linux/nmi.h>
 | |
| 
 | |
| #include <asm/processor.h>
 | |
| #include <asm/bios_ebda.h>
 | |
| #include <asm/system.h>
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/pgtable.h>
 | |
| #include <asm/pgalloc.h>
 | |
| #include <asm/dma.h>
 | |
| #include <asm/fixmap.h>
 | |
| #include <asm/e820.h>
 | |
| #include <asm/apic.h>
 | |
| #include <asm/tlb.h>
 | |
| #include <asm/mmu_context.h>
 | |
| #include <asm/proto.h>
 | |
| #include <asm/smp.h>
 | |
| #include <asm/sections.h>
 | |
| #include <asm/kdebug.h>
 | |
| #include <asm/numa.h>
 | |
| #include <asm/cacheflush.h>
 | |
| #include <asm/init.h>
 | |
| 
 | |
| static unsigned long dma_reserve __initdata;
 | |
| 
 | |
| static int __init parse_direct_gbpages_off(char *arg)
 | |
| {
 | |
| 	direct_gbpages = 0;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("nogbpages", parse_direct_gbpages_off);
 | |
| 
 | |
| static int __init parse_direct_gbpages_on(char *arg)
 | |
| {
 | |
| 	direct_gbpages = 1;
 | |
| 	return 0;
 | |
| }
 | |
| early_param("gbpages", parse_direct_gbpages_on);
 | |
| 
 | |
| /*
 | |
|  * NOTE: pagetable_init alloc all the fixmap pagetables contiguous on the
 | |
|  * physical space so we can cache the place of the first one and move
 | |
|  * around without checking the pgd every time.
 | |
|  */
 | |
| 
 | |
| pteval_t __supported_pte_mask __read_mostly = ~_PAGE_IOMAP;
 | |
| EXPORT_SYMBOL_GPL(__supported_pte_mask);
 | |
| 
 | |
| int force_personality32;
 | |
| 
 | |
| /*
 | |
|  * noexec32=on|off
 | |
|  * Control non executable heap for 32bit processes.
 | |
|  * To control the stack too use noexec=off
 | |
|  *
 | |
|  * on	PROT_READ does not imply PROT_EXEC for 32-bit processes (default)
 | |
|  * off	PROT_READ implies PROT_EXEC
 | |
|  */
 | |
| static int __init nonx32_setup(char *str)
 | |
| {
 | |
| 	if (!strcmp(str, "on"))
 | |
| 		force_personality32 &= ~READ_IMPLIES_EXEC;
 | |
| 	else if (!strcmp(str, "off"))
 | |
| 		force_personality32 |= READ_IMPLIES_EXEC;
 | |
| 	return 1;
 | |
| }
 | |
| __setup("noexec32=", nonx32_setup);
 | |
| 
 | |
| /*
 | |
|  * NOTE: This function is marked __ref because it calls __init function
 | |
|  * (alloc_bootmem_pages). It's safe to do it ONLY when after_bootmem == 0.
 | |
|  */
 | |
| static __ref void *spp_getpage(void)
 | |
| {
 | |
| 	void *ptr;
 | |
| 
 | |
| 	if (after_bootmem)
 | |
| 		ptr = (void *) get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
 | |
| 	else
 | |
| 		ptr = alloc_bootmem_pages(PAGE_SIZE);
 | |
| 
 | |
| 	if (!ptr || ((unsigned long)ptr & ~PAGE_MASK)) {
 | |
| 		panic("set_pte_phys: cannot allocate page data %s\n",
 | |
| 			after_bootmem ? "after bootmem" : "");
 | |
| 	}
 | |
| 
 | |
| 	pr_debug("spp_getpage %p\n", ptr);
 | |
| 
 | |
| 	return ptr;
 | |
| }
 | |
| 
 | |
| static pud_t *fill_pud(pgd_t *pgd, unsigned long vaddr)
 | |
| {
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		pud_t *pud = (pud_t *)spp_getpage();
 | |
| 		pgd_populate(&init_mm, pgd, pud);
 | |
| 		if (pud != pud_offset(pgd, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #00! %p <-> %p\n",
 | |
| 			       pud, pud_offset(pgd, 0));
 | |
| 	}
 | |
| 	return pud_offset(pgd, vaddr);
 | |
| }
 | |
| 
 | |
| static pmd_t *fill_pmd(pud_t *pud, unsigned long vaddr)
 | |
| {
 | |
| 	if (pud_none(*pud)) {
 | |
| 		pmd_t *pmd = (pmd_t *) spp_getpage();
 | |
| 		pud_populate(&init_mm, pud, pmd);
 | |
| 		if (pmd != pmd_offset(pud, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #01! %p <-> %p\n",
 | |
| 			       pmd, pmd_offset(pud, 0));
 | |
| 	}
 | |
| 	return pmd_offset(pud, vaddr);
 | |
| }
 | |
| 
 | |
| static pte_t *fill_pte(pmd_t *pmd, unsigned long vaddr)
 | |
| {
 | |
| 	if (pmd_none(*pmd)) {
 | |
| 		pte_t *pte = (pte_t *) spp_getpage();
 | |
| 		pmd_populate_kernel(&init_mm, pmd, pte);
 | |
| 		if (pte != pte_offset_kernel(pmd, 0))
 | |
| 			printk(KERN_ERR "PAGETABLE BUG #02!\n");
 | |
| 	}
 | |
| 	return pte_offset_kernel(pmd, vaddr);
 | |
| }
 | |
| 
 | |
| void set_pte_vaddr_pud(pud_t *pud_page, unsigned long vaddr, pte_t new_pte)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	pud = pud_page + pud_index(vaddr);
 | |
| 	pmd = fill_pmd(pud, vaddr);
 | |
| 	pte = fill_pte(pmd, vaddr);
 | |
| 
 | |
| 	set_pte(pte, new_pte);
 | |
| 
 | |
| 	/*
 | |
| 	 * It's enough to flush this one mapping.
