4999 lines
		
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			4999 lines
		
	
	
		
			121 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * derived from drivers/kvm/kvm_main.c
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  * Copyright (C) 2008 Qumranet, Inc.
 | |
|  * Copyright IBM Corporation, 2008
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Amit Shah    <amit.shah@qumranet.com>
 | |
|  *   Ben-Ami Yassour <benami@il.ibm.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include "irq.h"
 | |
| #include "mmu.h"
 | |
| #include "i8254.h"
 | |
| #include "tss.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| #include "x86.h"
 | |
| 
 | |
| #include <linux/clocksource.h>
 | |
| #include <linux/interrupt.h>
 | |
| #include <linux/kvm.h>
 | |
| #include <linux/fs.h>
 | |
| #include <linux/vmalloc.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/mman.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/iommu.h>
 | |
| #include <linux/intel-iommu.h>
 | |
| #include <linux/cpufreq.h>
 | |
| #include <trace/events/kvm.h>
 | |
| #undef TRACE_INCLUDE_FILE
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "trace.h"
 | |
| 
 | |
| #include <asm/uaccess.h>
 | |
| #include <asm/msr.h>
 | |
| #include <asm/desc.h>
 | |
| #include <asm/mtrr.h>
 | |
| #include <asm/mce.h>
 | |
| 
 | |
| #define MAX_IO_MSRS 256
 | |
| #define CR0_RESERVED_BITS						\
 | |
| 	(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
 | |
| 			  | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
 | |
| 			  | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
 | |
| #define CR4_RESERVED_BITS						\
 | |
| 	(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
 | |
| 			  | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE	\
 | |
| 			  | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR	\
 | |
| 			  | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
 | |
| 
 | |
| #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
 | |
| 
 | |
| #define KVM_MAX_MCE_BANKS 32
 | |
| #define KVM_MCE_CAP_SUPPORTED MCG_CTL_P
 | |
| 
 | |
| /* EFER defaults:
 | |
|  * - enable syscall per default because its emulated by KVM
 | |
|  * - enable LME and LMA per default on 64 bit KVM
 | |
|  */
 | |
| #ifdef CONFIG_X86_64
 | |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL;
 | |
| #else
 | |
| static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL;
 | |
| #endif
 | |
| 
 | |
| #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
 | |
| #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu);
 | |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
 | |
| 				    struct kvm_cpuid_entry2 __user *entries);
 | |
| 
 | |
| struct kvm_x86_ops *kvm_x86_ops;
 | |
| EXPORT_SYMBOL_GPL(kvm_x86_ops);
 | |
| 
 | |
| int ignore_msrs = 0;
 | |
| module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
 | |
| 
 | |
| struct kvm_stats_debugfs_item debugfs_entries[] = {
 | |
| 	{ "pf_fixed", VCPU_STAT(pf_fixed) },
 | |
| 	{ "pf_guest", VCPU_STAT(pf_guest) },
 | |
| 	{ "tlb_flush", VCPU_STAT(tlb_flush) },
 | |
| 	{ "invlpg", VCPU_STAT(invlpg) },
 | |
| 	{ "exits", VCPU_STAT(exits) },
 | |
| 	{ "io_exits", VCPU_STAT(io_exits) },
 | |
| 	{ "mmio_exits", VCPU_STAT(mmio_exits) },
 | |
| 	{ "signal_exits", VCPU_STAT(signal_exits) },
 | |
| 	{ "irq_window", VCPU_STAT(irq_window_exits) },
 | |
| 	{ "nmi_window", VCPU_STAT(nmi_window_exits) },
 | |
| 	{ "halt_exits", VCPU_STAT(halt_exits) },
 | |
| 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) },
 | |
| 	{ "hypercalls", VCPU_STAT(hypercalls) },
 | |
| 	{ "request_irq", VCPU_STAT(request_irq_exits) },
 | |
| 	{ "irq_exits", VCPU_STAT(irq_exits) },
 | |
| 	{ "host_state_reload", VCPU_STAT(host_state_reload) },
 | |
| 	{ "efer_reload", VCPU_STAT(efer_reload) },
 | |
| 	{ "fpu_reload", VCPU_STAT(fpu_reload) },
 | |
| 	{ "insn_emulation", VCPU_STAT(insn_emulation) },
 | |
| 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
 | |
| 	{ "irq_injections", VCPU_STAT(irq_injections) },
 | |
| 	{ "nmi_injections", VCPU_STAT(nmi_injections) },
 | |
| 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
 | |
| 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) },
 | |
| 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
 | |
| 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
 | |
| 	{ "mmu_flooded", VM_STAT(mmu_flooded) },
 | |
| 	{ "mmu_recycled", VM_STAT(mmu_recycled) },
 | |
| 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
 | |
| 	{ "mmu_unsync", VM_STAT(mmu_unsync) },
 | |
| 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
 | |
| 	{ "largepages", VM_STAT(lpages) },
 | |
| 	{ NULL }
 | |
| };
 | |
| 
 | |
| unsigned long segment_base(u16 selector)
 | |
| {
 | |
| 	struct descriptor_table gdt;
 | |
| 	struct desc_struct *d;
 | |
| 	unsigned long table_base;
 | |
| 	unsigned long v;
 | |
| 
 | |
| 	if (selector == 0)
 | |
| 		return 0;
 | |
| 
 | |
| 	kvm_get_gdt(&gdt);
 | |
| 	table_base = gdt.base;
 | |
| 
 | |
| 	if (selector & 4) {           /* from ldt */
 | |
| 		u16 ldt_selector = kvm_read_ldt();
 | |
| 
 | |
| 		table_base = segment_base(ldt_selector);
 | |
| 	}
 | |
| 	d = (struct desc_struct *)(table_base + (selector & ~7));
 | |
| 	v = get_desc_base(d);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
 | |
| 		v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
 | |
| #endif
 | |
| 	return v;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(segment_base);
 | |
| 
 | |
| u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return vcpu->arch.apic_base;
 | |
| 	else
 | |
| 		return vcpu->arch.apic_base;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_apic_base);
 | |
| 
 | |
| void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
 | |
| {
 | |
| 	/* TODO: reserve bits check */
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_lapic_set_base(vcpu, data);
 | |
| 	else
 | |
| 		vcpu->arch.apic_base = data;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_apic_base);
 | |
| 
 | |
| void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
 | |
| {
 | |
| 	WARN_ON(vcpu->arch.exception.pending);
 | |
| 	vcpu->arch.exception.pending = true;
 | |
| 	vcpu->arch.exception.has_error_code = false;
 | |
| 	vcpu->arch.exception.nr = nr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception);
 | |
| 
 | |
| void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr,
 | |
| 			   u32 error_code)
 | |
| {
 | |
| 	++vcpu->stat.pf_guest;
 | |
| 
 | |
| 	if (vcpu->arch.exception.pending) {
 | |
| 		switch(vcpu->arch.exception.nr) {
 | |
| 		case DF_VECTOR:
 | |
| 			/* triple fault -> shutdown */
 | |
| 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
 | |
| 			return;
 | |
| 		case PF_VECTOR:
 | |
| 			vcpu->arch.exception.nr = DF_VECTOR;
 | |
| 			vcpu->arch.exception.error_code = 0;
 | |
| 			return;
 | |
| 		default:
 | |
| 			/* replace previous exception with a new one in a hope
 | |
| 			   that instruction re-execution will regenerate lost
 | |
| 			   exception */
 | |
| 			vcpu->arch.exception.pending = false;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	vcpu->arch.cr2 = addr;
 | |
| 	kvm_queue_exception_e(vcpu, PF_VECTOR, error_code);
 | |
| }
 | |
| 
 | |
| void kvm_inject_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.nmi_pending = 1;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_inject_nmi);
 | |
| 
 | |
| void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
 | |
| {
 | |
| 	WARN_ON(vcpu->arch.exception.pending);
 | |
| 	vcpu->arch.exception.pending = true;
 | |
| 	vcpu->arch.exception.has_error_code = true;
 | |
| 	vcpu->arch.exception.nr = nr;
 | |
| 	vcpu->arch.exception.error_code = error_code;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
 | |
| 
 | |
| /*
 | |
|  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue
 | |
|  * a #GP and return false.
 | |
|  */
 | |
| bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
 | |
| {
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
 | |
| 		return true;
 | |
| 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 	return false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_require_cpl);
 | |
| 
 | |
| /*
 | |
|  * Load the pae pdptrs.  Return true is they are all valid.
 | |
|  */
 | |
| int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
 | |
| 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
 | |
| 	int i;
 | |
| 	int ret;
 | |
| 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 | |
| 
 | |
| 	ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte,
 | |
| 				  offset * sizeof(u64), sizeof(pdpte));
 | |
| 	if (ret < 0) {
 | |
| 		ret = 0;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
 | |
| 		if (is_present_gpte(pdpte[i]) &&
 | |
| 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
 | |
| 			ret = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 	ret = 1;
 | |
| 
 | |
| 	memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs));
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_avail);
 | |
| 	__set_bit(VCPU_EXREG_PDPTR,
 | |
| 		  (unsigned long *)&vcpu->arch.regs_dirty);
 | |
| out:
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(load_pdptrs);
 | |
| 
 | |
| static bool pdptrs_changed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)];
 | |
| 	bool changed = true;
 | |
| 	int r;
 | |
| 
 | |
| 	if (is_long_mode(vcpu) || !is_pae(vcpu))
 | |
| 		return false;
 | |
| 
 | |
| 	if (!test_bit(VCPU_EXREG_PDPTR,
 | |
| 		      (unsigned long *)&vcpu->arch.regs_avail))
 | |
| 		return true;
 | |
| 
 | |
| 	r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte));
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 	changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0;
 | |
| out:
 | |
| 
 | |
| 	return changed;
 | |
| }
 | |
| 
 | |
| void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
 | |
| {
 | |
| 	if (cr0 & CR0_RESERVED_BITS) {
 | |
| 		printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
 | |
| 		       cr0, vcpu->arch.cr0);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
 | |
| 		printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
 | |
| 		printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
 | |
| 		       "and a clear PE flag\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
 | |
| #ifdef CONFIG_X86_64
 | |
| 		if ((vcpu->arch.shadow_efer & EFER_LME)) {
 | |
| 			int cs_db, cs_l;
 | |
| 
 | |
| 			if (!is_pae(vcpu)) {
 | |
| 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
 | |
| 				       "in long mode while PAE is disabled\n");
 | |
| 				kvm_inject_gp(vcpu, 0);
 | |
| 				return;
 | |
| 			}
 | |
| 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 			if (cs_l) {
 | |
| 				printk(KERN_DEBUG "set_cr0: #GP, start paging "
 | |
| 				       "in long mode while CS.L == 1\n");
 | |
| 				kvm_inject_gp(vcpu, 0);
 | |
| 				return;
 | |
| 
 | |
| 			}
 | |
| 		} else
 | |
| #endif
 | |
| 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
 | |
| 			printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
 | |
| 			       "reserved bits\n");
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->set_cr0(vcpu, cr0);
 | |
| 	vcpu->arch.cr0 = cr0;
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 	return;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr0);
 | |
| 
 | |
| void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
 | |
| {
 | |
| 	kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_lmsw);
 | |
| 
 | |
| void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
 | |
| {
 | |
| 	unsigned long old_cr4 = vcpu->arch.cr4;
 | |
| 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE;
 | |
| 
 | |
| 	if (cr4 & CR4_RESERVED_BITS) {
 | |
| 		printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (!(cr4 & X86_CR4_PAE)) {
 | |
| 			printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
 | |
| 			       "in long mode\n");
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
 | |
| 		   && ((cr4 ^ old_cr4) & pdptr_bits)
 | |
| 		   && !load_pdptrs(vcpu, vcpu->arch.cr3)) {
 | |
| 		printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (cr4 & X86_CR4_VMXE) {
 | |
| 		printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 	kvm_x86_ops->set_cr4(vcpu, cr4);
 | |
| 	vcpu->arch.cr4 = cr4;
 | |
| 	vcpu->arch.mmu.base_role.cr4_pge = (cr4 & X86_CR4_PGE) && !tdp_enabled;
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr4);
 | |
| 
 | |
| void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
 | |
| {
 | |
| 	if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) {
 | |
| 		kvm_mmu_sync_roots(vcpu);
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_long_mode(vcpu)) {
 | |
| 		if (cr3 & CR3_L_MODE_RESERVED_BITS) {
 | |
| 			printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (is_pae(vcpu)) {
 | |
| 			if (cr3 & CR3_PAE_RESERVED_BITS) {
 | |
| 				printk(KERN_DEBUG
 | |
| 				       "set_cr3: #GP, reserved bits\n");
 | |
| 				kvm_inject_gp(vcpu, 0);
 | |
| 				return;
 | |
| 			}
 | |
| 			if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
 | |
| 				printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
 | |
| 				       "reserved bits\n");
 | |
| 				kvm_inject_gp(vcpu, 0);
 | |
| 				return;
 | |
| 			}
 | |
| 		}
 | |
| 		/*
 | |
| 		 * We don't check reserved bits in nonpae mode, because
 | |
| 		 * this isn't enforced, and VMware depends on this.
 | |
| 		 */
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Does the new cr3 value map to physical memory? (Note, we
 | |
| 	 * catch an invalid cr3 even in real-mode, because it would
 | |
| 	 * cause trouble later on when we turn on paging anyway.)
 | |
| 	 *
 | |
| 	 * A real CPU would silently accept an invalid cr3 and would
 | |
| 	 * attempt to use it - with largely undefined (and often hard
 | |
| 	 * to debug) behavior on the guest side.
 | |
| 	 */
 | |
| 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 	else {
 | |
| 		vcpu->arch.cr3 = cr3;
 | |
| 		vcpu->arch.mmu.new_cr3(vcpu);
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr3);
 | |
| 
 | |
| void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
 | |
| {
 | |
| 	if (cr8 & CR8_RESERVED_BITS) {
 | |
| 		printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_lapic_set_tpr(vcpu, cr8);
 | |
| 	else
 | |
| 		vcpu->arch.cr8 = cr8;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_cr8);
 | |
| 
 | |
| unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return kvm_lapic_get_cr8(vcpu);
 | |
| 	else
 | |
| 		return vcpu->arch.cr8;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cr8);
 | |
| 
 | |
| static inline u32 bit(int bitno)
 | |
| {
 | |
| 	return 1 << (bitno & 31);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * List of msr numbers which we expose to userspace through KVM_GET_MSRS
 | |
|  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
 | |
|  *
 | |
|  * This list is modified at module load time to reflect the
 | |
|  * capabilities of the host cpu. This capabilities test skips MSRs that are
 | |
|  * kvm-specific. Those are put in the beginning of the list.
 | |
|  */
 | |
| 
 | |
| #define KVM_SAVE_MSRS_BEGIN	2
 | |
| static u32 msrs_to_save[] = {
 | |
| 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
 | |
| 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
 | |
| 	MSR_K6_STAR,
 | |
| #ifdef CONFIG_X86_64
 | |
| 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
 | |
| #endif
 | |
| 	MSR_IA32_TSC, MSR_IA32_PERF_STATUS, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
 | |
| };
 | |
| 
 | |
| static unsigned num_msrs_to_save;
 | |
| 
 | |
| static u32 emulated_msrs[] = {
 | |
| 	MSR_IA32_MISC_ENABLE,
 | |
| };
 | |
| 
 | |
| static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
 | |
| {
 | |
| 	if (efer & efer_reserved_bits) {
 | |
| 		printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
 | |
| 		       efer);
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (is_paging(vcpu)
 | |
| 	    && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) {
 | |
| 		printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (efer & EFER_FFXSR) {
 | |
| 		struct kvm_cpuid_entry2 *feat;
 | |
| 
 | |
| 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) {
 | |
| 			printk(KERN_DEBUG "set_efer: #GP, enable FFXSR w/o CPUID capability\n");
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (efer & EFER_SVME) {
 | |
| 		struct kvm_cpuid_entry2 *feat;
 | |
| 
 | |
| 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
 | |
| 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) {
 | |
| 			printk(KERN_DEBUG "set_efer: #GP, enable SVM w/o SVM\n");
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->set_efer(vcpu, efer);
 | |
| 
 | |
| 	efer &= ~EFER_LMA;
 | |
| 	efer |= vcpu->arch.shadow_efer & EFER_LMA;
 | |
| 
 | |
| 	vcpu->arch.shadow_efer = efer;
 | |
| 
 | |
| 	vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_enable_efer_bits(u64 mask)
 | |
| {
 | |
|        efer_reserved_bits &= ~mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Writes msr value into into the appropriate "register".