 | |
| 	 * (PGE mappings get flushed as well)
 | |
| 	 */
 | |
| 	__flush_tlb_one(vaddr);
 | |
| }
 | |
| 
 | |
| void set_pte_vaddr(unsigned long vaddr, pte_t pteval)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud_page;
 | |
| 
 | |
| 	pr_debug("set_pte_vaddr %lx to %lx\n", vaddr, native_pte_val(pteval));
 | |
| 
 | |
| 	pgd = pgd_offset_k(vaddr);
 | |
| 	if (pgd_none(*pgd)) {
 | |
| 		printk(KERN_ERR
 | |
| 			"PGD FIXMAP MISSING, it should be setup in head.S!\n");
 | |
| 		return;
 | |
| 	}
 | |
| 	pud_page = (pud_t*)pgd_page_vaddr(*pgd);
 | |
| 	set_pte_vaddr_pud(pud_page, vaddr, pteval);
 | |
| }
 | |
| 
 | |
| pmd_t * __init populate_extra_pmd(unsigned long vaddr)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 
 | |
| 	pgd = pgd_offset_k(vaddr);
 | |
| 	pud = fill_pud(pgd, vaddr);
 | |
| 	return fill_pmd(pud, vaddr);
 | |
| }
 | |
| 
 | |
| pte_t * __init populate_extra_pte(unsigned long vaddr)
 | |
| {
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	pmd = populate_extra_pmd(vaddr);
 | |
| 	return fill_pte(pmd, vaddr);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Create large page table mappings for a range of physical addresses.
 | |
|  */
 | |
| static void __init __init_extra_mapping(unsigned long phys, unsigned long size,
 | |
| 						pgprot_t prot)
 | |
| {
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	BUG_ON((phys & ~PMD_MASK) || (size & ~PMD_MASK));
 | |
| 	for (; size; phys += PMD_SIZE, size -= PMD_SIZE) {
 | |
| 		pgd = pgd_offset_k((unsigned long)__va(phys));
 | |
| 		if (pgd_none(*pgd)) {
 | |
| 			pud = (pud_t *) spp_getpage();
 | |
| 			set_pgd(pgd, __pgd(__pa(pud) | _KERNPG_TABLE |
 | |
| 						_PAGE_USER));
 | |
| 		}
 | |
| 		pud = pud_offset(pgd, (unsigned long)__va(phys));
 | |
| 		if (pud_none(*pud)) {
 | |
| 			pmd = (pmd_t *) spp_getpage();
 | |
| 			set_pud(pud, __pud(__pa(pmd) | _KERNPG_TABLE |
 | |
| 						_PAGE_USER));
 | |
| 		}
 | |
| 		pmd = pmd_offset(pud, phys);
 | |
| 		BUG_ON(!pmd_none(*pmd));
 | |
| 		set_pmd(pmd, __pmd(phys | pgprot_val(prot)));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void __init init_extra_mapping_wb(unsigned long phys, unsigned long size)
 | |
| {
 | |
| 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE);
 | |
| }
 | |
| 
 | |
| void __init init_extra_mapping_uc(unsigned long phys, unsigned long size)
 | |
| {
 | |
| 	__init_extra_mapping(phys, size, PAGE_KERNEL_LARGE_NOCACHE);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The head.S code sets up the kernel high mapping:
 | |
|  *
 | |
|  *   from __START_KERNEL_map to __START_KERNEL_map + size (== _end-_text)
 | |
|  *
 | |
|  * phys_addr holds the negative offset to the kernel, which is added
 | |
|  * to the compile time generated pmds. This results in invalid pmds up
 | |
|  * to the point where we hit the physaddr 0 mapping.
 | |
|  *
 | |
|  * We limit the mappings to the region from _text to _end.  _end is
 | |
|  * rounded up to the 2MB boundary. This catches the invalid pmds as
 | |
|  * well, as they are located before _text:
 | |
|  */
 | |
| void __init cleanup_highmap(void)
 | |
| {
 | |
| 	unsigned long vaddr = __START_KERNEL_map;
 | |
| 	unsigned long end = roundup((unsigned long)_end, PMD_SIZE) - 1;
 | |
| 	pmd_t *pmd = level2_kernel_pgt;
 | |
| 	pmd_t *last_pmd = pmd + PTRS_PER_PMD;
 | |
| 
 | |
| 	for (; pmd < last_pmd; pmd++, vaddr += PMD_SIZE) {
 | |
| 		if (pmd_none(*pmd))
 | |
| 			continue;
 | |
| 		if (vaddr < (unsigned long) _text || vaddr > end)
 | |
| 			set_pmd(pmd, __pmd(0));
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static __ref void *alloc_low_page(unsigned long *phys)
 | |
| {
 | |
| 	unsigned long pfn = e820_table_end++;
 | |
| 	void *adr;
 | |
| 
 | |
| 	if (after_bootmem) {
 | |
| 		adr = (void *)get_zeroed_page(GFP_ATOMIC | __GFP_NOTRACK);
 | |
| 		*phys = __pa(adr);
 | |
| 
 | |
| 		return adr;
 | |
| 	}
 | |
| 
 | |
| 	if (pfn >= e820_table_top)
 | |
| 		panic("alloc_low_page: ran out of memory");
 | |
| 
 | |
| 	adr = early_memremap(pfn * PAGE_SIZE, PAGE_SIZE);
 | |
| 	memset(adr, 0, PAGE_SIZE);
 | |
| 	*phys  = pfn * PAGE_SIZE;
 | |
| 	return adr;
 | |
| }
 | |
| 
 | |
| static __ref void unmap_low_page(void *adr)
 | |
| {
 | |
| 	if (after_bootmem)
 | |
| 		return;
 | |
| 
 | |
| 	early_iounmap(adr, PAGE_SIZE);
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_pte_init(pte_t *pte_page, unsigned long addr, unsigned long end,
 | |
| 	      pgprot_t prot)
 | |
| {
 | |
| 	unsigned pages = 0;
 | |
| 	unsigned long last_map_addr = end;
 | |
| 	int i;
 | |
| 
 | |
| 	pte_t *pte = pte_page + pte_index(addr);
 | |
| 
 | |
| 	for(i = pte_index(addr); i < PTRS_PER_PTE; i++, addr += PAGE_SIZE, pte++) {
 | |
| 
 | |
| 		if (addr >= end) {
 | |
| 			if (!after_bootmem) {
 | |
| 				for(; i < PTRS_PER_PTE; i++, pte++)
 | |
| 					set_pte(pte, __pte(0));
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/*
 | |
| 		 * We will re-use the existing mapping.
 | |
| 		 * Xen for example has some special requirements, like mapping
 | |
| 		 * pagetable pages as RO. So assume someone who pre-setup
 | |
| 		 * these mappings are more intelligent.
 | |
| 		 */
 | |
| 		if (pte_val(*pte)) {
 | |
| 			pages++;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (0)
 | |
| 			printk("   pte=%p addr=%lx pte=%016lx\n",
 | |
| 			       pte, addr, pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL).pte);
 | |
| 		pages++;
 | |
| 		set_pte(pte, pfn_pte(addr >> PAGE_SHIFT, prot));
 | |
| 		last_map_addr = (addr & PAGE_MASK) + PAGE_SIZE;
 | |
| 	}
 | |
| 
 | |
| 	update_page_count(PG_LEVEL_4K, pages);
 | |
| 
 | |
| 	return last_map_addr;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_pte_update(pmd_t *pmd, unsigned long address, unsigned long end,
 | |
| 		pgprot_t prot)
 | |
| {
 | |
| 	pte_t *pte = (pte_t *)pmd_page_vaddr(*pmd);
 | |
| 
 | |
| 	return phys_pte_init(pte, address, end, prot);
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_pmd_init(pmd_t *pmd_page, unsigned long address, unsigned long end,
 | |
| 	      unsigned long page_size_mask, pgprot_t prot)
 | |
| {
 | |
| 	unsigned long pages = 0;
 | |
| 	unsigned long last_map_addr = end;
 | |
| 
 | |
| 	int i = pmd_index(address);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PMD; i++, address += PMD_SIZE) {
 | |
| 		unsigned long pte_phys;
 | |
| 		pmd_t *pmd = pmd_page + pmd_index(address);
 | |
| 		pte_t *pte;
 | |
| 		pgprot_t new_prot = prot;
 | |
| 
 | |
| 		if (address >= end) {
 | |
| 			if (!after_bootmem) {
 | |
| 				for (; i < PTRS_PER_PMD; i++, pmd++)
 | |
| 					set_pmd(pmd, __pmd(0));
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (pmd_val(*pmd)) {
 | |
| 			if (!pmd_large(*pmd)) {
 | |
| 				spin_lock(&init_mm.page_table_lock);
 | |
| 				last_map_addr = phys_pte_update(pmd, address,
 | |
| 								end, prot);
 | |
| 				spin_unlock(&init_mm.page_table_lock);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If we are ok with PG_LEVEL_2M mapping, then we will
 | |
| 			 * use the existing mapping,
 | |
| 			 *
 | |
| 			 * Otherwise, we will split the large page mapping but
 | |
| 			 * use the same existing protection bits except for
 | |
| 			 * large page, so that we don't violate Intel's TLB
 | |
| 			 * Application note (317080) which says, while changing
 | |
| 			 * the page sizes, new and old translations should
 | |
| 			 * not differ with respect to page frame and
 | |
| 			 * attributes.