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
 | |
| {
 | |
| 	return kvm_x86_ops->set_msr(vcpu, msr_index, data);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Adapt set_msr() to msr_io()'s calling convention
 | |
|  */
 | |
| static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
 | |
| {
 | |
| 	return kvm_set_msr(vcpu, index, *data);
 | |
| }
 | |
| 
 | |
| static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
 | |
| {
 | |
| 	static int version;
 | |
| 	struct pvclock_wall_clock wc;
 | |
| 	struct timespec boot;
 | |
| 
 | |
| 	if (!wall_clock)
 | |
| 		return;
 | |
| 
 | |
| 	version++;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| 
 | |
| 	/*
 | |
| 	 * The guest calculates current wall clock time by adding
 | |
| 	 * system time (updated by kvm_write_guest_time below) to the
 | |
| 	 * wall clock specified here.  guest system time equals host
 | |
| 	 * system time for us, thus we must fill in host boot time here.
 | |
| 	 */
 | |
| 	getboottime(&boot);
 | |
| 
 | |
| 	wc.sec = boot.tv_sec;
 | |
| 	wc.nsec = boot.tv_nsec;
 | |
| 	wc.version = version;
 | |
| 
 | |
| 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
 | |
| 
 | |
| 	version++;
 | |
| 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
 | |
| }
 | |
| 
 | |
| static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
 | |
| {
 | |
| 	uint32_t quotient, remainder;
 | |
| 
 | |
| 	/* Don't try to replace with do_div(), this one calculates
 | |
| 	 * "(dividend << 32) / divisor" */
 | |
| 	__asm__ ( "divl %4"
 | |
| 		  : "=a" (quotient), "=d" (remainder)
 | |
| 		  : "0" (0), "1" (dividend), "r" (divisor) );
 | |
| 	return quotient;
 | |
| }
 | |
| 
 | |
| static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock)
 | |
| {
 | |
| 	uint64_t nsecs = 1000000000LL;
 | |
| 	int32_t  shift = 0;
 | |
| 	uint64_t tps64;
 | |
| 	uint32_t tps32;
 | |
| 
 | |
| 	tps64 = tsc_khz * 1000LL;
 | |
| 	while (tps64 > nsecs*2) {
 | |
| 		tps64 >>= 1;
 | |
| 		shift--;
 | |
| 	}
 | |
| 
 | |
| 	tps32 = (uint32_t)tps64;
 | |
| 	while (tps32 <= (uint32_t)nsecs) {
 | |
| 		tps32 <<= 1;
 | |
| 		shift++;
 | |
| 	}
 | |
| 
 | |
| 	hv_clock->tsc_shift = shift;
 | |
| 	hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32);
 | |
| 
 | |
| 	pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n",
 | |
| 		 __func__, tsc_khz, hv_clock->tsc_shift,
 | |
| 		 hv_clock->tsc_to_system_mul);
 | |
| }
 | |
| 
 | |
| static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
 | |
| 
 | |
| static void kvm_write_guest_time(struct kvm_vcpu *v)
 | |
| {
 | |
| 	struct timespec ts;
 | |
| 	unsigned long flags;
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 	void *shared_kaddr;
 | |
| 	unsigned long this_tsc_khz;
 | |
| 
 | |
| 	if ((!vcpu->time_page))
 | |
| 		return;
 | |
| 
 | |
| 	this_tsc_khz = get_cpu_var(cpu_tsc_khz);
 | |
| 	if (unlikely(vcpu->hv_clock_tsc_khz != this_tsc_khz)) {
 | |
| 		kvm_set_time_scale(this_tsc_khz, &vcpu->hv_clock);
 | |
| 		vcpu->hv_clock_tsc_khz = this_tsc_khz;
 | |
| 	}
 | |
| 	put_cpu_var(cpu_tsc_khz);
 | |
| 
 | |
| 	/* Keep irq disabled to prevent changes to the clock */
 | |
| 	local_irq_save(flags);
 | |
| 	kvm_get_msr(v, MSR_IA32_TSC, &vcpu->hv_clock.tsc_timestamp);
 | |
| 	ktime_get_ts(&ts);
 | |
| 	monotonic_to_bootbased(&ts);
 | |
| 	local_irq_restore(flags);
 | |
| 
 | |
| 	/* With all the info we got, fill in the values */
 | |
| 
 | |
| 	vcpu->hv_clock.system_time = ts.tv_nsec +
 | |
| 				     (NSEC_PER_SEC * (u64)ts.tv_sec) + v->kvm->arch.kvmclock_offset;
 | |
| 
 | |
| 	/*
 | |
| 	 * The interface expects us to write an even number signaling that the
 | |
| 	 * update is finished. Since the guest won't see the intermediate
 | |
| 	 * state, we just increase by 2 at the end.
 | |
| 	 */
 | |
| 	vcpu->hv_clock.version += 2;
 | |
| 
 | |
| 	shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
 | |
| 
 | |
| 	memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
 | |
| 	       sizeof(vcpu->hv_clock));
 | |
| 
 | |
| 	kunmap_atomic(shared_kaddr, KM_USER0);
 | |
| 
 | |
| 	mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
 | |
| }
 | |
| 
 | |
| static int kvm_request_guest_time_update(struct kvm_vcpu *v)
 | |
| {
 | |
| 	struct kvm_vcpu_arch *vcpu = &v->arch;
 | |
| 
 | |
| 	if (!vcpu->time_page)
 | |
| 		return 0;
 | |
| 	set_bit(KVM_REQ_KVMCLOCK_UPDATE, &v->requests);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static bool msr_mtrr_valid(unsigned msr)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
 | |
| 	case MSR_MTRRfix64K_00000:
 | |
| 	case MSR_MTRRfix16K_80000:
 | |
| 	case MSR_MTRRfix16K_A0000:
 | |
| 	case MSR_MTRRfix4K_C0000:
 | |
| 	case MSR_MTRRfix4K_C8000:
 | |
| 	case MSR_MTRRfix4K_D0000:
 | |
| 	case MSR_MTRRfix4K_D8000:
 | |
| 	case MSR_MTRRfix4K_E0000:
 | |
| 	case MSR_MTRRfix4K_E8000:
 | |
| 	case MSR_MTRRfix4K_F0000:
 | |
| 	case MSR_MTRRfix4K_F8000:
 | |
| 	case MSR_MTRRdefType:
 | |
| 	case MSR_IA32_CR_PAT:
 | |
| 		return true;
 | |
| 	case 0x2f8:
 | |
| 		return true;
 | |
| 	}
 | |
| 	return false;
 | |
| }
 | |
| 
 | |
| static bool valid_pat_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
 | |
| }
 | |
| 
 | |
| static bool valid_mtrr_type(unsigned t)
 | |
| {
 | |
| 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
 | |
| }
 | |
| 
 | |
| static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return false;
 | |
| 
 | |
| 	if (msr == MSR_IA32_CR_PAT) {
 | |
| 		for (i = 0; i < 8; i++)
 | |
| 			if (!valid_pat_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	} else if (msr == MSR_MTRRdefType) {
 | |
| 		if (data & ~0xcff)
 | |
| 			return false;
 | |
| 		return valid_mtrr_type(data & 0xff);
 | |
| 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
 | |
| 		for (i = 0; i < 8 ; i++)
 | |
| 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
 | |
| 				return false;
 | |
| 		return true;
 | |
| 	}
 | |
| 
 | |
| 	/* variable MTRRs */
 | |
| 	return valid_mtrr_type(data & 0xff);
 | |
| }
 | |
| 
 | |
| static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 | |
| 
 | |
| 	if (!mtrr_valid(vcpu, msr, data))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (msr == MSR_MTRRdefType) {
 | |
| 		vcpu->arch.mtrr_state.def_type = data;
 | |
| 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
 | |
| 	} else if (msr == MSR_MTRRfix64K_00000)
 | |
| 		p[0] = data;
 | |
| 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 | |
| 		p[1 + msr - MSR_MTRRfix16K_80000] = data;
 | |
| 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 | |
| 		p[3 + msr - MSR_MTRRfix4K_C0000] = data;
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		vcpu->arch.pat = data;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int idx, is_mtrr_mask;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		idx = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * idx;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 | |
| 		else
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 | |
| 		*pt = data;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_reset_context(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		vcpu->arch.mcg_status = data;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P))
 | |
| 			return 1;
 | |
| 		if (data != 0 && data != ~(u64)0)
 | |
| 			return -1;
 | |
| 		vcpu->arch.mcg_ctl = data;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 | |
| 			u32 offset = msr - MSR_IA32_MC0_CTL;
 | |
| 			/* only 0 or all 1s can be written to IA32_MCi_CTL */
 | |
| 			if ((offset & 0x3) == 0 &&
 | |
| 			    data != 0 && data != ~(u64)0)
 | |
| 				return -1;
 | |
| 			vcpu->arch.mce_banks[offset] = data;
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
 | |
| {
 | |
| 	switch (msr) {
 | |
| 	case MSR_EFER:
 | |
| 		set_efer(vcpu, data);
 | |
| 		break;
 | |
| 	case MSR_K7_HWCR:
 | |
| 		data &= ~(u64)0x40;	/* ignore flush filter disable */
 | |
| 		if (data != 0) {
 | |
| 			pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
 | |
| 				data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 		if (data != 0) {
 | |
| 			pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
 | |
| 				"0x%llx\n", data);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		break;
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 		break;
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 		if (!data) {
 | |
| 			/* We support the non-activated case already */
 | |
| 			break;
 | |
| 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
 | |
| 			/* Values other than LBR and BTF are vendor-specific,
 | |
| 			   thus reserved and should throw a #GP */
 | |
| 			return 1;
 | |
| 		}
 | |
| 		pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
 | |
| 			__func__, data);
 | |
| 		break;
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 	case MSR_IA32_UCODE_WRITE:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_AMD64_PATCH_LOADER:
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return set_msr_mtrr(vcpu, msr, data);
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		kvm_set_apic_base(vcpu, data);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 | |
| 		return kvm_x2apic_msr_write(vcpu, msr, data);
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		vcpu->arch.ia32_misc_enable_msr = data;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 		vcpu->kvm->arch.wall_clock = data;
 | |
| 		kvm_write_wall_clock(vcpu->kvm, data);
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME: {
 | |
| 		if (vcpu->arch.time_page) {
 | |
| 			kvm_release_page_dirty(vcpu->arch.time_page);
 | |
| 			vcpu->arch.time_page = NULL;
 | |
| 		}
 | |
| 
 | |
| 		vcpu->arch.time = data;
 | |
| 
 | |
| 		/* we verify if the enable bit is set... */
 | |
| 		if (!(data & 1))
 | |
| 			break;
 | |
| 
 | |
| 		/* ...but clean it before doing the actual write */
 | |
| 		vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
 | |
| 
 | |
| 		vcpu->arch.time_page =
 | |
| 				gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
 | |
| 
 | |
| 		if (is_error_page(vcpu->arch.time_page)) {
 | |
| 			kvm_release_page_clean(vcpu->arch.time_page);
 | |
| 			vcpu->arch.time_page = NULL;
 | |
| 		}
 | |
| 
 | |
| 		kvm_request_guest_time_update(vcpu);
 | |
| 		break;
 | |
| 	}
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 | |
| 		return set_msr_mce(vcpu, msr, data);
 | |
| 
 | |
| 	/* Performance counters are not protected by a CPUID bit,
 | |
| 	 * so we should check all of them in the generic path for the sake of
 | |
| 	 * cross vendor migration.
 | |
| 	 * Writing a zero into the event select MSRs disables them,
 | |
| 	 * which we perfectly emulate ;-). Any other value should be at least
 | |
| 	 * reported, some guests depend on them.
 | |
| 	 */
 | |
| 	case MSR_P6_EVNTSEL0:
 | |
| 	case MSR_P6_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL0:
 | |
| 	case MSR_K7_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL2:
 | |
| 	case MSR_K7_EVNTSEL3:
 | |
| 		if (data != 0)
 | |
| 			pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 | |
| 				"0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	/* at least RHEL 4 unconditionally writes to the perfctr registers,
 | |
| 	 * so we ignore writes to make it happy.
 | |
| 	 */
 | |
| 	case MSR_P6_PERFCTR0:
 | |
| 	case MSR_P6_PERFCTR1:
 | |
| 	case MSR_K7_PERFCTR0:
 | |
| 	case MSR_K7_PERFCTR1:
 | |
| 	case MSR_K7_PERFCTR2:
 | |
| 	case MSR_K7_PERFCTR3:
 | |
| 		pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
 | |
| 			"0x%x data 0x%llx\n", msr, data);
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (!ignore_msrs) {
 | |
| 			pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
 | |
| 				msr, data);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
 | |
| 				msr, data);
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_set_msr_common);
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * Reads an msr value (of 'msr_index') into 'pdata'.
 | |
|  * Returns 0 on success, non-0 otherwise.
 | |
|  * Assumes vcpu_load() was already called.
 | |
|  */
 | |
| int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
 | |
| {
 | |
| 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
 | |
| }
 | |
| 
 | |
| static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
 | |
| 
 | |
| 	if (!msr_mtrr_valid(msr))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (msr == MSR_MTRRdefType)
 | |
| 		*pdata = vcpu->arch.mtrr_state.def_type +
 | |
| 			 (vcpu->arch.mtrr_state.enabled << 10);
 | |
| 	else if (msr == MSR_MTRRfix64K_00000)
 | |
| 		*pdata = p[0];
 | |
| 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
 | |
| 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000];
 | |
| 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
 | |
| 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
 | |
| 	else if (msr == MSR_IA32_CR_PAT)
 | |
| 		*pdata = vcpu->arch.pat;
 | |
| 	else {	/* Variable MTRRs */
 | |
| 		int idx, is_mtrr_mask;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		idx = (msr - 0x200) / 2;
 | |
| 		is_mtrr_mask = msr - 0x200 - 2 * idx;
 | |
| 		if (!is_mtrr_mask)
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
 | |
| 		else
 | |
| 			pt =
 | |
| 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
 | |
| 		*pdata = *pt;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 		data = vcpu->arch.mcg_cap;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 		if (!(mcg_cap & MCG_CTL_P))
 | |
| 			return 1;
 | |
| 		data = vcpu->arch.mcg_ctl;
 | |
| 		break;
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 		data = vcpu->arch.mcg_status;
 | |
| 		break;
 | |
| 	default:
 | |
| 		if (msr >= MSR_IA32_MC0_CTL &&
 | |
| 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
 | |
| 			u32 offset = msr - MSR_IA32_MC0_CTL;
 | |
| 			data = vcpu->arch.mce_banks[offset];
 | |
| 			break;
 | |
| 		}
 | |
| 		return 1;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
 | |
| {
 | |
| 	u64 data;
 | |
| 
 | |
| 	switch (msr) {
 | |
| 	case MSR_IA32_PLATFORM_ID:
 | |
| 	case MSR_IA32_UCODE_REV:
 | |
| 	case MSR_IA32_EBL_CR_POWERON:
 | |
| 	case MSR_IA32_DEBUGCTLMSR:
 | |
| 	case MSR_IA32_LASTBRANCHFROMIP:
 | |
| 	case MSR_IA32_LASTBRANCHTOIP:
 | |
| 	case MSR_IA32_LASTINTFROMIP:
 | |
| 	case MSR_IA32_LASTINTTOIP:
 | |
| 	case MSR_K8_SYSCFG:
 | |
| 	case MSR_K7_HWCR:
 | |
| 	case MSR_VM_HSAVE_PA:
 | |
| 	case MSR_P6_PERFCTR0:
 | |
| 	case MSR_P6_PERFCTR1:
 | |
| 	case MSR_P6_EVNTSEL0:
 | |
| 	case MSR_P6_EVNTSEL1:
 | |
| 	case MSR_K7_EVNTSEL0:
 | |
| 	case MSR_K7_PERFCTR0:
 | |
| 	case MSR_K8_INT_PENDING_MSG:
 | |
| 	case MSR_AMD64_NB_CFG:
 | |
| 	case MSR_FAM10H_MMIO_CONF_BASE:
 | |
| 		data = 0;
 | |
| 		break;
 | |
| 	case MSR_MTRRcap:
 | |
| 		data = 0x500 | KVM_NR_VAR_MTRR;
 | |
| 		break;
 | |
| 	case 0x200 ... 0x2ff:
 | |
| 		return get_msr_mtrr(vcpu, msr, pdata);
 | |
| 	case 0xcd: /* fsb frequency */
 | |
| 		data = 3;
 | |
| 		break;
 | |
| 	case MSR_IA32_APICBASE:
 | |
| 		data = kvm_get_apic_base(vcpu);
 | |
| 		break;
 | |
| 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
 | |
| 		return kvm_x2apic_msr_read(vcpu, msr, pdata);
 | |
| 		break;
 | |
| 	case MSR_IA32_MISC_ENABLE:
 | |
| 		data = vcpu->arch.ia32_misc_enable_msr;
 | |
| 		break;
 | |
| 	case MSR_IA32_PERF_STATUS:
 | |
| 		/* TSC increment by tick */
 | |
| 		data = 1000ULL;
 | |
| 		/* CPU multiplier */
 | |
| 		data |= (((uint64_t)4ULL) << 40);
 | |
| 		break;
 | |
| 	case MSR_EFER:
 | |
| 		data = vcpu->arch.shadow_efer;
 | |
| 		break;
 | |
| 	case MSR_KVM_WALL_CLOCK:
 | |
| 		data = vcpu->kvm->arch.wall_clock;
 | |
| 		break;
 | |
| 	case MSR_KVM_SYSTEM_TIME:
 | |
| 		data = vcpu->arch.time;
 | |
| 		break;
 | |
| 	case MSR_IA32_P5_MC_ADDR:
 | |
| 	case MSR_IA32_P5_MC_TYPE:
 | |
| 	case MSR_IA32_MCG_CAP:
 | |
| 	case MSR_IA32_MCG_CTL:
 | |
| 	case MSR_IA32_MCG_STATUS:
 | |
| 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
 | |
| 		return get_msr_mce(vcpu, msr, pdata);
 | |
| 	default:
 | |
| 		if (!ignore_msrs) {
 | |
| 			pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
 | |
| 			return 1;
 | |
| 		} else {
 | |
| 			pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
 | |
| 			data = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	*pdata = data;
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_msr_common);
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. All parameters are kernel addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
 | |
| 		    struct kvm_msr_entry *entries,
 | |
| 		    int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				  unsigned index, u64 *data))
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 	for (i = 0; i < msrs->nmsrs; ++i)
 | |
| 		if (do_msr(vcpu, entries[i].index, &entries[i].data))
 | |
| 			break;
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return i;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Read or write a bunch of msrs. Parameters are user addresses.