 | |
| 			 */
 | |
| 			if (page_size_mask & (1 << PG_LEVEL_2M)) {
 | |
| 				pages++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			new_prot = pte_pgprot(pte_clrhuge(*(pte_t *)pmd));
 | |
| 		}
 | |
| 
 | |
| 		if (page_size_mask & (1<<PG_LEVEL_2M)) {
 | |
| 			pages++;
 | |
| 			spin_lock(&init_mm.page_table_lock);
 | |
| 			set_pte((pte_t *)pmd,
 | |
| 				pfn_pte(address >> PAGE_SHIFT,
 | |
| 					__pgprot(pgprot_val(prot) | _PAGE_PSE)));
 | |
| 			spin_unlock(&init_mm.page_table_lock);
 | |
| 			last_map_addr = (address & PMD_MASK) + PMD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pte = alloc_low_page(&pte_phys);
 | |
| 		last_map_addr = phys_pte_init(pte, address, end, new_prot);
 | |
| 		unmap_low_page(pte);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		pmd_populate_kernel(&init_mm, pmd, __va(pte_phys));
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 	}
 | |
| 	update_page_count(PG_LEVEL_2M, pages);
 | |
| 	return last_map_addr;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_pmd_update(pud_t *pud, unsigned long address, unsigned long end,
 | |
| 		unsigned long page_size_mask, pgprot_t prot)
 | |
| {
 | |
| 	pmd_t *pmd = pmd_offset(pud, 0);
 | |
| 	unsigned long last_map_addr;
 | |
| 
 | |
| 	last_map_addr = phys_pmd_init(pmd, address, end, page_size_mask, prot);
 | |
| 	__flush_tlb_all();
 | |
| 	return last_map_addr;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_pud_init(pud_t *pud_page, unsigned long addr, unsigned long end,
 | |
| 			 unsigned long page_size_mask)
 | |
| {
 | |
| 	unsigned long pages = 0;
 | |
| 	unsigned long last_map_addr = end;
 | |
| 	int i = pud_index(addr);
 | |
| 
 | |
| 	for (; i < PTRS_PER_PUD; i++, addr = (addr & PUD_MASK) + PUD_SIZE) {
 | |
| 		unsigned long pmd_phys;
 | |
| 		pud_t *pud = pud_page + pud_index(addr);
 | |
| 		pmd_t *pmd;
 | |
| 		pgprot_t prot = PAGE_KERNEL;
 | |
| 
 | |
| 		if (addr >= end)
 | |
| 			break;
 | |
| 
 | |
| 		if (!after_bootmem &&
 | |
| 				!e820_any_mapped(addr, addr+PUD_SIZE, 0)) {
 | |
| 			set_pud(pud, __pud(0));
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (pud_val(*pud)) {
 | |
| 			if (!pud_large(*pud)) {
 | |
| 				last_map_addr = phys_pmd_update(pud, addr, end,
 | |
| 							 page_size_mask, prot);
 | |
| 				continue;
 | |
| 			}
 | |
| 			/*
 | |
| 			 * If we are ok with PG_LEVEL_1G mapping, then we will
 | |
| 			 * use the existing mapping.
 | |
| 			 *
 | |
| 			 * Otherwise, we will split the gbpage mapping but use
 | |
| 			 * the same existing protection  bits except for large
 | |
| 			 * page, so that we don't violate Intel's TLB
 | |
| 			 * Application note (317080) which says, while changing
 | |
| 			 * the page sizes, new and old translations should
 | |
| 			 * not differ with respect to page frame and
 | |
| 			 * attributes.