 | |
|  *
 | |
|  * @return number of msrs set successfully.
 | |
|  */
 | |
| static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
 | |
| 		  int (*do_msr)(struct kvm_vcpu *vcpu,
 | |
| 				unsigned index, u64 *data),
 | |
| 		  int writeback)
 | |
| {
 | |
| 	struct kvm_msrs msrs;
 | |
| 	struct kvm_msr_entry *entries;
 | |
| 	int r, n;
 | |
| 	unsigned size;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&msrs, user_msrs, sizeof msrs))
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (msrs.nmsrs >= MAX_IO_MSRS)
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -ENOMEM;
 | |
| 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
 | |
| 	entries = vmalloc(size);
 | |
| 	if (!entries)
 | |
| 		goto out;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(entries, user_msrs->entries, size))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = n = __msr_io(vcpu, &msrs, entries, do_msr);
 | |
| 	if (r < 0)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (writeback && copy_to_user(user_msrs->entries, entries, size))
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = n;
 | |
| 
 | |
| out_free:
 | |
| 	vfree(entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_dev_ioctl_check_extension(long ext)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	switch (ext) {
 | |
| 	case KVM_CAP_IRQCHIP:
 | |
| 	case KVM_CAP_HLT:
 | |
| 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
 | |
| 	case KVM_CAP_SET_TSS_ADDR:
 | |
| 	case KVM_CAP_EXT_CPUID:
 | |
| 	case KVM_CAP_CLOCKSOURCE:
 | |
| 	case KVM_CAP_PIT:
 | |
| 	case KVM_CAP_NOP_IO_DELAY:
 | |
| 	case KVM_CAP_MP_STATE:
 | |
| 	case KVM_CAP_SYNC_MMU:
 | |
| 	case KVM_CAP_REINJECT_CONTROL:
 | |
| 	case KVM_CAP_IRQ_INJECT_STATUS:
 | |
| 	case KVM_CAP_ASSIGN_DEV_IRQ:
 | |
| 	case KVM_CAP_IRQFD:
 | |
| 	case KVM_CAP_IOEVENTFD:
 | |
| 	case KVM_CAP_PIT2:
 | |
| 	case KVM_CAP_PIT_STATE2:
 | |
| 	case KVM_CAP_SET_IDENTITY_MAP_ADDR:
 | |
| 	case KVM_CAP_ADJUST_CLOCK:
 | |
| 		r = 1;
 | |
| 		break;
 | |
| 	case KVM_CAP_COALESCED_MMIO:
 | |
| 		r = KVM_COALESCED_MMIO_PAGE_OFFSET;
 | |
| 		break;
 | |
| 	case KVM_CAP_VAPIC:
 | |
| 		r = !kvm_x86_ops->cpu_has_accelerated_tpr();
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_VCPUS:
 | |
| 		r = KVM_MAX_VCPUS;
 | |
| 		break;
 | |
| 	case KVM_CAP_NR_MEMSLOTS:
 | |
| 		r = KVM_MEMORY_SLOTS;
 | |
| 		break;
 | |
| 	case KVM_CAP_PV_MMU:
 | |
| 		r = !tdp_enabled;
 | |
| 		break;
 | |
| 	case KVM_CAP_IOMMU:
 | |
| 		r = iommu_found();
 | |
| 		break;
 | |
| 	case KVM_CAP_MCE:
 | |
| 		r = KVM_MAX_MCE_BANKS;
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| 
 | |
| }
 | |
| 
 | |
| long kvm_arch_dev_ioctl(struct file *filp,
 | |
| 			unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	long r;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_MSR_INDEX_LIST: {
 | |
| 		struct kvm_msr_list __user *user_msr_list = argp;
 | |
| 		struct kvm_msr_list msr_list;
 | |
| 		unsigned n;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
 | |
| 			goto out;
 | |
| 		n = msr_list.nmsrs;
 | |
| 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
 | |
| 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
 | |
| 			goto out;
 | |
| 		r = -E2BIG;
 | |
| 		if (n < msr_list.nmsrs)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(user_msr_list->indices, &msrs_to_save,
 | |
| 				 num_msrs_to_save * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
 | |
| 				 &emulated_msrs,
 | |
| 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_SUPPORTED_CPUID: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
 | |
| 						      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_GET_MCE_CAP_SUPPORTED: {
 | |
| 		u64 mce_cap;
 | |
| 
 | |
| 		mce_cap = KVM_MCE_CAP_SUPPORTED;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
 | |
| {
 | |
| 	kvm_x86_ops->vcpu_load(vcpu, cpu);
 | |
| 	kvm_request_guest_time_update(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_x86_ops->vcpu_put(vcpu);
 | |
| 	kvm_put_guest_fpu(vcpu);
 | |
| }
 | |
| 
 | |
| static int is_efer_nx(void)
 | |
| {
 | |
| 	unsigned long long efer = 0;
 | |
| 
 | |
| 	rdmsrl_safe(MSR_EFER, &efer);
 | |
| 	return efer & EFER_NX;
 | |
| }
 | |
| 
 | |
| static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_cpuid_entry2 *e, *entry;
 | |
| 
 | |
| 	entry = NULL;
 | |
| 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 | |
| 		e = &vcpu->arch.cpuid_entries[i];
 | |
| 		if (e->function == 0x80000001) {
 | |
| 			entry = e;
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 	if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
 | |
| 		entry->edx &= ~(1 << 20);
 | |
| 		printk(KERN_INFO "kvm: guest NX capability removed\n");
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* when an old userspace process fills a new kernel module */
 | |
| static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_cpuid *cpuid,
 | |
| 				    struct kvm_cpuid_entry __user *entries)
 | |
| {
 | |
| 	int r, i;
 | |
| 	struct kvm_cpuid_entry *cpuid_entries;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		goto out;
 | |
| 	r = -ENOMEM;
 | |
| 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
 | |
| 	if (!cpuid_entries)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(cpuid_entries, entries,
 | |
| 			   cpuid->nent * sizeof(struct kvm_cpuid_entry)))
 | |
| 		goto out_free;
 | |
| 	for (i = 0; i < cpuid->nent; i++) {
 | |
| 		vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
 | |
| 		vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
 | |
| 		vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
 | |
| 		vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
 | |
| 		vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
 | |
| 		vcpu->arch.cpuid_entries[i].index = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].flags = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].padding[0] = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].padding[1] = 0;
 | |
| 		vcpu->arch.cpuid_entries[i].padding[2] = 0;
 | |
| 	}
 | |
| 	vcpu->arch.cpuid_nent = cpuid->nent;
 | |
| 	cpuid_fix_nx_cap(vcpu);
 | |
| 	r = 0;
 | |
| 	kvm_apic_set_version(vcpu);
 | |
| 
 | |
| out_free:
 | |
| 	vfree(cpuid_entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_cpuid2 *cpuid,
 | |
| 				     struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
 | |
| 			   cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out;
 | |
| 	vcpu->arch.cpuid_nent = cpuid->nent;
 | |
| 	kvm_apic_set_version(vcpu);
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
 | |
| 				     struct kvm_cpuid2 *cpuid,
 | |
| 				     struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = -E2BIG;
 | |
| 	if (cpuid->nent < vcpu->arch.cpuid_nent)
 | |
| 		goto out;
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
 | |
| 			 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out;
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	cpuid->nent = vcpu->arch.cpuid_nent;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 | |
| 			   u32 index)
 | |
| {
 | |
| 	entry->function = function;
 | |
| 	entry->index = index;
 | |
| 	cpuid_count(entry->function, entry->index,
 | |
| 		    &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
 | |
| 	entry->flags = 0;
 | |
| }
 | |
| 
 | |
| #define F(x) bit(X86_FEATURE_##x)
 | |
| 
 | |
| static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
 | |
| 			 u32 index, int *nent, int maxnent)
 | |
| {
 | |
| 	unsigned f_nx = is_efer_nx() ? F(NX) : 0;
 | |
| 	unsigned f_gbpages = kvm_x86_ops->gb_page_enable() ? F(GBPAGES) : 0;
 | |
| #ifdef CONFIG_X86_64
 | |
| 	unsigned f_lm = F(LM);
 | |
| #else
 | |
| 	unsigned f_lm = 0;
 | |
| #endif
 | |
| 
 | |
| 	/* cpuid 1.edx */
 | |
| 	const u32 kvm_supported_word0_x86_features =
 | |
| 		F(FPU) | F(VME) | F(DE) | F(PSE) |
 | |
| 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 | |
| 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
 | |
| 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 | |
| 		F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
 | |
| 		0 /* Reserved, DS, ACPI */ | F(MMX) |
 | |
| 		F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
 | |
| 		0 /* HTT, TM, Reserved, PBE */;
 | |
| 	/* cpuid 0x80000001.edx */
 | |
| 	const u32 kvm_supported_word1_x86_features =
 | |
| 		F(FPU) | F(VME) | F(DE) | F(PSE) |
 | |
| 		F(TSC) | F(MSR) | F(PAE) | F(MCE) |
 | |
| 		F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
 | |
| 		F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
 | |
| 		F(PAT) | F(PSE36) | 0 /* Reserved */ |
 | |
| 		f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
 | |
| 		F(FXSR) | F(FXSR_OPT) | f_gbpages | 0 /* RDTSCP */ |
 | |
| 		0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
 | |
| 	/* cpuid 1.ecx */
 | |
| 	const u32 kvm_supported_word4_x86_features =
 | |
| 		F(XMM3) | 0 /* Reserved, DTES64, MONITOR */ |
 | |
| 		0 /* DS-CPL, VMX, SMX, EST */ |
 | |
| 		0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
 | |
| 		0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
 | |
| 		0 /* Reserved, DCA */ | F(XMM4_1) |
 | |
| 		F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
 | |
| 		0 /* Reserved, XSAVE, OSXSAVE */;
 | |
| 	/* cpuid 0x80000001.ecx */
 | |
| 	const u32 kvm_supported_word6_x86_features =
 | |
| 		F(LAHF_LM) | F(CMP_LEGACY) | F(SVM) | 0 /* ExtApicSpace */ |
 | |
| 		F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
 | |
| 		F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(SSE5) |
 | |
| 		0 /* SKINIT */ | 0 /* WDT */;
 | |
| 
 | |
| 	/* all calls to cpuid_count() should be made on the same cpu */
 | |
| 	get_cpu();
 | |
| 	do_cpuid_1_ent(entry, function, index);
 | |
| 	++*nent;
 | |
| 
 | |
| 	switch (function) {
 | |
| 	case 0:
 | |
| 		entry->eax = min(entry->eax, (u32)0xb);
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		entry->edx &= kvm_supported_word0_x86_features;
 | |
| 		entry->ecx &= kvm_supported_word4_x86_features;
 | |
| 		/* we support x2apic emulation even if host does not support
 | |
| 		 * it since we emulate x2apic in software */
 | |
| 		entry->ecx |= F(X2APIC);
 | |
| 		break;
 | |
| 	/* function 2 entries are STATEFUL. That is, repeated cpuid commands
 | |
| 	 * may return different values. This forces us to get_cpu() before
 | |
| 	 * issuing the first command, and also to emulate this annoying behavior
 | |
| 	 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
 | |
| 	case 2: {
 | |
| 		int t, times = entry->eax & 0xff;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 | |
| 		entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
| 		for (t = 1; t < times && *nent < maxnent; ++t) {
 | |
| 			do_cpuid_1_ent(&entry[t], function, 0);
 | |
| 			entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	/* function 4 and 0xb have additional index. */
 | |
| 	case 4: {
 | |
| 		int i, cache_type;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 		/* read more entries until cache_type is zero */
 | |
| 		for (i = 1; *nent < maxnent; ++i) {
 | |
| 			cache_type = entry[i - 1].eax & 0x1f;
 | |
| 			if (!cache_type)
 | |
| 				break;
 | |
| 			do_cpuid_1_ent(&entry[i], function, i);
 | |
| 			entry[i].flags |=
 | |
| 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case 0xb: {
 | |
| 		int i, level_type;
 | |
| 
 | |
| 		entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 		/* read more entries until level_type is zero */
 | |
| 		for (i = 1; *nent < maxnent; ++i) {
 | |
| 			level_type = entry[i - 1].ecx & 0xff00;
 | |
| 			if (!level_type)
 | |
| 				break;
 | |
| 			do_cpuid_1_ent(&entry[i], function, i);
 | |
| 			entry[i].flags |=
 | |
| 			       KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
 | |
| 			++*nent;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case 0x80000000:
 | |
| 		entry->eax = min(entry->eax, 0x8000001a);
 | |
| 		break;
 | |
| 	case 0x80000001:
 | |
| 		entry->edx &= kvm_supported_word1_x86_features;
 | |
| 		entry->ecx &= kvm_supported_word6_x86_features;
 | |
| 		break;
 | |
| 	}
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| #undef F
 | |
| 
 | |
| static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
 | |
| 				     struct kvm_cpuid_entry2 __user *entries)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *cpuid_entries;
 | |
| 	int limit, nent = 0, r = -E2BIG;
 | |
| 	u32 func;
 | |
| 
 | |
| 	if (cpuid->nent < 1)
 | |
| 		goto out;
 | |
| 	if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
 | |
| 		cpuid->nent = KVM_MAX_CPUID_ENTRIES;
 | |
| 	r = -ENOMEM;
 | |
| 	cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
 | |
| 	if (!cpuid_entries)
 | |
| 		goto out;
 | |
| 
 | |
| 	do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
 | |
| 	limit = cpuid_entries[0].eax;
 | |
| 	for (func = 1; func <= limit && nent < cpuid->nent; ++func)
 | |
| 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
 | |
| 			     &nent, cpuid->nent);
 | |
| 	r = -E2BIG;
 | |
| 	if (nent >= cpuid->nent)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
 | |
| 	limit = cpuid_entries[nent - 1].eax;
 | |
| 	for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
 | |
| 		do_cpuid_ent(&cpuid_entries[nent], func, 0,
 | |
| 			     &nent, cpuid->nent);
 | |
| 	r = -E2BIG;
 | |
| 	if (nent >= cpuid->nent)
 | |
| 		goto out_free;
 | |
| 
 | |
| 	r = -EFAULT;
 | |
| 	if (copy_to_user(entries, cpuid_entries,
 | |
| 			 nent * sizeof(struct kvm_cpuid_entry2)))
 | |
| 		goto out_free;
 | |
| 	cpuid->nent = nent;
 | |
| 	r = 0;
 | |
| 
 | |
| out_free:
 | |
| 	vfree(cpuid_entries);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_lapic_state *s)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
 | |
| 	kvm_apic_post_state_restore(vcpu);
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_interrupt *irq)
 | |
| {
 | |
| 	if (irq->irq < 0 || irq->irq >= 256)
 | |
| 		return -EINVAL;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		return -ENXIO;
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	kvm_queue_interrupt(vcpu, irq->irq, false);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_inject_nmi(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
 | |
| 					   struct kvm_tpr_access_ctl *tac)
 | |
| {
 | |
| 	if (tac->flags)
 | |
| 		return -EINVAL;
 | |
| 	vcpu->arch.tpr_access_reporting = !!tac->enabled;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
 | |
| 					u64 mcg_cap)
 | |
| {
 | |
| 	int r;
 | |
| 	unsigned bank_num = mcg_cap & 0xff, bank;
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
 | |
| 		goto out;
 | |
| 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
 | |
| 		goto out;
 | |
| 	r = 0;
 | |
| 	vcpu->arch.mcg_cap = mcg_cap;
 | |
| 	/* Init IA32_MCG_CTL to all 1s */
 | |
| 	if (mcg_cap & MCG_CTL_P)
 | |
| 		vcpu->arch.mcg_ctl = ~(u64)0;
 | |
| 	/* Init IA32_MCi_CTL to all 1s */
 | |
| 	for (bank = 0; bank < bank_num; bank++)
 | |
| 		vcpu->arch.mce_banks[bank*4] = ~(u64)0;
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
 | |
| 				      struct kvm_x86_mce *mce)
 | |
| {
 | |
| 	u64 mcg_cap = vcpu->arch.mcg_cap;
 | |
| 	unsigned bank_num = mcg_cap & 0xff;
 | |
| 	u64 *banks = vcpu->arch.mce_banks;
 | |
| 
 | |
| 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
 | |
| 		return -EINVAL;
 | |
| 	/*
 | |
| 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
 | |
| 	    vcpu->arch.mcg_ctl != ~(u64)0)
 | |
| 		return 0;
 | |
| 	banks += 4 * mce->bank;
 | |
| 	/*
 | |
| 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error
 | |
| 	 * reporting is disabled for the bank
 | |
| 	 */
 | |
| 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
 | |
| 		return 0;
 | |
| 	if (mce->status & MCI_STATUS_UC) {
 | |
| 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
 | |
| 		    !(vcpu->arch.cr4 & X86_CR4_MCE)) {
 | |
| 			printk(KERN_DEBUG "kvm: set_mce: "
 | |
| 			       "injects mce exception while "
 | |
| 			       "previous one is in progress!\n");
 | |
| 			set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
 | |
| 			return 0;
 | |
| 		}
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		vcpu->arch.mcg_status = mce->mcg_status;
 | |
| 		banks[1] = mce->status;
 | |
| 		kvm_queue_exception(vcpu, MC_VECTOR);
 | |
| 	} else if (!(banks[1] & MCI_STATUS_VAL)
 | |
| 		   || !(banks[1] & MCI_STATUS_UC)) {
 | |
| 		if (banks[1] & MCI_STATUS_VAL)
 | |
| 			mce->status |= MCI_STATUS_OVER;
 | |
| 		banks[2] = mce->addr;
 | |
| 		banks[3] = mce->misc;
 | |
| 		banks[1] = mce->status;
 | |
| 	} else
 | |
| 		banks[1] |= MCI_STATUS_OVER;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vcpu_ioctl(struct file *filp,
 | |
| 			 unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r;
 | |
| 	struct kvm_lapic_state *lapic = NULL;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_GET_LAPIC: {
 | |
| 		lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!lapic)
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_LAPIC: {
 | |
| 		lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
 | |
| 		r = -ENOMEM;
 | |
| 		if (!lapic)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state)))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_INTERRUPT: {
 | |
| 		struct kvm_interrupt irq;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&irq, argp, sizeof irq))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_NMI: {
 | |
| 		r = kvm_vcpu_ioctl_nmi(vcpu);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID: {
 | |
| 		struct kvm_cpuid __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CPUID2: {
 | |
| 		struct kvm_cpuid2 __user *cpuid_arg = argp;
 | |
| 		struct kvm_cpuid2 cpuid;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
 | |
| 					      cpuid_arg->entries);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_MSRS:
 | |
| 		r = msr_io(vcpu, argp, kvm_get_msr, 1);
 | |
| 		break;
 | |
| 	case KVM_SET_MSRS:
 | |
| 		r = msr_io(vcpu, argp, do_set_msr, 0);
 | |
| 		break;
 | |
| 	case KVM_TPR_ACCESS_REPORTING: {
 | |
| 		struct kvm_tpr_access_ctl tac;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&tac, argp, sizeof tac))
 | |
| 			goto out;
 | |
| 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &tac, sizeof tac))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	};
 | |
| 	case KVM_SET_VAPIC_ADDR: {
 | |
| 		struct kvm_vapic_addr va;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&va, argp, sizeof va))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SETUP_MCE: {
 | |
| 		u64 mcg_cap;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_X86_SET_MCE: {
 | |
| 		struct kvm_x86_mce mce;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&mce, argp, sizeof mce))
 | |
| 			goto out;
 | |
| 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
 | |
| 		break;
 | |
| 	}
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 	}
 | |
| out:
 | |
| 	kfree(lapic);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	if (addr > (unsigned int)(-3 * PAGE_SIZE))
 | |
| 		return -1;
 | |
| 	ret = kvm_x86_ops->set_tss_addr(kvm, addr);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
 | |
| 					      u64 ident_addr)
 | |
| {
 | |
| 	kvm->arch.ept_identity_map_addr = ident_addr;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
 | |
| 					  u32 kvm_nr_mmu_pages)
 | |
| {
 | |
| 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
 | |
| 		return -EINVAL;
 | |
| 
 | |
| 	down_write(&kvm->slots_lock);
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
 | |
| 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	up_write(&kvm->slots_lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	return kvm->arch.n_alloc_mmu_pages;
 | |
| }
 | |
| 
 | |
| gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mem_alias *alias;
 | |
| 
 | |
| 	for (i = 0; i < kvm->arch.naliases; ++i) {
 | |
| 		alias = &kvm->arch.aliases[i];
 | |
| 		if (gfn >= alias->base_gfn
 | |
| 		    && gfn < alias->base_gfn + alias->npages)
 | |
| 			return alias->target_gfn + gfn - alias->base_gfn;
 | |
| 	}
 | |
| 	return gfn;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Set a new alias region.  Aliases map a portion of physical memory into
 | |
|  * another portion.  This is useful for memory windows, for example the PC
 | |
|  * VGA region.
 | |
|  */
 | |
| static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
 | |
| 					 struct kvm_memory_alias *alias)
 | |
| {
 | |
| 	int r, n;
 | |
| 	struct kvm_mem_alias *p;
 | |
| 
 | |
| 	r = -EINVAL;
 | |
| 	/* General sanity checks */
 | |
| 	if (alias->memory_size & (PAGE_SIZE - 1))
 | |
| 		goto out;
 | |
| 	if (alias->guest_phys_addr & (PAGE_SIZE - 1))
 | |
| 		goto out;
 | |
| 	if (alias->slot >= KVM_ALIAS_SLOTS)
 | |
| 		goto out;
 | |
| 	if (alias->guest_phys_addr + alias->memory_size
 | |
| 	    < alias->guest_phys_addr)
 | |
| 		goto out;
 | |
| 	if (alias->target_phys_addr + alias->memory_size
 | |
| 	    < alias->target_phys_addr)
 | |
| 		goto out;
 | |
| 
 | |
| 	down_write(&kvm->slots_lock);
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 
 | |
| 	p = &kvm->arch.aliases[alias->slot];
 | |
| 	p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
 | |
| 	p->npages = alias->memory_size >> PAGE_SHIFT;
 | |
| 	p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
 | |
| 
 | |
| 	for (n = KVM_ALIAS_SLOTS; n > 0; --n)
 | |
| 		if (kvm->arch.aliases[n - 1].npages)
 | |
| 			break;
 | |
| 	kvm->arch.naliases = n;
 | |
| 
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 	kvm_mmu_zap_all(kvm);
 | |
| 
 | |
| 	up_write(&kvm->slots_lock);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		memcpy(&chip->chip.pic,
 | |
| 			&pic_irqchip(kvm)->pics[0],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		memcpy(&chip->chip.pic,
 | |
| 			&pic_irqchip(kvm)->pics[1],
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		memcpy(&chip->chip.ioapic,
 | |
| 			ioapic_irqchip(kvm),
 | |
| 			sizeof(struct kvm_ioapic_state));
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = 0;
 | |
| 	switch (chip->chip_id) {
 | |
| 	case KVM_IRQCHIP_PIC_MASTER:
 | |
| 		spin_lock(&pic_irqchip(kvm)->lock);
 | |
| 		memcpy(&pic_irqchip(kvm)->pics[0],
 | |
| 			&chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		spin_unlock(&pic_irqchip(kvm)->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_PIC_SLAVE:
 | |
| 		spin_lock(&pic_irqchip(kvm)->lock);
 | |
| 		memcpy(&pic_irqchip(kvm)->pics[1],
 | |
| 			&chip->chip.pic,
 | |
| 			sizeof(struct kvm_pic_state));
 | |
| 		spin_unlock(&pic_irqchip(kvm)->lock);
 | |
| 		break;
 | |
| 	case KVM_IRQCHIP_IOAPIC:
 | |
| 		mutex_lock(&kvm->irq_lock);
 | |
| 		memcpy(ioapic_irqchip(kvm),
 | |
| 			&chip->chip.ioapic,
 | |
| 			sizeof(struct kvm_ioapic_state));
 | |
| 		mutex_unlock(&kvm->irq_lock);
 | |
| 		break;
 | |
| 	default:
 | |
| 		r = -EINVAL;
 | |
| 		break;
 | |
| 	}
 | |
| 	kvm_pic_update_irq(pic_irqchip(kvm));
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
 | |
| 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int r = 0;
 | |
| 
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
 | |
| 		sizeof(ps->channels));
 | |
| 	ps->flags = kvm->arch.vpit->pit_state.flags;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
 | |
| {
 | |
| 	int r = 0, start = 0;
 | |
| 	u32 prev_legacy, cur_legacy;
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
 | |
| 	if (!prev_legacy && cur_legacy)
 | |
| 		start = 1;
 | |
| 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
 | |
| 	       sizeof(kvm->arch.vpit->pit_state.channels));
 | |
| 	kvm->arch.vpit->pit_state.flags = ps->flags;
 | |
| 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_vm_ioctl_reinject(struct kvm *kvm,
 | |
| 				 struct kvm_reinject_control *control)
 | |
| {
 | |
| 	if (!kvm->arch.vpit)
 | |
| 		return -ENXIO;
 | |
| 	mutex_lock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
 | |
| 	mutex_unlock(&kvm->arch.vpit->pit_state.lock);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Get (and clear) the dirty memory log for a memory slot.
 | |
|  */
 | |
| int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
 | |
| 				      struct kvm_dirty_log *log)
 | |
| {
 | |
| 	int r;
 | |
| 	int n;
 | |
| 	struct kvm_memory_slot *memslot;
 | |
| 	int is_dirty = 0;
 | |
| 
 | |
| 	down_write(&kvm->slots_lock);
 | |
| 
 | |
| 	r = kvm_get_dirty_log(kvm, log, &is_dirty);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	/* If nothing is dirty, don't bother messing with page tables. */
 | |
| 	if (is_dirty) {
 | |
| 		spin_lock(&kvm->mmu_lock);
 | |
| 		kvm_mmu_slot_remove_write_access(kvm, log->slot);
 | |
| 		spin_unlock(&kvm->mmu_lock);
 | |
| 		memslot = &kvm->memslots[log->slot];
 | |
| 		n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
 | |
| 		memset(memslot->dirty_bitmap, 0, n);
 | |
| 	}
 | |
| 	r = 0;
 | |
| out:
 | |
| 	up_write(&kvm->slots_lock);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| long kvm_arch_vm_ioctl(struct file *filp,
 | |
| 		       unsigned int ioctl, unsigned long arg)
 | |
| {
 | |
| 	struct kvm *kvm = filp->private_data;
 | |
| 	void __user *argp = (void __user *)arg;
 | |
| 	int r = -EINVAL;
 | |
| 	/*
 | |
| 	 * This union makes it completely explicit to gcc-3.x
 | |
| 	 * that these two variables' stack usage should be
 | |
| 	 * combined, not added together.
 | |
| 	 */
 | |
| 	union {
 | |
| 		struct kvm_pit_state ps;
 | |
| 		struct kvm_pit_state2 ps2;
 | |
| 		struct kvm_memory_alias alias;
 | |
| 		struct kvm_pit_config pit_config;
 | |
| 	} u;
 | |
| 
 | |
| 	switch (ioctl) {
 | |
| 	case KVM_SET_TSS_ADDR:
 | |
| 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case KVM_SET_IDENTITY_MAP_ADDR: {
 | |
| 		u64 ident_addr;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_MEMORY_REGION: {
 | |
| 		struct kvm_memory_region kvm_mem;
 | |
| 		struct kvm_userspace_memory_region kvm_userspace_mem;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
 | |
| 			goto out;
 | |
| 		kvm_userspace_mem.slot = kvm_mem.slot;
 | |
| 		kvm_userspace_mem.flags = kvm_mem.flags;
 | |
| 		kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr;
 | |
| 		kvm_userspace_mem.memory_size = kvm_mem.memory_size;
 | |
| 		r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case KVM_GET_NR_MMU_PAGES:
 | |
| 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
 | |
| 		break;
 | |
| 	case KVM_SET_MEMORY_ALIAS:
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias)))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	case KVM_CREATE_IRQCHIP:
 | |
| 		r = -ENOMEM;
 | |
| 		kvm->arch.vpic = kvm_create_pic(kvm);
 | |
| 		if (kvm->arch.vpic) {
 | |
| 			r = kvm_ioapic_init(kvm);
 | |
| 			if (r) {
 | |
| 				kfree(kvm->arch.vpic);
 | |
| 				kvm->arch.vpic = NULL;
 | |
| 				goto out;
 | |
| 			}
 | |
| 		} else
 | |
| 			goto out;
 | |
| 		r = kvm_setup_default_irq_routing(kvm);
 | |
| 		if (r) {
 | |
| 			kfree(kvm->arch.vpic);
 | |
| 			kfree(kvm->arch.vioapic);
 | |
| 			goto out;
 | |
| 		}
 | |
| 		break;
 | |
| 	case KVM_CREATE_PIT:
 | |
| 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
 | |
| 		goto create_pit;
 | |
| 	case KVM_CREATE_PIT2:
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.pit_config, argp,
 | |
| 				   sizeof(struct kvm_pit_config)))
 | |
| 			goto out;
 | |
| 	create_pit:
 | |
| 		down_write(&kvm->slots_lock);
 | |
| 		r = -EEXIST;
 | |
| 		if (kvm->arch.vpit)
 | |
| 			goto create_pit_unlock;
 | |
| 		r = -ENOMEM;
 | |
| 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
 | |
| 		if (kvm->arch.vpit)
 | |
| 			r = 0;
 | |
| 	create_pit_unlock:
 | |
| 		up_write(&kvm->slots_lock);
 | |
| 		break;
 | |
| 	case KVM_IRQ_LINE_STATUS:
 | |
| 	case KVM_IRQ_LINE: {
 | |
| 		struct kvm_irq_level irq_event;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&irq_event, argp, sizeof irq_event))
 | |
| 			goto out;
 | |
| 		if (irqchip_in_kernel(kvm)) {
 | |
| 			__s32 status;
 | |
| 			mutex_lock(&kvm->irq_lock);
 | |
| 			status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
 | |
| 					irq_event.irq, irq_event.level);
 | |
| 			mutex_unlock(&kvm->irq_lock);
 | |
| 			if (ioctl == KVM_IRQ_LINE_STATUS) {
 | |
| 				irq_event.status = status;
 | |
| 				if (copy_to_user(argp, &irq_event,
 | |
| 							sizeof irq_event))
 | |
| 					goto out;
 | |
| 			}
 | |
| 			r = 0;
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!chip)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(chip, argp, sizeof *chip))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_in_kernel(kvm))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_get_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto get_irqchip_out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, chip, sizeof *chip))
 | |
| 			goto get_irqchip_out;
 | |
| 		r = 0;
 | |
| 	get_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_IRQCHIP: {
 | |
| 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */
 | |
| 		struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
 | |
| 
 | |
| 		r = -ENOMEM;
 | |
| 		if (!chip)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(chip, argp, sizeof *chip))
 | |
| 			goto set_irqchip_out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!irqchip_in_kernel(kvm))
 | |
| 			goto set_irqchip_out;
 | |
| 		r = kvm_vm_ioctl_set_irqchip(kvm, chip);
 | |
| 		if (r)
 | |
| 			goto set_irqchip_out;
 | |
| 		r = 0;
 | |
| 	set_irqchip_out:
 | |
| 		kfree(chip);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps, argp, sizeof u.ps))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_PIT2: {
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_PIT2: {
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
 | |
| 			goto out;
 | |
| 		r = -ENXIO;
 | |
| 		if (!kvm->arch.vpit)
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_REINJECT_CONTROL: {
 | |
| 		struct kvm_reinject_control control;
 | |
| 		r =  -EFAULT;
 | |
| 		if (copy_from_user(&control, argp, sizeof(control)))
 | |
| 			goto out;
 | |
| 		r = kvm_vm_ioctl_reinject(kvm, &control);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_SET_CLOCK: {
 | |
| 		struct timespec now;
 | |
| 		struct kvm_clock_data user_ns;
 | |
| 		u64 now_ns;
 | |
| 		s64 delta;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
 | |
| 			goto out;
 | |
| 
 | |
| 		r = -EINVAL;
 | |
| 		if (user_ns.flags)
 | |
| 			goto out;
 | |
| 
 | |
| 		r = 0;
 | |
| 		ktime_get_ts(&now);
 | |
| 		now_ns = timespec_to_ns(&now);
 | |
| 		delta = user_ns.clock - now_ns;
 | |
| 		kvm->arch.kvmclock_offset = delta;
 | |
| 		break;
 | |
| 	}
 | |
| 	case KVM_GET_CLOCK: {
 | |
| 		struct timespec now;
 | |
| 		struct kvm_clock_data user_ns;
 | |
| 		u64 now_ns;
 | |
| 
 | |
| 		ktime_get_ts(&now);
 | |
| 		now_ns = timespec_to_ns(&now);
 | |
| 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
 | |
| 		user_ns.flags = 0;
 | |
| 
 | |
| 		r = -EFAULT;
 | |
| 		if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
 | |
| 			goto out;
 | |
| 		r = 0;
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	default:
 | |
| 		;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void kvm_init_msr_list(void)
 | |
| {
 | |
| 	u32 dummy[2];
 | |
| 	unsigned i, j;
 | |
| 
 | |
| 	/* skip the first msrs in the list. KVM-specific */
 | |
| 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
 | |
| 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
 | |
| 			continue;
 | |
| 		if (j < i)
 | |
| 			msrs_to_save[j] = msrs_to_save[i];
 | |
| 		j++;
 | |
| 	}
 | |
| 	num_msrs_to_save = j;
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
 | |
| 			   const void *v)
 | |
| {
 | |
| 	if (vcpu->arch.apic &&
 | |
| 	    !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, len, v))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_io_bus_write(&vcpu->kvm->mmio_bus, addr, len, v);
 | |
| }
 | |
| 
 | |
| static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
 | |
| {
 | |
| 	if (vcpu->arch.apic &&
 | |
| 	    !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, len, v))
 | |
| 		return 0;
 | |
| 
 | |
| 	return kvm_io_bus_read(&vcpu->kvm->mmio_bus, addr, len, v);
 | |
| }
 | |
| 
 | |
| static int kvm_read_guest_virt(gva_t addr, void *val, unsigned int bytes,
 | |
| 			       struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA) {
 | |
| 			r = X86EMUL_PROPAGATE_FAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_UNHANDLEABLE;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= toread;
 | |
| 		data += toread;
 | |
| 		addr += toread;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int kvm_write_guest_virt(gva_t addr, void *val, unsigned int bytes,
 | |
| 				struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	void *data = val;
 | |
| 	int r = X86EMUL_CONTINUE;
 | |
| 
 | |
| 	while (bytes) {
 | |
| 		gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
 | |
| 		unsigned offset = addr & (PAGE_SIZE-1);
 | |
| 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
 | |
| 		int ret;
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA) {
 | |
| 			r = X86EMUL_PROPAGATE_FAULT;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
 | |
| 		if (ret < 0) {
 | |
| 			r = X86EMUL_UNHANDLEABLE;
 | |
| 			goto out;
 | |
| 		}
 | |
| 
 | |
| 		bytes -= towrite;
 | |
| 		data += towrite;
 | |
| 		addr += towrite;
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int emulator_read_emulated(unsigned long addr,
 | |
| 				  void *val,
 | |
| 				  unsigned int bytes,
 | |
| 				  struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gpa_t                 gpa;
 | |
| 
 | |
| 	if (vcpu->mmio_read_completed) {
 | |
| 		memcpy(val, vcpu->mmio_data, bytes);
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
 | |
| 			       vcpu->mmio_phys_addr, *(u64 *)val);
 | |
| 		vcpu->mmio_read_completed = 0;
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 	}
 | |
| 
 | |
| 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
 | |
| 
 | |
| 	/* For APIC access vmexit */
 | |
| 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto mmio;
 | |
| 
 | |
| 	if (kvm_read_guest_virt(addr, val, bytes, vcpu)
 | |
| 				== X86EMUL_CONTINUE)
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 	if (gpa == UNMAPPED_GVA)
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 
 | |
| mmio:
 | |
| 	/*
 | |
| 	 * Is this MMIO handled locally?