 | |
| 			 */
 | |
| 			if (page_size_mask & (1 << PG_LEVEL_1G)) {
 | |
| 				pages++;
 | |
| 				continue;
 | |
| 			}
 | |
| 			prot = pte_pgprot(pte_clrhuge(*(pte_t *)pud));
 | |
| 		}
 | |
| 
 | |
| 		if (page_size_mask & (1<<PG_LEVEL_1G)) {
 | |
| 			pages++;
 | |
| 			spin_lock(&init_mm.page_table_lock);
 | |
| 			set_pte((pte_t *)pud,
 | |
| 				pfn_pte(addr >> PAGE_SHIFT, PAGE_KERNEL_LARGE));
 | |
| 			spin_unlock(&init_mm.page_table_lock);
 | |
| 			last_map_addr = (addr & PUD_MASK) + PUD_SIZE;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pmd = alloc_low_page(&pmd_phys);
 | |
| 		last_map_addr = phys_pmd_init(pmd, addr, end, page_size_mask,
 | |
| 					      prot);
 | |
| 		unmap_low_page(pmd);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		pud_populate(&init_mm, pud, __va(pmd_phys));
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 	}
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	update_page_count(PG_LEVEL_1G, pages);
 | |
| 
 | |
| 	return last_map_addr;
 | |
| }
 | |
| 
 | |
| static unsigned long __meminit
 | |
| phys_pud_update(pgd_t *pgd, unsigned long addr, unsigned long end,
 | |
| 		 unsigned long page_size_mask)
 | |
| {
 | |
| 	pud_t *pud;
 | |
| 
 | |
| 	pud = (pud_t *)pgd_page_vaddr(*pgd);
 | |
| 
 | |
| 	return phys_pud_init(pud, addr, end, page_size_mask);
 | |
| }
 | |
| 
 | |
| unsigned long __meminit
 | |
| kernel_physical_mapping_init(unsigned long start,
 | |
| 			     unsigned long end,
 | |
| 			     unsigned long page_size_mask)
 | |
| {
 | |
| 
 | |
| 	unsigned long next, last_map_addr = end;
 | |
| 
 | |
| 	start = (unsigned long)__va(start);
 | |
| 	end = (unsigned long)__va(end);
 | |
| 
 | |
| 	for (; start < end; start = next) {
 | |
| 		pgd_t *pgd = pgd_offset_k(start);
 | |
| 		unsigned long pud_phys;
 | |
| 		pud_t *pud;
 | |
| 
 | |
| 		next = (start + PGDIR_SIZE) & PGDIR_MASK;
 | |
| 		if (next > end)
 | |
| 			next = end;
 | |
| 
 | |
| 		if (pgd_val(*pgd)) {
 | |
| 			last_map_addr = phys_pud_update(pgd, __pa(start),
 | |
| 						 __pa(end), page_size_mask);
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		pud = alloc_low_page(&pud_phys);
 | |
| 		last_map_addr = phys_pud_init(pud, __pa(start), __pa(next),
 | |
| 						 page_size_mask);
 | |
| 		unmap_low_page(pud);
 | |
| 
 | |
| 		spin_lock(&init_mm.page_table_lock);
 | |
| 		pgd_populate(&init_mm, pgd, __va(pud_phys));
 | |
| 		spin_unlock(&init_mm.page_table_lock);
 | |
| 	}
 | |
| 	__flush_tlb_all();
 | |
| 
 | |
| 	return last_map_addr;
 | |
| }
 | |
| 
 | |
| #ifndef CONFIG_NUMA
 | |
| void __init initmem_init(unsigned long start_pfn, unsigned long end_pfn)
 | |
| {
 | |
| 	unsigned long bootmap_size, bootmap;
 | |
| 
 | |
| 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT;
 | |
| 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size,
 | |
| 				 PAGE_SIZE);
 | |
| 	if (bootmap == -1L)
 | |
| 		panic("Cannot find bootmem map of size %ld\n", bootmap_size);
 | |
| 	/* don't touch min_low_pfn */
 | |
| 	bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap >> PAGE_SHIFT,
 | |
| 					 0, end_pfn);
 | |
| 	e820_register_active_regions(0, start_pfn, end_pfn);
 | |
| 	free_bootmem_with_active_regions(0, end_pfn);
 | |
| 	early_res_to_bootmem(0, end_pfn<<PAGE_SHIFT);
 | |
| 	reserve_bootmem(bootmap, bootmap_size, BOOTMEM_DEFAULT);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| void __init paging_init(void)
 | |
| {
 | |
| 	unsigned long max_zone_pfns[MAX_NR_ZONES];
 | |
| 
 | |
| 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
 | |
| 	max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
 | |
| 	max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
 | |
| 	max_zone_pfns[ZONE_NORMAL] = max_pfn;
 | |
| 
 | |
| 	sparse_memory_present_with_active_regions(MAX_NUMNODES);
 | |
| 	sparse_init();
 | |
| 
 | |
| 	/*
 | |
| 	 * clear the default setting with node 0
 | |
| 	 * note: don't use nodes_clear here, that is really clearing when
 | |
| 	 *	 numa support is not compiled in, and later node_set_state
 | |
| 	 *	 will not set it back.
 | |
| 	 */
 | |
| 	node_clear_state(0, N_NORMAL_MEMORY);
 | |
| 
 | |
| 	free_area_init_nodes(max_zone_pfns);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Memory hotplug specific functions
 | |
|  */
 | |
| #ifdef CONFIG_MEMORY_HOTPLUG
 | |
| /*
 | |
|  * Memory is added always to NORMAL zone. This means you will never get
 | |
|  * additional DMA/DMA32 memory.
 | |
|  */
 | |
| int arch_add_memory(int nid, u64 start, u64 size)
 | |
| {
 | |
| 	struct pglist_data *pgdat = NODE_DATA(nid);
 | |
| 	struct zone *zone = pgdat->node_zones + ZONE_NORMAL;
 | |
| 	unsigned long last_mapped_pfn, start_pfn = start >> PAGE_SHIFT;
 | |
| 	unsigned long nr_pages = size >> PAGE_SHIFT;
 | |
| 	int ret;
 | |
| 
 | |
| 	last_mapped_pfn = init_memory_mapping(start, start + size);
 | |
| 	if (last_mapped_pfn > max_pfn_mapped)
 | |
| 		max_pfn_mapped = last_mapped_pfn;
 | |
| 
 | |
| 	ret = __add_pages(nid, zone, start_pfn, nr_pages);
 | |
| 	WARN_ON_ONCE(ret);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(arch_add_memory);
 | |
| 
 | |
| #if !defined(CONFIG_ACPI_NUMA) && defined(CONFIG_NUMA)
 | |
| int memory_add_physaddr_to_nid(u64 start)
 | |
| {
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
 | |
| #endif
 | |
| 
 | |
| #endif /* CONFIG_MEMORY_HOTPLUG */
 | |
| 
 | |
| static struct kcore_list kcore_vsyscall;
 | |
| 
 | |
| void __init mem_init(void)
 | |
| {
 | |
| 	long codesize, reservedpages, datasize, initsize;
 | |
| 	unsigned long absent_pages;
 | |
| 
 | |
| 	pci_iommu_alloc();
 | |
| 
 | |
| 	/* clear_bss() already clear the empty_zero_page */
 | |
| 
 | |
| 	reservedpages = 0;
 | |
| 
 | |
| 	/* this will put all low memory onto the freelists */
 | |
| #ifdef CONFIG_NUMA
 | |
| 	totalram_pages = numa_free_all_bootmem();
 | |
| #else
 | |
| 	totalram_pages = free_all_bootmem();
 | |
| #endif
 | |
| 
 | |
| 	absent_pages = absent_pages_in_range(0, max_pfn);
 | |
| 	reservedpages = max_pfn - totalram_pages - absent_pages;
 | |
| 	after_bootmem = 1;
 | |
| 
 | |
| 	codesize =  (unsigned long) &_etext - (unsigned long) &_text;
 | |
| 	datasize =  (unsigned long) &_edata - (unsigned long) &_etext;
 | |
| 	initsize =  (unsigned long) &__init_end - (unsigned long) &__init_begin;
 | |
| 
 | |
| 	/* Register memory areas for /proc/kcore */
 | |
| 	kclist_add(&kcore_vsyscall, (void *)VSYSCALL_START,
 | |
| 			 VSYSCALL_END - VSYSCALL_START, KCORE_OTHER);
 | |
| 
 | |
| 	printk(KERN_INFO "Memory: %luk/%luk available (%ldk kernel code, "
 | |
| 			 "%ldk absent, %ldk reserved, %ldk data, %ldk init)\n",
 | |
| 		nr_free_pages() << (PAGE_SHIFT-10),
 | |
| 		max_pfn << (PAGE_SHIFT-10),
 | |
| 		codesize >> 10,
 | |
| 		absent_pages << (PAGE_SHIFT-10),
 | |
| 		reservedpages << (PAGE_SHIFT-10),
 | |
| 		datasize >> 10,
 | |
| 		initsize >> 10);
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_DEBUG_RODATA
 | |
| const int rodata_test_data = 0xC3;
 | |
| EXPORT_SYMBOL_GPL(rodata_test_data);
 | |
| 
 | |
| static int kernel_set_to_readonly;
 | |
| 
 | |
| void set_kernel_text_rw(void)
 | |
| {
 | |
| 	unsigned long start = PFN_ALIGN(_stext);
 | |
| 	unsigned long end = PFN_ALIGN(__start_rodata);
 | |
| 
 | |
| 	if (!kernel_set_to_readonly)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("Set kernel text: %lx - %lx for read write\n",
 | |
| 		 start, end);
 | |
| 
 | |
| 	set_memory_rw(start, (end - start) >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| void set_kernel_text_ro(void)
 | |
| {
 | |
| 	unsigned long start = PFN_ALIGN(_stext);
 | |
| 	unsigned long end = PFN_ALIGN(__start_rodata);
 | |
| 
 | |
| 	if (!kernel_set_to_readonly)
 | |
| 		return;
 | |
| 
 | |
| 	pr_debug("Set kernel text: %lx - %lx for read only\n",
 | |
| 		 start, end);
 | |
| 
 | |
| 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| void mark_rodata_ro(void)
 | |
| {
 | |
| 	unsigned long start = PFN_ALIGN(_stext), end = PFN_ALIGN(__end_rodata);
 | |
| 	unsigned long rodata_start =
 | |
| 		((unsigned long)__start_rodata + PAGE_SIZE - 1) & PAGE_MASK;
 | |
| 
 | |
| 	printk(KERN_INFO "Write protecting the kernel read-only data: %luk\n",
 | |
| 	       (end - start) >> 10);
 | |
| 	set_memory_ro(start, (end - start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	kernel_set_to_readonly = 1;
 | |
| 
 | |
| 	/*
 | |
| 	 * The rodata section (but not the kernel text!) should also be
 | |
| 	 * not-executable.