 | |
| 	 */
 | |
| 	if (!vcpu_mmio_read(vcpu, gpa, bytes, val)) {
 | |
| 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, gpa, *(u64 *)val);
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->mmio_phys_addr = gpa;
 | |
| 	vcpu->mmio_size = bytes;
 | |
| 	vcpu->mmio_is_write = 0;
 | |
| 
 | |
| 	return X86EMUL_UNHANDLEABLE;
 | |
| }
 | |
| 
 | |
| int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 			  const void *val, int bytes)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
 | |
| 	if (ret < 0)
 | |
| 		return 0;
 | |
| 	kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int emulator_write_emulated_onepage(unsigned long addr,
 | |
| 					   const void *val,
 | |
| 					   unsigned int bytes,
 | |
| 					   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	gpa_t                 gpa;
 | |
| 
 | |
| 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA) {
 | |
| 		kvm_inject_page_fault(vcpu, addr, 2);
 | |
| 		return X86EMUL_PROPAGATE_FAULT;
 | |
| 	}
 | |
| 
 | |
| 	/* For APIC access vmexit */
 | |
| 	if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 		goto mmio;
 | |
| 
 | |
| 	if (emulator_write_phys(vcpu, gpa, val, bytes))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| mmio:
 | |
| 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
 | |
| 	/*
 | |
| 	 * Is this MMIO handled locally?
 | |
| 	 */
 | |
| 	if (!vcpu_mmio_write(vcpu, gpa, bytes, val))
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 
 | |
| 	vcpu->mmio_needed = 1;
 | |
| 	vcpu->mmio_phys_addr = gpa;
 | |
| 	vcpu->mmio_size = bytes;
 | |
| 	vcpu->mmio_is_write = 1;
 | |
| 	memcpy(vcpu->mmio_data, val, bytes);
 | |
| 
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int emulator_write_emulated(unsigned long addr,
 | |
| 				   const void *val,
 | |
| 				   unsigned int bytes,
 | |
| 				   struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	/* Crossing a page boundary? */
 | |
| 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
 | |
| 		int rc, now;
 | |
| 
 | |
| 		now = -addr & ~PAGE_MASK;
 | |
| 		rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
 | |
| 		if (rc != X86EMUL_CONTINUE)
 | |
| 			return rc;
 | |
| 		addr += now;
 | |
| 		val += now;
 | |
| 		bytes -= now;
 | |
| 	}
 | |
| 	return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(emulator_write_emulated);
 | |
| 
 | |
| static int emulator_cmpxchg_emulated(unsigned long addr,
 | |
| 				     const void *old,
 | |
| 				     const void *new,
 | |
| 				     unsigned int bytes,
 | |
| 				     struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
 | |
| #ifndef CONFIG_X86_64
 | |
| 	/* guests cmpxchg8b have to be emulated atomically */
 | |
| 	if (bytes == 8) {
 | |
| 		gpa_t gpa;
 | |
| 		struct page *page;
 | |
| 		char *kaddr;
 | |
| 		u64 val;
 | |
| 
 | |
| 		gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr);
 | |
| 
 | |
| 		if (gpa == UNMAPPED_GVA ||
 | |
| 		   (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
 | |
| 			goto emul_write;
 | |
| 
 | |
| 		if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
 | |
| 			goto emul_write;
 | |
| 
 | |
| 		val = *(u64 *)new;
 | |
| 
 | |
| 		page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 
 | |
| 		kaddr = kmap_atomic(page, KM_USER0);
 | |
| 		set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val);
 | |
| 		kunmap_atomic(kaddr, KM_USER0);
 | |
| 		kvm_release_page_dirty(page);
 | |
| 	}
 | |
| emul_write:
 | |
| #endif
 | |
| 
 | |
| 	return emulator_write_emulated(addr, new, bytes, vcpu);
 | |
| }
 | |
| 
 | |
| static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	return kvm_x86_ops->get_segment_base(vcpu, seg);
 | |
| }
 | |
| 
 | |
| int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
 | |
| {
 | |
| 	kvm_mmu_invlpg(vcpu, address);
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int emulate_clts(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS);
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
 | |
| {
 | |
| 	struct kvm_vcpu *vcpu = ctxt->vcpu;
 | |
| 
 | |
| 	switch (dr) {
 | |
| 	case 0 ... 3:
 | |
| 		*dest = kvm_x86_ops->get_dr(vcpu, dr);
 | |
| 		return X86EMUL_CONTINUE;
 | |
| 	default:
 | |
| 		pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr);
 | |
| 		return X86EMUL_UNHANDLEABLE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
 | |
| {
 | |
| 	unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
 | |
| 	int exception;
 | |
| 
 | |
| 	kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
 | |
| 	if (exception) {
 | |
| 		/* FIXME: better handling */
 | |
| 		return X86EMUL_UNHANDLEABLE;
 | |
| 	}
 | |
| 	return X86EMUL_CONTINUE;
 | |
| }
 | |
| 
 | |
| void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context)
 | |
| {
 | |
| 	u8 opcodes[4];
 | |
| 	unsigned long rip = kvm_rip_read(vcpu);
 | |
| 	unsigned long rip_linear;
 | |
| 
 | |
| 	if (!printk_ratelimit())
 | |
| 		return;
 | |
| 
 | |
| 	rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS);
 | |
| 
 | |
| 	kvm_read_guest_virt(rip_linear, (void *)opcodes, 4, vcpu);
 | |
| 
 | |
| 	printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n",
 | |
| 	       context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_report_emulation_failure);
 | |
| 
 | |
| static struct x86_emulate_ops emulate_ops = {
 | |
| 	.read_std            = kvm_read_guest_virt,
 | |
| 	.read_emulated       = emulator_read_emulated,
 | |
| 	.write_emulated      = emulator_write_emulated,
 | |
| 	.cmpxchg_emulated    = emulator_cmpxchg_emulated,
 | |
| };
 | |
| 
 | |
| static void cache_all_regs(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	kvm_register_read(vcpu, VCPU_REGS_RIP);
 | |
| 	vcpu->arch.regs_dirty = ~0;
 | |
| }
 | |
| 
 | |
| int emulate_instruction(struct kvm_vcpu *vcpu,
 | |
| 			struct kvm_run *run,
 | |
| 			unsigned long cr2,
 | |
| 			u16 error_code,
 | |
| 			int emulation_type)
 | |
| {
 | |
| 	int r, shadow_mask;
 | |
| 	struct decode_cache *c;
 | |
| 
 | |
| 	kvm_clear_exception_queue(vcpu);
 | |
| 	vcpu->arch.mmio_fault_cr2 = cr2;
 | |
| 	/*
 | |
| 	 * TODO: fix emulate.c to use guest_read/write_register
 | |
| 	 * instead of direct ->regs accesses, can save hundred cycles
 | |
| 	 * on Intel for instructions that don't read/change RSP, for
 | |
| 	 * for example.
 | |
| 	 */
 | |
| 	cache_all_regs(vcpu);
 | |
| 
 | |
| 	vcpu->mmio_is_write = 0;
 | |
| 	vcpu->arch.pio.string = 0;
 | |
| 
 | |
| 	if (!(emulation_type & EMULTYPE_NO_DECODE)) {
 | |
| 		int cs_db, cs_l;
 | |
| 		kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
 | |
| 
 | |
| 		vcpu->arch.emulate_ctxt.vcpu = vcpu;
 | |
| 		vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 		vcpu->arch.emulate_ctxt.mode =
 | |
| 			(vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM)
 | |
| 			? X86EMUL_MODE_REAL : cs_l
 | |
| 			? X86EMUL_MODE_PROT64 :	cs_db
 | |
| 			? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
 | |
| 
 | |
| 		r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
 | |
| 
 | |
| 		/* Only allow emulation of specific instructions on #UD
 | |
| 		 * (namely VMMCALL, sysenter, sysexit, syscall)*/
 | |
| 		c = &vcpu->arch.emulate_ctxt.decode;
 | |
| 		if (emulation_type & EMULTYPE_TRAP_UD) {
 | |
| 			if (!c->twobyte)
 | |
| 				return EMULATE_FAIL;
 | |
| 			switch (c->b) {
 | |
| 			case 0x01: /* VMMCALL */
 | |
| 				if (c->modrm_mod != 3 || c->modrm_rm != 1)
 | |
| 					return EMULATE_FAIL;
 | |
| 				break;
 | |
| 			case 0x34: /* sysenter */
 | |
| 			case 0x35: /* sysexit */
 | |
| 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
 | |
| 					return EMULATE_FAIL;
 | |
| 				break;
 | |
| 			case 0x05: /* syscall */
 | |
| 				if (c->modrm_mod != 0 || c->modrm_rm != 0)
 | |
| 					return EMULATE_FAIL;
 | |
| 				break;
 | |
| 			default:
 | |
| 				return EMULATE_FAIL;
 | |
| 			}
 | |
| 
 | |
| 			if (!(c->modrm_reg == 0 || c->modrm_reg == 3))
 | |
| 				return EMULATE_FAIL;
 | |
| 		}
 | |
| 
 | |
| 		++vcpu->stat.insn_emulation;
 | |
| 		if (r)  {
 | |
| 			++vcpu->stat.insn_emulation_fail;
 | |
| 			if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
 | |
| 				return EMULATE_DONE;
 | |
| 			return EMULATE_FAIL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (emulation_type & EMULTYPE_SKIP) {
 | |
| 		kvm_rip_write(vcpu, vcpu->arch.emulate_ctxt.decode.eip);
 | |
| 		return EMULATE_DONE;
 | |
| 	}
 | |
| 
 | |
| 	r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops);
 | |
| 	shadow_mask = vcpu->arch.emulate_ctxt.interruptibility;
 | |
| 
 | |
| 	if (r == 0)
 | |
| 		kvm_x86_ops->set_interrupt_shadow(vcpu, shadow_mask);
 | |
| 
 | |
| 	if (vcpu->arch.pio.string)
 | |
| 		return EMULATE_DO_MMIO;
 | |
| 
 | |
| 	if ((r || vcpu->mmio_is_write) && run) {
 | |
| 		run->exit_reason = KVM_EXIT_MMIO;
 | |
| 		run->mmio.phys_addr = vcpu->mmio_phys_addr;
 | |
| 		memcpy(run->mmio.data, vcpu->mmio_data, 8);
 | |
| 		run->mmio.len = vcpu->mmio_size;
 | |
| 		run->mmio.is_write = vcpu->mmio_is_write;
 | |
| 	}
 | |
| 
 | |
| 	if (r) {
 | |
| 		if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
 | |
| 			return EMULATE_DONE;
 | |
| 		if (!vcpu->mmio_needed) {
 | |
| 			kvm_report_emulation_failure(vcpu, "mmio");
 | |
| 			return EMULATE_FAIL;
 | |
| 		}
 | |
| 		return EMULATE_DO_MMIO;
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags);
 | |
| 
 | |
| 	if (vcpu->mmio_is_write) {
 | |
| 		vcpu->mmio_needed = 0;
 | |
| 		return EMULATE_DO_MMIO;
 | |
| 	}
 | |
| 
 | |
| 	return EMULATE_DONE;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(emulate_instruction);
 | |
| 
 | |
| static int pio_copy_data(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	void *p = vcpu->arch.pio_data;
 | |
| 	gva_t q = vcpu->arch.pio.guest_gva;
 | |
| 	unsigned bytes;
 | |
| 	int ret;
 | |
| 
 | |
| 	bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count;
 | |
| 	if (vcpu->arch.pio.in)
 | |
| 		ret = kvm_write_guest_virt(q, p, bytes, vcpu);
 | |
| 	else
 | |
| 		ret = kvm_read_guest_virt(q, p, bytes, vcpu);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int complete_pio(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_pio_request *io = &vcpu->arch.pio;
 | |
| 	long delta;
 | |
| 	int r;
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	if (!io->string) {
 | |
| 		if (io->in) {
 | |
| 			val = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 			memcpy(&val, vcpu->arch.pio_data, io->size);
 | |
| 			kvm_register_write(vcpu, VCPU_REGS_RAX, val);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if (io->in) {
 | |
| 			r = pio_copy_data(vcpu);
 | |
| 			if (r)
 | |
| 				return r;
 | |
| 		}
 | |
| 
 | |
| 		delta = 1;
 | |
| 		if (io->rep) {
 | |
| 			delta *= io->cur_count;
 | |
| 			/*
 | |
| 			 * The size of the register should really depend on
 | |
| 			 * current address size.
 | |
| 			 */
 | |
| 			val = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 			val -= delta;
 | |
| 			kvm_register_write(vcpu, VCPU_REGS_RCX, val);
 | |
| 		}
 | |
| 		if (io->down)
 | |
| 			delta = -delta;
 | |
| 		delta *= io->size;
 | |
| 		if (io->in) {
 | |
| 			val = kvm_register_read(vcpu, VCPU_REGS_RDI);
 | |
| 			val += delta;
 | |
| 			kvm_register_write(vcpu, VCPU_REGS_RDI, val);
 | |
| 		} else {
 | |
| 			val = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 			val += delta;
 | |
| 			kvm_register_write(vcpu, VCPU_REGS_RSI, val);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	io->count -= io->cur_count;
 | |
| 	io->cur_count = 0;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
 | |
| {
 | |
| 	/* TODO: String I/O for in kernel device */
 | |
| 	int r;
 | |
| 
 | |
| 	if (vcpu->arch.pio.in)
 | |
| 		r = kvm_io_bus_read(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
 | |
| 				    vcpu->arch.pio.size, pd);
 | |
| 	else
 | |
| 		r = kvm_io_bus_write(&vcpu->kvm->pio_bus, vcpu->arch.pio.port,
 | |
| 				     vcpu->arch.pio.size, pd);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int pio_string_write(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_pio_request *io = &vcpu->arch.pio;
 | |
| 	void *pd = vcpu->arch.pio_data;
 | |
| 	int i, r = 0;
 | |
| 
 | |
| 	for (i = 0; i < io->cur_count; i++) {
 | |
| 		if (kvm_io_bus_write(&vcpu->kvm->pio_bus,
 | |
| 				     io->port, io->size, pd)) {
 | |
| 			r = -EOPNOTSUPP;
 | |
| 			break;
 | |
| 		}
 | |
| 		pd += io->size;
 | |
| 	}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
 | |
| 		  int size, unsigned port)
 | |
| {
 | |
| 	unsigned long val;
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_IO;
 | |
| 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
 | |
| 	vcpu->run->io.size = vcpu->arch.pio.size = size;
 | |
| 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
 | |
| 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1;
 | |
| 	vcpu->run->io.port = vcpu->arch.pio.port = port;
 | |
| 	vcpu->arch.pio.in = in;
 | |
| 	vcpu->arch.pio.string = 0;
 | |
| 	vcpu->arch.pio.down = 0;
 | |
| 	vcpu->arch.pio.rep = 0;
 | |
| 
 | |
| 	trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
 | |
| 		      size, 1);
 | |
| 
 | |
| 	val = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	memcpy(vcpu->arch.pio_data, &val, 4);
 | |
| 
 | |
| 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
 | |
| 		complete_pio(vcpu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_pio);
 | |
| 
 | |
| int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
 | |
| 		  int size, unsigned long count, int down,
 | |
| 		  gva_t address, int rep, unsigned port)
 | |
| {
 | |
| 	unsigned now, in_page;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	vcpu->run->exit_reason = KVM_EXIT_IO;
 | |
| 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
 | |
| 	vcpu->run->io.size = vcpu->arch.pio.size = size;
 | |
| 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
 | |
| 	vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count;
 | |
| 	vcpu->run->io.port = vcpu->arch.pio.port = port;
 | |
| 	vcpu->arch.pio.in = in;
 | |
| 	vcpu->arch.pio.string = 1;
 | |
| 	vcpu->arch.pio.down = down;
 | |
| 	vcpu->arch.pio.rep = rep;
 | |
| 
 | |
| 	trace_kvm_pio(vcpu->run->io.direction == KVM_EXIT_IO_OUT, port,
 | |
| 		      size, count);
 | |
| 
 | |
| 	if (!count) {
 | |
| 		kvm_x86_ops->skip_emulated_instruction(vcpu);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (!down)
 | |
| 		in_page = PAGE_SIZE - offset_in_page(address);
 | |
| 	else
 | |
| 		in_page = offset_in_page(address) + size;
 | |
| 	now = min(count, (unsigned long)in_page / size);
 | |
| 	if (!now)
 | |
| 		now = 1;
 | |
| 	if (down) {
 | |
| 		/*
 | |
| 		 * String I/O in reverse.  Yuck.  Kill the guest, fix later.