 | |
| 	 */
 | |
| 	set_memory_nx(rodata_start, (end - rodata_start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	rodata_test();
 | |
| 
 | |
| #ifdef CONFIG_CPA_DEBUG
 | |
| 	printk(KERN_INFO "Testing CPA: undo %lx-%lx\n", start, end);
 | |
| 	set_memory_rw(start, (end-start) >> PAGE_SHIFT);
 | |
| 
 | |
| 	printk(KERN_INFO "Testing CPA: again\n");
 | |
| 	set_memory_ro(start, (end-start) >> PAGE_SHIFT);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif
 | |
| 
 | |
| int __init reserve_bootmem_generic(unsigned long phys, unsigned long len,
 | |
| 				   int flags)
 | |
| {
 | |
| #ifdef CONFIG_NUMA
 | |
| 	int nid, next_nid;
 | |
| 	int ret;
 | |
| #endif
 | |
| 	unsigned long pfn = phys >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (pfn >= max_pfn) {
 | |
| 		/*
 | |
| 		 * This can happen with kdump kernels when accessing
 | |
| 		 * firmware tables:
 | |
| 		 */
 | |
| 		if (pfn < max_pfn_mapped)
 | |
| 			return -EFAULT;
 | |
| 
 | |
| 		printk(KERN_ERR "reserve_bootmem: illegal reserve %lx %lu\n",
 | |
| 				phys, len);
 | |
| 		return -EFAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* Should check here against the e820 map to avoid double free */
 | |
| #ifdef CONFIG_NUMA
 | |
| 	nid = phys_to_nid(phys);
 | |
| 	next_nid = phys_to_nid(phys + len - 1);
 | |
| 	if (nid == next_nid)
 | |
| 		ret = reserve_bootmem_node(NODE_DATA(nid), phys, len, flags);
 | |
| 	else
 | |
| 		ret = reserve_bootmem(phys, len, flags);
 | |
| 
 | |
| 	if (ret != 0)
 | |
| 		return ret;
 | |
| 
 | |
| #else
 | |
| 	reserve_bootmem(phys, len, flags);
 | |
| #endif
 | |
| 
 | |
| 	if (phys+len <= MAX_DMA_PFN*PAGE_SIZE) {
 | |
| 		dma_reserve += len / PAGE_SIZE;
 | |
| 		set_dma_reserve(dma_reserve);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kern_addr_valid(unsigned long addr)
 | |
| {
 | |
| 	unsigned long above = ((long)addr) >> __VIRTUAL_MASK_SHIFT;
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 	pte_t *pte;
 | |
| 
 | |
| 	if (above != 0 && above != -1UL)
 | |
| 		return 0;
 | |
| 
 | |
| 	pgd = pgd_offset_k(addr);
 | |
| 	if (pgd_none(*pgd))
 | |
| 		return 0;
 | |
| 
 | |
| 	pud = pud_offset(pgd, addr);
 | |
| 	if (pud_none(*pud))
 | |
| 		return 0;
 | |
| 
 | |
| 	pmd = pmd_offset(pud, addr);
 | |
| 	if (pmd_none(*pmd))
 | |
| 		return 0;
 | |
| 
 | |
| 	if (pmd_large(*pmd))
 | |
| 		return pfn_valid(pmd_pfn(*pmd));
 | |
| 
 | |
| 	pte = pte_offset_kernel(pmd, addr);
 | |
| 	if (pte_none(*pte))
 | |
| 		return 0;
 | |
| 
 | |
| 	return pfn_valid(pte_pfn(*pte));
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * A pseudo VMA to allow ptrace access for the vsyscall page.  This only
 | |
|  * covers the 64bit vsyscall page now. 32bit has a real VMA now and does
 | |
|  * not need special handling anymore:
 | |
|  */
 | |
| static struct vm_area_struct gate_vma = {
 | |
| 	.vm_start	= VSYSCALL_START,
 | |
| 	.vm_end		= VSYSCALL_START + (VSYSCALL_MAPPED_PAGES * PAGE_SIZE),
 | |
| 	.vm_page_prot	= PAGE_READONLY_EXEC,
 | |
| 	.vm_flags	= VM_READ | VM_EXEC
 | |
| };
 | |
| 
 | |
| struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
 | |
| {
 | |
| #ifdef CONFIG_IA32_EMULATION
 | |
| 	if (test_tsk_thread_flag(tsk, TIF_IA32))
 | |
| 		return NULL;
 | |
| #endif
 | |
| 	return &gate_vma;
 | |
| }
 | |
| 
 | |
| int in_gate_area(struct task_struct *task, unsigned long addr)
 | |
| {
 | |
| 	struct vm_area_struct *vma = get_gate_vma(task);
 | |
| 
 | |
| 	if (!vma)
 | |
| 		return 0;
 | |
| 
 | |
| 	return (addr >= vma->vm_start) && (addr < vma->vm_end);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Use this when you have no reliable task/vma, typically from interrupt
 | |
|  * context. It is less reliable than using the task's vma and may give
 | |
|  * false positives:
 | |
|  */
 | |
| int in_gate_area_no_task(unsigned long addr)
 | |
| {
 | |
| 	return (addr >= VSYSCALL_START) && (addr < VSYSCALL_END);
 | |
| }
 | |
| 
 | |
| const char *arch_vma_name(struct vm_area_struct *vma)
 | |
| {
 | |
| 	if (vma->vm_mm && vma->vm_start == (long)vma->vm_mm->context.vdso)
 | |
| 		return "[vdso]";
 | |
| 	if (vma == &gate_vma)
 | |
| 		return "[vsyscall]";
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifdef CONFIG_SPARSEMEM_VMEMMAP
 | |
| /*
 | |
|  * Initialise the sparsemem vmemmap using huge-pages at the PMD level.