 | |
| 		 */
 | |
| 		pr_unimpl(vcpu, "guest string pio down\n");
 | |
| 		kvm_inject_gp(vcpu, 0);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	vcpu->run->io.count = now;
 | |
| 	vcpu->arch.pio.cur_count = now;
 | |
| 
 | |
| 	if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count)
 | |
| 		kvm_x86_ops->skip_emulated_instruction(vcpu);
 | |
| 
 | |
| 	vcpu->arch.pio.guest_gva = address;
 | |
| 
 | |
| 	if (!vcpu->arch.pio.in) {
 | |
| 		/* string PIO write */
 | |
| 		ret = pio_copy_data(vcpu);
 | |
| 		if (ret == X86EMUL_PROPAGATE_FAULT) {
 | |
| 			kvm_inject_gp(vcpu, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 		if (ret == 0 && !pio_string_write(vcpu)) {
 | |
| 			complete_pio(vcpu);
 | |
| 			if (vcpu->arch.pio.count == 0)
 | |
| 				ret = 1;
 | |
| 		}
 | |
| 	}
 | |
| 	/* no string PIO read support yet */
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
 | |
| 
 | |
| static void bounce_off(void *info)
 | |
| {
 | |
| 	/* nothing */
 | |
| }
 | |
| 
 | |
| static unsigned int  ref_freq;
 | |
| static unsigned long tsc_khz_ref;
 | |
| 
 | |
| static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
 | |
| 				     void *data)
 | |
| {
 | |
| 	struct cpufreq_freqs *freq = data;
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 	int i, send_ipi = 0;
 | |
| 
 | |
| 	if (!ref_freq)
 | |
| 		ref_freq = freq->old;
 | |
| 
 | |
| 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
 | |
| 		return 0;
 | |
| 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
 | |
| 		return 0;
 | |
| 	per_cpu(cpu_tsc_khz, freq->cpu) = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		kvm_for_each_vcpu(i, vcpu, kvm) {
 | |
| 			if (vcpu->cpu != freq->cpu)
 | |
| 				continue;
 | |
| 			if (!kvm_request_guest_time_update(vcpu))
 | |
| 				continue;
 | |
| 			if (vcpu->cpu != smp_processor_id())
 | |
| 				send_ipi++;
 | |
| 		}
 | |
| 	}
 | |
| 	spin_unlock(&kvm_lock);
 | |
| 
 | |
| 	if (freq->old < freq->new && send_ipi) {
 | |
| 		/*
 | |
| 		 * We upscale the frequency.  Must make the guest
 | |
| 		 * doesn't see old kvmclock values while running with
 | |
| 		 * the new frequency, otherwise we risk the guest sees
 | |
| 		 * time go backwards.
 | |
| 		 *
 | |
| 		 * In case we update the frequency for another cpu
 | |
| 		 * (which might be in guest context) send an interrupt
 | |
| 		 * to kick the cpu out of guest context.  Next time
 | |
| 		 * guest context is entered kvmclock will be updated,
 | |
| 		 * so the guest will not see stale values.
 | |
| 		 */
 | |
| 		smp_call_function_single(freq->cpu, bounce_off, NULL, 1);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static struct notifier_block kvmclock_cpufreq_notifier_block = {
 | |
|         .notifier_call  = kvmclock_cpufreq_notifier
 | |
| };
 | |
| 
 | |
| int kvm_arch_init(void *opaque)
 | |
| {
 | |
| 	int r, cpu;
 | |
| 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
 | |
| 
 | |
| 	if (kvm_x86_ops) {
 | |
| 		printk(KERN_ERR "kvm: already loaded the other module\n");
 | |
| 		r = -EEXIST;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (!ops->cpu_has_kvm_support()) {
 | |
| 		printk(KERN_ERR "kvm: no hardware support\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 	if (ops->disabled_by_bios()) {
 | |
| 		printk(KERN_ERR "kvm: disabled by bios\n");
 | |
| 		r = -EOPNOTSUPP;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_mmu_module_init();
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	kvm_init_msr_list();
 | |
| 
 | |
| 	kvm_x86_ops = ops;
 | |
| 	kvm_mmu_set_nonpresent_ptes(0ull, 0ull);
 | |
| 	kvm_mmu_set_base_ptes(PT_PRESENT_MASK);
 | |
| 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
 | |
| 			PT_DIRTY_MASK, PT64_NX_MASK, 0);
 | |
| 
 | |
| 	for_each_possible_cpu(cpu)
 | |
| 		per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
 | |
| 		tsc_khz_ref = tsc_khz;
 | |
| 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					  CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_exit(void)
 | |
| {
 | |
| 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
 | |
| 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
 | |
| 					    CPUFREQ_TRANSITION_NOTIFIER);
 | |
| 	kvm_x86_ops = NULL;
 | |
| 	kvm_mmu_module_exit();
 | |
| }
 | |
| 
 | |
| int kvm_emulate_halt(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.halt_exits;
 | |
| 	if (irqchip_in_kernel(vcpu->kvm)) {
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
 | |
| 		return 1;
 | |
| 	} else {
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_HLT;
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_halt);
 | |
| 
 | |
| static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
 | |
| 			   unsigned long a1)
 | |
| {
 | |
| 	if (is_long_mode(vcpu))
 | |
| 		return a0;
 | |
| 	else
 | |
| 		return a0 | ((gpa_t)a1 << 32);
 | |
| }
 | |
| 
 | |
| int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned long nr, a0, a1, a2, a3, ret;
 | |
| 	int r = 1;
 | |
| 
 | |
| 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 
 | |
| 	trace_kvm_hypercall(nr, a0, a1, a2, a3);
 | |
| 
 | |
| 	if (!is_long_mode(vcpu)) {
 | |
| 		nr &= 0xFFFFFFFF;
 | |
| 		a0 &= 0xFFFFFFFF;
 | |
| 		a1 &= 0xFFFFFFFF;
 | |
| 		a2 &= 0xFFFFFFFF;
 | |
| 		a3 &= 0xFFFFFFFF;
 | |
| 	}
 | |
| 
 | |
| 	if (kvm_x86_ops->get_cpl(vcpu) != 0) {
 | |
| 		ret = -KVM_EPERM;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	switch (nr) {
 | |
| 	case KVM_HC_VAPIC_POLL_IRQ:
 | |
| 		ret = 0;
 | |
| 		break;
 | |
| 	case KVM_HC_MMU_OP:
 | |
| 		r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
 | |
| 		break;
 | |
| 	default:
 | |
| 		ret = -KVM_ENOSYS;
 | |
| 		break;
 | |
| 	}
 | |
| out:
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
 | |
| 	++vcpu->stat.hypercalls;
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
 | |
| 
 | |
| int kvm_fix_hypercall(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	char instruction[3];
 | |
| 	int ret = 0;
 | |
| 	unsigned long rip = kvm_rip_read(vcpu);
 | |
| 
 | |
| 
 | |
| 	/*
 | |
| 	 * Blow out the MMU to ensure that no other VCPU has an active mapping
 | |
| 	 * to ensure that the updated hypercall appears atomically across all
 | |
| 	 * VCPUs.
 | |
| 	 */
 | |
| 	kvm_mmu_zap_all(vcpu->kvm);
 | |
| 
 | |
| 	kvm_x86_ops->patch_hypercall(vcpu, instruction);
 | |
| 	if (emulator_write_emulated(rip, instruction, 3, vcpu)
 | |
| 	    != X86EMUL_CONTINUE)
 | |
| 		ret = -EFAULT;
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static u64 mk_cr_64(u64 curr_cr, u32 new_val)
 | |
| {
 | |
| 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
 | |
| }
 | |
| 
 | |
| void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
 | |
| {
 | |
| 	struct descriptor_table dt = { limit, base };
 | |
| 
 | |
| 	kvm_x86_ops->set_gdt(vcpu, &dt);
 | |
| }
 | |
| 
 | |
| void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
 | |
| {
 | |
| 	struct descriptor_table dt = { limit, base };
 | |
| 
 | |
| 	kvm_x86_ops->set_idt(vcpu, &dt);
 | |
| }
 | |
| 
 | |
| void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
 | |
| 		   unsigned long *rflags)
 | |
| {
 | |
| 	kvm_lmsw(vcpu, msw);
 | |
| 	*rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| }
 | |
| 
 | |
| unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
 | |
| {
 | |
| 	unsigned long value;
 | |
| 
 | |
| 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		value = vcpu->arch.cr0;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		value = vcpu->arch.cr2;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		value = vcpu->arch.cr3;
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		value = vcpu->arch.cr4;
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		value = kvm_get_cr8(vcpu);
 | |
| 		break;
 | |
| 	default:
 | |
| 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
 | |
| 		return 0;
 | |
| 	}
 | |
| 
 | |
| 	return value;
 | |
| }
 | |
| 
 | |
| void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
 | |
| 		     unsigned long *rflags)
 | |
| {
 | |
| 	switch (cr) {
 | |
| 	case 0:
 | |
| 		kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val));
 | |
| 		*rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		vcpu->arch.cr2 = val;
 | |
| 		break;
 | |
| 	case 3:
 | |
| 		kvm_set_cr3(vcpu, val);
 | |
| 		break;
 | |
| 	case 4:
 | |
| 		kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val));
 | |
| 		break;
 | |
| 	case 8:
 | |
| 		kvm_set_cr8(vcpu, val & 0xfUL);
 | |
| 		break;
 | |
| 	default:
 | |
| 		vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
 | |
| 	int j, nent = vcpu->arch.cpuid_nent;
 | |
| 
 | |
| 	e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
| 	/* when no next entry is found, the current entry[i] is reselected */
 | |
| 	for (j = i + 1; ; j = (j + 1) % nent) {
 | |
| 		struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
 | |
| 		if (ej->function == e->function) {
 | |
| 			ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
 | |
| 			return j;
 | |
| 		}
 | |
| 	}
 | |
| 	return 0; /* silence gcc, even though control never reaches here */
 | |
| }
 | |
| 
 | |
| /* find an entry with matching function, matching index (if needed), and that
 | |
|  * should be read next (if it's stateful) */
 | |
| static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
 | |
| 	u32 function, u32 index)
 | |
| {
 | |
| 	if (e->function != function)
 | |
| 		return 0;
 | |
| 	if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
 | |
| 		return 0;
 | |
| 	if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
 | |
| 	    !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
 | |
| 		return 0;
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
 | |
| 					      u32 function, u32 index)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_cpuid_entry2 *best = NULL;
 | |
| 
 | |
| 	for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
 | |
| 		struct kvm_cpuid_entry2 *e;
 | |
| 
 | |
| 		e = &vcpu->arch.cpuid_entries[i];
 | |
| 		if (is_matching_cpuid_entry(e, function, index)) {
 | |
| 			if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
 | |
| 				move_to_next_stateful_cpuid_entry(vcpu, i);
 | |
| 			best = e;
 | |
| 			break;
 | |
| 		}
 | |
| 		/*
 | |
| 		 * Both basic or both extended?
 | |
| 		 */
 | |
| 		if (((e->function ^ function) & 0x80000000) == 0)
 | |
| 			if (!best || e->function > best->function)
 | |
| 				best = e;
 | |
| 	}
 | |
| 	return best;
 | |
| }
 | |
| 
 | |
| int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
 | |
| 	if (best)
 | |
| 		return best->eax & 0xff;
 | |
| 	return 36;
 | |
| }
 | |
| 
 | |
| void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u32 function, index;
 | |
| 	struct kvm_cpuid_entry2 *best;
 | |
| 
 | |
| 	function = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	index = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
 | |
| 	best = kvm_find_cpuid_entry(vcpu, function, index);
 | |
| 	if (best) {
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
 | |
| 	}
 | |
| 	kvm_x86_ops->skip_emulated_instruction(vcpu);
 | |
| 	trace_kvm_cpuid(function,
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RAX),
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RBX),
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RCX),
 | |
| 			kvm_register_read(vcpu, VCPU_REGS_RDX));
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
 | |
| 
 | |
| /*
 | |
|  * Check if userspace requested an interrupt window, and that the
 | |
|  * interrupt window is open.
 | |
|  *
 | |
|  * No need to exit to userspace if we already have an interrupt queued.
 | |
|  */
 | |
| static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
 | |
| 					  struct kvm_run *kvm_run)
 | |
| {
 | |
| 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
 | |
| 		kvm_run->request_interrupt_window &&
 | |
| 		kvm_arch_interrupt_allowed(vcpu));
 | |
| }
 | |
| 
 | |
| static void post_kvm_run_save(struct kvm_vcpu *vcpu,
 | |
| 			      struct kvm_run *kvm_run)
 | |
| {
 | |
| 	kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
 | |
| 	kvm_run->cr8 = kvm_get_cr8(vcpu);
 | |
| 	kvm_run->apic_base = kvm_get_apic_base(vcpu);
 | |
| 	if (irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_run->ready_for_interrupt_injection = 1;
 | |
| 	else
 | |
| 		kvm_run->ready_for_interrupt_injection =
 | |
| 			kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 			!kvm_cpu_has_interrupt(vcpu) &&
 | |
| 			!kvm_event_needs_reinjection(vcpu);
 | |
| }
 | |
| 
 | |
| static void vapic_enter(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (!apic || !apic->vapic_addr)
 | |
| 		return;
 | |
| 
 | |
| 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
 | |
| 
 | |
| 	vcpu->arch.apic->vapic_page = page;
 | |
| }
 | |
| 
 | |
| static void vapic_exit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_lapic *apic = vcpu->arch.apic;
 | |
| 
 | |
| 	if (!apic || !apic->vapic_addr)
 | |
| 		return;
 | |
| 
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 	kvm_release_page_dirty(apic->vapic_page);
 | |
| 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| }
 | |
| 
 | |
| static void update_cr8_intercept(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int max_irr, tpr;
 | |
| 
 | |
| 	if (!kvm_x86_ops->update_cr8_intercept)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic)
 | |
| 		return;
 | |
| 
 | |
| 	if (!vcpu->arch.apic->vapic_addr)
 | |
| 		max_irr = kvm_lapic_find_highest_irr(vcpu);
 | |
| 	else
 | |
| 		max_irr = -1;
 | |
| 
 | |
| 	if (max_irr != -1)
 | |
| 		max_irr >>= 4;
 | |
| 
 | |
| 	tpr = kvm_lapic_get_cr8(vcpu);
 | |
| 
 | |
| 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
 | |
| }
 | |
| 
 | |
| static void inject_pending_event(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 | |
| {
 | |
| 	/* try to reinject previous events if any */
 | |
| 	if (vcpu->arch.exception.pending) {
 | |
| 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
 | |
| 					  vcpu->arch.exception.has_error_code,
 | |
| 					  vcpu->arch.exception.error_code);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.nmi_injected) {
 | |
| 		kvm_x86_ops->set_nmi(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.pending) {
 | |
| 		kvm_x86_ops->set_irq(vcpu);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	/* try to inject new event if pending */
 | |
| 	if (vcpu->arch.nmi_pending) {
 | |
| 		if (kvm_x86_ops->nmi_allowed(vcpu)) {
 | |
| 			vcpu->arch.nmi_pending = false;
 | |
| 			vcpu->arch.nmi_injected = true;
 | |
| 			kvm_x86_ops->set_nmi(vcpu);
 | |
| 		}
 | |
| 	} else if (kvm_cpu_has_interrupt(vcpu)) {
 | |
| 		if (kvm_x86_ops->interrupt_allowed(vcpu)) {
 | |
| 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
 | |
| 					    false);
 | |
| 			kvm_x86_ops->set_irq(vcpu);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 | |
| {
 | |
| 	int r;
 | |
| 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
 | |
| 		kvm_run->request_interrupt_window;
 | |
| 
 | |
| 	if (vcpu->requests)
 | |
| 		if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests))
 | |
| 			kvm_mmu_unload(vcpu);
 | |
| 
 | |
| 	r = kvm_mmu_reload(vcpu);
 | |
| 	if (unlikely(r))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (vcpu->requests) {
 | |
| 		if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests))
 | |
| 			__kvm_migrate_timers(vcpu);
 | |
| 		if (test_and_clear_bit(KVM_REQ_KVMCLOCK_UPDATE, &vcpu->requests))
 | |
| 			kvm_write_guest_time(vcpu);
 | |
| 		if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests))
 | |
| 			kvm_mmu_sync_roots(vcpu);
 | |
| 		if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests))
 | |
| 			kvm_x86_ops->tlb_flush(vcpu);
 | |
| 		if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS,
 | |
| 				       &vcpu->requests)) {
 | |
| 			kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 		if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) {
 | |
| 			kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	preempt_disable();
 | |
| 
 | |
| 	kvm_x86_ops->prepare_guest_switch(vcpu);
 | |
| 	kvm_load_guest_fpu(vcpu);
 | |
| 
 | |
| 	local_irq_disable();
 | |
| 
 | |
| 	clear_bit(KVM_REQ_KICK, &vcpu->requests);
 | |
| 	smp_mb__after_clear_bit();
 | |
| 
 | |
| 	if (vcpu->requests || need_resched() || signal_pending(current)) {
 | |
| 		set_bit(KVM_REQ_KICK, &vcpu->requests);
 | |
| 		local_irq_enable();
 | |
| 		preempt_enable();
 | |
| 		r = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	inject_pending_event(vcpu, kvm_run);
 | |
| 
 | |
| 	/* enable NMI/IRQ window open exits if needed */
 | |
| 	if (vcpu->arch.nmi_pending)
 | |
| 		kvm_x86_ops->enable_nmi_window(vcpu);
 | |
| 	else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
 | |
| 		kvm_x86_ops->enable_irq_window(vcpu);
 | |
| 
 | |
| 	if (kvm_lapic_enabled(vcpu)) {
 | |
| 		update_cr8_intercept(vcpu);
 | |
| 		kvm_lapic_sync_to_vapic(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 
 | |
| 	kvm_guest_enter();
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs)) {
 | |
| 		set_debugreg(0, 7);
 | |
| 		set_debugreg(vcpu->arch.eff_db[0], 0);
 | |
| 		set_debugreg(vcpu->arch.eff_db[1], 1);
 | |
| 		set_debugreg(vcpu->arch.eff_db[2], 2);
 | |
| 		set_debugreg(vcpu->arch.eff_db[3], 3);
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_entry(vcpu->vcpu_id);
 | |
| 	kvm_x86_ops->run(vcpu, kvm_run);
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.switch_db_regs || test_thread_flag(TIF_DEBUG))) {
 | |
| 		set_debugreg(current->thread.debugreg0, 0);
 | |
| 		set_debugreg(current->thread.debugreg1, 1);
 | |
| 		set_debugreg(current->thread.debugreg2, 2);
 | |
| 		set_debugreg(current->thread.debugreg3, 3);
 | |
| 		set_debugreg(current->thread.debugreg6, 6);
 | |
| 		set_debugreg(current->thread.debugreg7, 7);
 | |
| 	}
 | |
| 
 | |
| 	set_bit(KVM_REQ_KICK, &vcpu->requests);
 | |
| 	local_irq_enable();
 | |
| 
 | |
| 	++vcpu->stat.exits;
 | |
| 
 | |
| 	/*
 | |
| 	 * We must have an instruction between local_irq_enable() and
 | |
| 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by
 | |
| 	 * the interrupt shadow.  The stat.exits increment will do nicely.