 | |
|  */
 | |
| static long __meminitdata addr_start, addr_end;
 | |
| static void __meminitdata *p_start, *p_end;
 | |
| static int __meminitdata node_start;
 | |
| 
 | |
| int __meminit
 | |
| vmemmap_populate(struct page *start_page, unsigned long size, int node)
 | |
| {
 | |
| 	unsigned long addr = (unsigned long)start_page;
 | |
| 	unsigned long end = (unsigned long)(start_page + size);
 | |
| 	unsigned long next;
 | |
| 	pgd_t *pgd;
 | |
| 	pud_t *pud;
 | |
| 	pmd_t *pmd;
 | |
| 
 | |
| 	for (; addr < end; addr = next) {
 | |
| 		void *p = NULL;
 | |
| 
 | |
| 		pgd = vmemmap_pgd_populate(addr, node);
 | |
| 		if (!pgd)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		pud = vmemmap_pud_populate(pgd, addr, node);
 | |
| 		if (!pud)
 | |
| 			return -ENOMEM;
 | |
| 
 | |
| 		if (!cpu_has_pse) {
 | |
| 			next = (addr + PAGE_SIZE) & PAGE_MASK;
 | |
| 			pmd = vmemmap_pmd_populate(pud, addr, node);
 | |
| 
 | |
| 			if (!pmd)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			p = vmemmap_pte_populate(pmd, addr, node);
 | |
| 
 | |
| 			if (!p)
 | |
| 				return -ENOMEM;
 | |
| 
 | |
| 			addr_end = addr + PAGE_SIZE;
 | |
| 			p_end = p + PAGE_SIZE;
 | |
| 		} else {
 | |
| 			next = pmd_addr_end(addr, end);
 | |
| 
 | |
| 			pmd = pmd_offset(pud, addr);
 | |
| 			if (pmd_none(*pmd)) {
 | |
| 				pte_t entry;
 | |
| 
 | |
| 				p = vmemmap_alloc_block(PMD_SIZE, node);
 | |
| 				if (!p)
 | |
| 					return -ENOMEM;
 | |
| 
 | |
| 				entry = pfn_pte(__pa(p) >> PAGE_SHIFT,
 | |
| 						PAGE_KERNEL_LARGE);
 | |
| 				set_pmd(pmd, __pmd(pte_val(entry)));
 | |
| 
 | |
| 				/* check to see if we have contiguous blocks */
 | |
| 				if (p_end != p || node_start != node) {
 | |
| 					if (p_start)
 | |
| 						printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
 | |
| 						       addr_start, addr_end-1, p_start, p_end-1, node_start);
 | |
| 					addr_start = addr;
 | |
| 					node_start = node;
 | |
| 					p_start = p;
 | |
| 				}
 | |
| 
 | |
| 				addr_end = addr + PMD_SIZE;
 | |
| 				p_end = p + PMD_SIZE;
 | |
| 			} else
 | |
| 				vmemmap_verify((pte_t *)pmd, node, addr, next);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void __meminit vmemmap_populate_print_last(void)
 | |
| {
 | |
| 	if (p_start) {
 | |
| 		printk(KERN_DEBUG " [%lx-%lx] PMD -> [%p-%p] on node %d\n",
 | |
| 			addr_start, addr_end-1, p_start, p_end-1, node_start);
 | |
| 		p_start = NULL;
 | |
| 		p_end = NULL;
 | |
| 		node_start = 0;
 | |
| 	}
 | |
| }
 | |
| #endif
 |