 | |
| 	 * But we need to prevent reordering, hence this barrier():
 | |
| 	 */
 | |
| 	barrier();
 | |
| 
 | |
| 	kvm_guest_exit();
 | |
| 
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 
 | |
| 	/*
 | |
| 	 * Profile KVM exit RIPs:
 | |
| 	 */
 | |
| 	if (unlikely(prof_on == KVM_PROFILING)) {
 | |
| 		unsigned long rip = kvm_rip_read(vcpu);
 | |
| 		profile_hit(KVM_PROFILING, (void *)rip);
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	kvm_lapic_sync_from_vapic(vcpu);
 | |
| 
 | |
| 	r = kvm_x86_ops->handle_exit(kvm_run, vcpu);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| 
 | |
| static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
 | |
| 		pr_debug("vcpu %d received sipi with vector # %x\n",
 | |
| 			 vcpu->vcpu_id, vcpu->arch.sipi_vector);
 | |
| 		kvm_lapic_reset(vcpu);
 | |
| 		r = kvm_arch_vcpu_reset(vcpu);
 | |
| 		if (r)
 | |
| 			return r;
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	}
 | |
| 
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 	vapic_enter(vcpu);
 | |
| 
 | |
| 	r = 1;
 | |
| 	while (r > 0) {
 | |
| 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE)
 | |
| 			r = vcpu_enter_guest(vcpu, kvm_run);
 | |
| 		else {
 | |
| 			up_read(&vcpu->kvm->slots_lock);
 | |
| 			kvm_vcpu_block(vcpu);
 | |
| 			down_read(&vcpu->kvm->slots_lock);
 | |
| 			if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests))
 | |
| 			{
 | |
| 				switch(vcpu->arch.mp_state) {
 | |
| 				case KVM_MP_STATE_HALTED:
 | |
| 					vcpu->arch.mp_state =
 | |
| 						KVM_MP_STATE_RUNNABLE;
 | |
| 				case KVM_MP_STATE_RUNNABLE:
 | |
| 					break;
 | |
| 				case KVM_MP_STATE_SIPI_RECEIVED:
 | |
| 				default:
 | |
| 					r = -EINTR;
 | |
| 					break;
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		if (r <= 0)
 | |
| 			break;
 | |
| 
 | |
| 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
 | |
| 		if (kvm_cpu_has_pending_timer(vcpu))
 | |
| 			kvm_inject_pending_timer_irqs(vcpu);
 | |
| 
 | |
| 		if (dm_request_for_irq_injection(vcpu, kvm_run)) {
 | |
| 			r = -EINTR;
 | |
| 			kvm_run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.request_irq_exits;
 | |
| 		}
 | |
| 		if (signal_pending(current)) {
 | |
| 			r = -EINTR;
 | |
| 			kvm_run->exit_reason = KVM_EXIT_INTR;
 | |
| 			++vcpu->stat.signal_exits;
 | |
| 		}
 | |
| 		if (need_resched()) {
 | |
| 			up_read(&vcpu->kvm->slots_lock);
 | |
| 			kvm_resched(vcpu);
 | |
| 			down_read(&vcpu->kvm->slots_lock);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 	post_kvm_run_save(vcpu, kvm_run);
 | |
| 
 | |
| 	vapic_exit(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
 | |
| {
 | |
| 	int r;
 | |
| 	sigset_t sigsaved;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	if (vcpu->sigset_active)
 | |
| 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
 | |
| 
 | |
| 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
 | |
| 		kvm_vcpu_block(vcpu);
 | |
| 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
 | |
| 		r = -EAGAIN;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	/* re-sync apic's tpr */
 | |
| 	if (!irqchip_in_kernel(vcpu->kvm))
 | |
| 		kvm_set_cr8(vcpu, kvm_run->cr8);
 | |
| 
 | |
| 	if (vcpu->arch.pio.cur_count) {
 | |
| 		r = complete_pio(vcpu);
 | |
| 		if (r)
 | |
| 			goto out;
 | |
| 	}
 | |
| #if CONFIG_HAS_IOMEM
 | |
| 	if (vcpu->mmio_needed) {
 | |
| 		memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
 | |
| 		vcpu->mmio_read_completed = 1;
 | |
| 		vcpu->mmio_needed = 0;
 | |
| 
 | |
| 		down_read(&vcpu->kvm->slots_lock);
 | |
| 		r = emulate_instruction(vcpu, kvm_run,
 | |
| 					vcpu->arch.mmio_fault_cr2, 0,
 | |
| 					EMULTYPE_NO_DECODE);
 | |
| 		up_read(&vcpu->kvm->slots_lock);
 | |
| 		if (r == EMULATE_DO_MMIO) {
 | |
| 			/*
 | |
| 			 * Read-modify-write.  Back to userspace.
 | |
| 			 */
 | |
| 			r = 0;
 | |
| 			goto out;
 | |
| 		}
 | |
| 	}
 | |
| #endif
 | |
| 	if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
 | |
| 		kvm_register_write(vcpu, VCPU_REGS_RAX,
 | |
| 				     kvm_run->hypercall.ret);
 | |
| 
 | |
| 	r = __vcpu_run(vcpu, kvm_run);
 | |
| 
 | |
| out:
 | |
| 	if (vcpu->sigset_active)
 | |
| 		sigprocmask(SIG_SETMASK, &sigsaved, NULL);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
 | |
| 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
 | |
| 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
 | |
| 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
 | |
| 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
 | |
| 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
 | |
| 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
 | |
| 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
 | |
| 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
 | |
| #endif
 | |
| 
 | |
| 	regs->rip = kvm_rip_read(vcpu);
 | |
| 	regs->rflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * Don't leak debug flags in case they were set for guest debugging
 | |
| 	 */
 | |
| 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
 | |
| 		regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
 | |
| #ifdef CONFIG_X86_64
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
 | |
| 
 | |
| #endif
 | |
| 
 | |
| 	kvm_rip_write(vcpu, regs->rip);
 | |
| 	kvm_x86_ops->set_rflags(vcpu, regs->rflags);
 | |
| 
 | |
| 
 | |
| 	vcpu->arch.exception.pending = false;
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_get_segment(struct kvm_vcpu *vcpu,
 | |
| 		     struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	kvm_x86_ops->get_segment(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
 | |
| {
 | |
| 	struct kvm_segment cs;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
 | |
| 	*db = cs.db;
 | |
| 	*l = cs.l;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	struct descriptor_table dt;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	kvm_x86_ops->get_idt(vcpu, &dt);
 | |
| 	sregs->idt.limit = dt.limit;
 | |
| 	sregs->idt.base = dt.base;
 | |
| 	kvm_x86_ops->get_gdt(vcpu, &dt);
 | |
| 	sregs->gdt.limit = dt.limit;
 | |
| 	sregs->gdt.base = dt.base;
 | |
| 
 | |
| 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
 | |
| 	sregs->cr0 = vcpu->arch.cr0;
 | |
| 	sregs->cr2 = vcpu->arch.cr2;
 | |
| 	sregs->cr3 = vcpu->arch.cr3;
 | |
| 	sregs->cr4 = vcpu->arch.cr4;
 | |
| 	sregs->cr8 = kvm_get_cr8(vcpu);
 | |
| 	sregs->efer = vcpu->arch.shadow_efer;
 | |
| 	sregs->apic_base = kvm_get_apic_base(vcpu);
 | |
| 
 | |
| 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
 | |
| 
 | |
| 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
 | |
| 		set_bit(vcpu->arch.interrupt.nr,
 | |
| 			(unsigned long *)sregs->interrupt_bitmap);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	mp_state->mp_state = vcpu->arch.mp_state;
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mp_state *mp_state)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	vcpu->arch.mp_state = mp_state->mp_state;
 | |
| 	vcpu_put(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void kvm_set_segment(struct kvm_vcpu *vcpu,
 | |
| 			struct kvm_segment *var, int seg)
 | |
| {
 | |
| 	kvm_x86_ops->set_segment(vcpu, var, seg);
 | |
| }
 | |
| 
 | |
| static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector,
 | |
| 				   struct kvm_segment *kvm_desct)
 | |
| {
 | |
| 	kvm_desct->base = get_desc_base(seg_desc);
 | |
| 	kvm_desct->limit = get_desc_limit(seg_desc);
 | |
| 	if (seg_desc->g) {
 | |
| 		kvm_desct->limit <<= 12;
 | |
| 		kvm_desct->limit |= 0xfff;
 | |
| 	}
 | |
| 	kvm_desct->selector = selector;
 | |
| 	kvm_desct->type = seg_desc->type;
 | |
| 	kvm_desct->present = seg_desc->p;
 | |
| 	kvm_desct->dpl = seg_desc->dpl;
 | |
| 	kvm_desct->db = seg_desc->d;
 | |
| 	kvm_desct->s = seg_desc->s;
 | |
| 	kvm_desct->l = seg_desc->l;
 | |
| 	kvm_desct->g = seg_desc->g;
 | |
| 	kvm_desct->avl = seg_desc->avl;
 | |
| 	if (!selector)
 | |
| 		kvm_desct->unusable = 1;
 | |
| 	else
 | |
| 		kvm_desct->unusable = 0;
 | |
| 	kvm_desct->padding = 0;
 | |
| }
 | |
| 
 | |
| static void get_segment_descriptor_dtable(struct kvm_vcpu *vcpu,
 | |
| 					  u16 selector,
 | |
| 					  struct descriptor_table *dtable)
 | |
| {
 | |
| 	if (selector & 1 << 2) {
 | |
| 		struct kvm_segment kvm_seg;
 | |
| 
 | |
| 		kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR);
 | |
| 
 | |
| 		if (kvm_seg.unusable)
 | |
| 			dtable->limit = 0;
 | |
| 		else
 | |
| 			dtable->limit = kvm_seg.limit;
 | |
| 		dtable->base = kvm_seg.base;
 | |
| 	}
 | |
| 	else
 | |
| 		kvm_x86_ops->get_gdt(vcpu, dtable);
 | |
| }
 | |
| 
 | |
| /* allowed just for 8 bytes segments */
 | |
| static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
 | |
| 					 struct desc_struct *seg_desc)
 | |
| {
 | |
| 	struct descriptor_table dtable;
 | |
| 	u16 index = selector >> 3;
 | |
| 
 | |
| 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
 | |
| 
 | |
| 	if (dtable.limit < index * 8 + 7) {
 | |
| 		kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return kvm_read_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
 | |
| }
 | |
| 
 | |
| /* allowed just for 8 bytes segments */
 | |
| static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
 | |
| 					 struct desc_struct *seg_desc)
 | |
| {
 | |
| 	struct descriptor_table dtable;
 | |
| 	u16 index = selector >> 3;
 | |
| 
 | |
| 	get_segment_descriptor_dtable(vcpu, selector, &dtable);
 | |
| 
 | |
| 	if (dtable.limit < index * 8 + 7)
 | |
| 		return 1;
 | |
| 	return kvm_write_guest_virt(dtable.base + index*8, seg_desc, sizeof(*seg_desc), vcpu);
 | |
| }
 | |
| 
 | |
| static gpa_t get_tss_base_addr(struct kvm_vcpu *vcpu,
 | |
| 			     struct desc_struct *seg_desc)
 | |
| {
 | |
| 	u32 base_addr = get_desc_base(seg_desc);
 | |
| 
 | |
| 	return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr);
 | |
| }
 | |
| 
 | |
| static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	struct kvm_segment kvm_seg;
 | |
| 
 | |
| 	kvm_get_segment(vcpu, &kvm_seg, seg);
 | |
| 	return kvm_seg.selector;
 | |
| }
 | |
| 
 | |
| static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu,
 | |
| 						u16 selector,
 | |
| 						struct kvm_segment *kvm_seg)
 | |
| {
 | |
| 	struct desc_struct seg_desc;
 | |
| 
 | |
| 	if (load_guest_segment_descriptor(vcpu, selector, &seg_desc))
 | |
| 		return 1;
 | |
| 	seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg)
 | |
| {
 | |
| 	struct kvm_segment segvar = {
 | |
| 		.base = selector << 4,
 | |
| 		.limit = 0xffff,
 | |
| 		.selector = selector,
 | |
| 		.type = 3,
 | |
| 		.present = 1,
 | |
| 		.dpl = 3,
 | |
| 		.db = 0,
 | |
| 		.s = 1,
 | |
| 		.l = 0,
 | |
| 		.g = 0,
 | |
| 		.avl = 0,
 | |
| 		.unusable = 0,
 | |
| 	};
 | |
| 	kvm_x86_ops->set_segment(vcpu, &segvar, seg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int is_vm86_segment(struct kvm_vcpu *vcpu, int seg)
 | |
| {
 | |
| 	return (seg != VCPU_SREG_LDTR) &&
 | |
| 		(seg != VCPU_SREG_TR) &&
 | |
| 		(kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_VM);
 | |
| }
 | |
| 
 | |
| int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector,
 | |
| 				int type_bits, int seg)
 | |
| {
 | |
| 	struct kvm_segment kvm_seg;
 | |
| 
 | |
| 	if (is_vm86_segment(vcpu, seg) || !(vcpu->arch.cr0 & X86_CR0_PE))
 | |
| 		return kvm_load_realmode_segment(vcpu, selector, seg);
 | |
| 	if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg))
 | |
| 		return 1;
 | |
| 	kvm_seg.type |= type_bits;
 | |
| 
 | |
| 	if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS &&
 | |
| 	    seg != VCPU_SREG_LDTR)
 | |
| 		if (!kvm_seg.s)
 | |
| 			kvm_seg.unusable = 1;
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &kvm_seg, seg);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void save_state_to_tss32(struct kvm_vcpu *vcpu,
 | |
| 				struct tss_segment_32 *tss)
 | |
| {
 | |
| 	tss->cr3 = vcpu->arch.cr3;
 | |
| 	tss->eip = kvm_rip_read(vcpu);
 | |
| 	tss->eflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 	tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP);
 | |
| 	tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 	tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI);
 | |
| 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
 | |
| 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
 | |
| 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
 | |
| 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
 | |
| 	tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS);
 | |
| 	tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS);
 | |
| 	tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR);
 | |
| }
 | |
| 
 | |
| static int load_state_from_tss32(struct kvm_vcpu *vcpu,
 | |
| 				  struct tss_segment_32 *tss)
 | |
| {
 | |
| 	kvm_set_cr3(vcpu, tss->cr3);
 | |
| 
 | |
| 	kvm_rip_write(vcpu, tss->eip);
 | |
| 	kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2);
 | |
| 
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi);
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void save_state_to_tss16(struct kvm_vcpu *vcpu,
 | |
| 				struct tss_segment_16 *tss)
 | |
| {
 | |
| 	tss->ip = kvm_rip_read(vcpu);
 | |
| 	tss->flag = kvm_x86_ops->get_rflags(vcpu);
 | |
| 	tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX);
 | |
| 	tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX);
 | |
| 	tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX);
 | |
| 	tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX);
 | |
| 	tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP);
 | |
| 	tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP);
 | |
| 	tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI);
 | |
| 	tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI);
 | |
| 
 | |
| 	tss->es = get_segment_selector(vcpu, VCPU_SREG_ES);
 | |
| 	tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS);
 | |
| 	tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS);
 | |
| 	tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS);
 | |
| 	tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR);
 | |
| 	tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR);
 | |
| }
 | |
| 
 | |
| static int load_state_from_tss16(struct kvm_vcpu *vcpu,
 | |
| 				 struct tss_segment_16 *tss)
 | |
| {
 | |
| 	kvm_rip_write(vcpu, tss->ip);
 | |
| 	kvm_x86_ops->set_rflags(vcpu, tss->flag | 2);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si);
 | |
| 	kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di);
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS))
 | |
| 		return 1;
 | |
| 
 | |
| 	if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector,
 | |
| 			      u16 old_tss_sel, u32 old_tss_base,
 | |
| 			      struct desc_struct *nseg_desc)
 | |
| {
 | |
| 	struct tss_segment_16 tss_segment_16;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
 | |
| 			   sizeof tss_segment_16))
 | |
| 		goto out;
 | |
| 
 | |
| 	save_state_to_tss16(vcpu, &tss_segment_16);
 | |
| 
 | |
| 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16,
 | |
| 			    sizeof tss_segment_16))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
 | |
| 			   &tss_segment_16, sizeof tss_segment_16))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (old_tss_sel != 0xffff) {
 | |
| 		tss_segment_16.prev_task_link = old_tss_sel;
 | |
| 
 | |
| 		if (kvm_write_guest(vcpu->kvm,
 | |
| 				    get_tss_base_addr(vcpu, nseg_desc),
 | |
| 				    &tss_segment_16.prev_task_link,
 | |
| 				    sizeof tss_segment_16.prev_task_link))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (load_state_from_tss16(vcpu, &tss_segment_16))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector,
 | |
| 		       u16 old_tss_sel, u32 old_tss_base,
 | |
| 		       struct desc_struct *nseg_desc)
 | |
| {
 | |
| 	struct tss_segment_32 tss_segment_32;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
 | |
| 			   sizeof tss_segment_32))
 | |
| 		goto out;
 | |
| 
 | |
| 	save_state_to_tss32(vcpu, &tss_segment_32);
 | |
| 
 | |
| 	if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32,
 | |
| 			    sizeof tss_segment_32))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc),
 | |
| 			   &tss_segment_32, sizeof tss_segment_32))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (old_tss_sel != 0xffff) {
 | |
| 		tss_segment_32.prev_task_link = old_tss_sel;
 | |
| 
 | |
| 		if (kvm_write_guest(vcpu->kvm,
 | |
| 				    get_tss_base_addr(vcpu, nseg_desc),
 | |
| 				    &tss_segment_32.prev_task_link,
 | |
| 				    sizeof tss_segment_32.prev_task_link))
 | |
| 			goto out;
 | |
| 	}
 | |
| 
 | |
| 	if (load_state_from_tss32(vcpu, &tss_segment_32))
 | |
| 		goto out;
 | |
| 
 | |
| 	ret = 1;
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason)
 | |
| {
 | |
| 	struct kvm_segment tr_seg;
 | |
| 	struct desc_struct cseg_desc;
 | |
| 	struct desc_struct nseg_desc;
 | |
| 	int ret = 0;
 | |
| 	u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR);
 | |
| 	u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR);
 | |
| 
 | |
| 	old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base);
 | |
| 
 | |
| 	/* FIXME: Handle errors. Failure to read either TSS or their
 | |
| 	 * descriptors should generate a pagefault.
 | |
| 	 */
 | |
| 	if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc))
 | |
| 		goto out;
 | |
| 
 | |
| 	if (reason != TASK_SWITCH_IRET) {
 | |
| 		int cpl;
 | |
| 
 | |
| 		cpl = kvm_x86_ops->get_cpl(vcpu);
 | |
| 		if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) {
 | |
| 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
 | |
| 			return 1;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (!nseg_desc.p || get_desc_limit(&nseg_desc) < 0x67) {
 | |
| 		kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) {
 | |
| 		cseg_desc.type &= ~(1 << 1); //clear the B flag
 | |
| 		save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc);
 | |
| 	}
 | |
| 
 | |
| 	if (reason == TASK_SWITCH_IRET) {
 | |
| 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 		kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT);
 | |
| 	}
 | |
| 
 | |
| 	/* set back link to prev task only if NT bit is set in eflags
 | |
| 	   note that old_tss_sel is not used afetr this point */
 | |
| 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
 | |
| 		old_tss_sel = 0xffff;
 | |
| 
 | |
| 	/* set back link to prev task only if NT bit is set in eflags
 | |
| 	   note that old_tss_sel is not used afetr this point */
 | |
| 	if (reason != TASK_SWITCH_CALL && reason != TASK_SWITCH_GATE)
 | |
| 		old_tss_sel = 0xffff;
 | |
| 
 | |
| 	if (nseg_desc.type & 8)
 | |
| 		ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_sel,
 | |
| 					 old_tss_base, &nseg_desc);
 | |
| 	else
 | |
| 		ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_sel,
 | |
| 					 old_tss_base, &nseg_desc);
 | |
| 
 | |
| 	if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) {
 | |
| 		u32 eflags = kvm_x86_ops->get_rflags(vcpu);
 | |
| 		kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT);
 | |
| 	}
 | |
| 
 | |
| 	if (reason != TASK_SWITCH_IRET) {
 | |
| 		nseg_desc.type |= (1 << 1);
 | |
| 		save_guest_segment_descriptor(vcpu, tss_selector,
 | |
| 					      &nseg_desc);
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS);
 | |
| 	seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg);
 | |
| 	tr_seg.type = 11;
 | |
| 	kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR);
 | |
| out:
 | |
| 	return ret;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_task_switch);
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_sregs *sregs)
 | |
| {
 | |
| 	int mmu_reset_needed = 0;
 | |
| 	int pending_vec, max_bits;
 | |
| 	struct descriptor_table dt;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	dt.limit = sregs->idt.limit;
 | |
| 	dt.base = sregs->idt.base;
 | |
| 	kvm_x86_ops->set_idt(vcpu, &dt);
 | |
| 	dt.limit = sregs->gdt.limit;
 | |
| 	dt.base = sregs->gdt.base;
 | |
| 	kvm_x86_ops->set_gdt(vcpu, &dt);
 | |
| 
 | |
| 	vcpu->arch.cr2 = sregs->cr2;
 | |
| 	mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3;
 | |
| 	vcpu->arch.cr3 = sregs->cr3;
 | |
| 
 | |
| 	kvm_set_cr8(vcpu, sregs->cr8);
 | |
| 
 | |
| 	mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer;
 | |
| 	kvm_x86_ops->set_efer(vcpu, sregs->efer);
 | |
| 	kvm_set_apic_base(vcpu, sregs->apic_base);
 | |
| 
 | |
| 	kvm_x86_ops->decache_cr4_guest_bits(vcpu);
 | |
| 
 | |
| 	mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0;
 | |
| 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
 | |
| 	vcpu->arch.cr0 = sregs->cr0;
 | |
| 
 | |
| 	mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4;
 | |
| 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
 | |
| 	if (!is_long_mode(vcpu) && is_pae(vcpu))
 | |
| 		load_pdptrs(vcpu, vcpu->arch.cr3);
 | |
| 
 | |
| 	if (mmu_reset_needed)
 | |
| 		kvm_mmu_reset_context(vcpu);
 | |
| 
 | |
| 	max_bits = (sizeof sregs->interrupt_bitmap) << 3;
 | |
| 	pending_vec = find_first_bit(
 | |
| 		(const unsigned long *)sregs->interrupt_bitmap, max_bits);
 | |
| 	if (pending_vec < max_bits) {
 | |
| 		kvm_queue_interrupt(vcpu, pending_vec, false);
 | |
| 		pr_debug("Set back pending irq %d\n", pending_vec);
 | |
| 		if (irqchip_in_kernel(vcpu->kvm))
 | |
| 			kvm_pic_clear_isr_ack(vcpu->kvm);
 | |
| 	}
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
 | |
| 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
 | |
| 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
 | |
| 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
 | |
| 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
 | |
| 
 | |
| 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
 | |
| 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
 | |
| 
 | |
| 	update_cr8_intercept(vcpu);
 | |
| 
 | |
| 	/* Older userspace won't unhalt the vcpu on reset. */
 | |
| 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
 | |
| 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
 | |
| 	    !(vcpu->arch.cr0 & X86_CR0_PE))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_guest_debug *dbg)
 | |
| {
 | |
| 	int i, r;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	if ((dbg->control & (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) ==
 | |
| 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP)) {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; ++i)
 | |
| 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
 | |
| 		vcpu->arch.switch_db_regs =
 | |
| 			(dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
 | |
| 	} else {
 | |
| 		for (i = 0; i < KVM_NR_DB_REGS; i++)
 | |
| 			vcpu->arch.eff_db[i] = vcpu->arch.db[i];
 | |
| 		vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
 | |
| 	}
 | |
| 
 | |
| 	r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
 | |
| 
 | |
| 	if (dbg->control & KVM_GUESTDBG_INJECT_DB)
 | |
| 		kvm_queue_exception(vcpu, DB_VECTOR);
 | |
| 	else if (dbg->control & KVM_GUESTDBG_INJECT_BP)
 | |
| 		kvm_queue_exception(vcpu, BP_VECTOR);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fxsave fpu state.  Taken from x86_64/processor.h.  To be killed when
 | |
|  * we have asm/x86/processor.h
 | |
|  */
 | |
| struct fxsave {
 | |
| 	u16	cwd;
 | |
| 	u16	swd;
 | |
| 	u16	twd;
 | |
| 	u16	fop;
 | |
| 	u64	rip;
 | |
| 	u64	rdp;
 | |
| 	u32	mxcsr;
 | |
| 	u32	mxcsr_mask;
 | |
| 	u32	st_space[32];	/* 8*16 bytes for each FP-reg = 128 bytes */
 | |
| #ifdef CONFIG_X86_64
 | |
| 	u32	xmm_space[64];	/* 16*16 bytes for each XMM-reg = 256 bytes */
 | |
| #else
 | |
| 	u32	xmm_space[32];	/* 8*16 bytes for each XMM-reg = 128 bytes */
 | |
| #endif
 | |
| };
 | |
| 
 | |
| /*
 | |
|  * Translate a guest virtual address to a guest physical address.
 | |
|  */
 | |
| int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_translation *tr)
 | |
| {
 | |
| 	unsigned long vaddr = tr->linear_address;
 | |
| 	gpa_t gpa;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr);
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 	tr->physical_address = gpa;
 | |
| 	tr->valid = gpa != UNMAPPED_GVA;
 | |
| 	tr->writeable = 1;
 | |
| 	tr->usermode = 0;
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	memcpy(fpu->fpr, fxsave->st_space, 128);
 | |
| 	fpu->fcw = fxsave->cwd;
 | |
| 	fpu->fsw = fxsave->swd;
 | |
| 	fpu->ftwx = fxsave->twd;
 | |
| 	fpu->last_opcode = fxsave->fop;
 | |
| 	fpu->last_ip = fxsave->rip;
 | |
| 	fpu->last_dp = fxsave->rdp;
 | |
| 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
 | |
| {
 | |
| 	struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image;
 | |
| 
 | |
| 	vcpu_load(vcpu);
 | |
| 
 | |
| 	memcpy(fxsave->st_space, fpu->fpr, 128);
 | |
| 	fxsave->cwd = fpu->fcw;
 | |
| 	fxsave->swd = fpu->fsw;
 | |
| 	fxsave->twd = fpu->ftwx;
 | |
| 	fxsave->fop = fpu->last_opcode;
 | |
| 	fxsave->rip = fpu->last_ip;
 | |
| 	fxsave->rdp = fpu->last_dp;
 | |
| 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
 | |
| 
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void fx_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned after_mxcsr_mask;
 | |
| 
 | |
| 	/*
 | |
| 	 * Touch the fpu the first time in non atomic context as if
 | |
| 	 * this is the first fpu instruction the exception handler
 | |
| 	 * will fire before the instruction returns and it'll have to
 | |
| 	 * allocate ram with GFP_KERNEL.
 | |
| 	 */
 | |
| 	if (!used_math())
 | |
| 		kvm_fx_save(&vcpu->arch.host_fx_image);
 | |
| 
 | |
| 	/* Initialize guest FPU by resetting ours and saving into guest's */
 | |
| 	preempt_disable();
 | |
| 	kvm_fx_save(&vcpu->arch.host_fx_image);
 | |
| 	kvm_fx_finit();
 | |
| 	kvm_fx_save(&vcpu->arch.guest_fx_image);
 | |
| 	kvm_fx_restore(&vcpu->arch.host_fx_image);
 | |
| 	preempt_enable();
 | |
| 
 | |
| 	vcpu->arch.cr0 |= X86_CR0_ET;
 | |
| 	after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
 | |
| 	vcpu->arch.guest_fx_image.mxcsr = 0x1f80;
 | |
| 	memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask,
 | |
| 	       0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(fx_init);
 | |
| 
 | |
| void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->guest_fpu_loaded = 1;
 | |
| 	kvm_fx_save(&vcpu->arch.host_fx_image);
 | |
| 	kvm_fx_restore(&vcpu->arch.guest_fx_image);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
 | |
| 
 | |
| void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (!vcpu->guest_fpu_loaded)
 | |
| 		return;
 | |
| 
 | |
| 	vcpu->guest_fpu_loaded = 0;
 | |
| 	kvm_fx_save(&vcpu->arch.guest_fx_image);
 | |
| 	kvm_fx_restore(&vcpu->arch.host_fx_image);
 | |
| 	++vcpu->stat.fpu_reload;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
 | |
| 
 | |
| void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	if (vcpu->arch.time_page) {
 | |
| 		kvm_release_page_dirty(vcpu->arch.time_page);
 | |
| 		vcpu->arch.time_page = NULL;
 | |
| 	}
 | |
| 
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| }
 | |
| 
 | |
| struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
 | |
| 						unsigned int id)
 | |
| {
 | |
| 	return kvm_x86_ops->vcpu_create(kvm, id);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	/* We do fxsave: this must be aligned. */
 | |
| 	BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF);
 | |
| 
 | |
| 	vcpu->arch.mtrr_state.have_fixed = 1;
 | |
| 	vcpu_load(vcpu);
 | |
| 	r = kvm_arch_vcpu_reset(vcpu);
 | |
| 	if (r == 0)
 | |
| 		r = kvm_mmu_setup(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto free_vcpu;
 | |
| 
 | |
| 	return 0;
 | |
| free_vcpu:
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| 
 | |
| 	kvm_x86_ops->vcpu_free(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.nmi_pending = false;
 | |
| 	vcpu->arch.nmi_injected = false;
 | |
| 
 | |
| 	vcpu->arch.switch_db_regs = 0;
 | |
| 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
 | |
| 	vcpu->arch.dr6 = DR6_FIXED_1;
 | |
| 	vcpu->arch.dr7 = DR7_FIXED_1;
 | |
| 
 | |
| 	return kvm_x86_ops->vcpu_reset(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_enable(void *garbage)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_enable(garbage);
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_disable(void *garbage)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_disable(garbage);
 | |
| }
 | |
| 
 | |
| int kvm_arch_hardware_setup(void)
 | |
| {
 | |
| 	return kvm_x86_ops->hardware_setup();
 | |
| }
 | |
| 
 | |
| void kvm_arch_hardware_unsetup(void)
 | |
| {
 | |
| 	kvm_x86_ops->hardware_unsetup();
 | |
| }
 | |
| 
 | |
| void kvm_arch_check_processor_compat(void *rtn)
 | |
| {
 | |
| 	kvm_x86_ops->check_processor_compatibility(rtn);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	struct kvm *kvm;
 | |
| 	int r;
 | |
| 
 | |
| 	BUG_ON(vcpu->kvm == NULL);
 | |
| 	kvm = vcpu->kvm;
 | |
| 
 | |
| 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
 | |
| 	else
 | |
| 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
 | |
| 
 | |
| 	page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 | |
| 	if (!page) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail;
 | |
| 	}
 | |
| 	vcpu->arch.pio_data = page_address(page);
 | |
| 
 | |
| 	r = kvm_mmu_create(vcpu);
 | |
| 	if (r < 0)
 | |
| 		goto fail_free_pio_data;
 | |
| 
 | |
| 	if (irqchip_in_kernel(kvm)) {
 | |
| 		r = kvm_create_lapic(vcpu);
 | |
| 		if (r < 0)
 | |
| 			goto fail_mmu_destroy;
 | |
| 	}
 | |
| 
 | |
| 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
 | |
| 				       GFP_KERNEL);
 | |
| 	if (!vcpu->arch.mce_banks) {
 | |
| 		r = -ENOMEM;
 | |
| 		goto fail_free_lapic;
 | |
| 	}
 | |
| 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
 | |
| 
 | |
| 	return 0;
 | |
| fail_free_lapic:
 | |
| 	kvm_free_lapic(vcpu);
 | |
| fail_mmu_destroy:
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| fail_free_pio_data:
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| fail:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kfree(vcpu->arch.mce_banks);
 | |
| 	kvm_free_lapic(vcpu);
 | |
| 	down_read(&vcpu->kvm->slots_lock);
 | |
| 	kvm_mmu_destroy(vcpu);
 | |
| 	up_read(&vcpu->kvm->slots_lock);
 | |
| 	free_page((unsigned long)vcpu->arch.pio_data);
 | |
| }
 | |
| 
 | |
| struct  kvm *kvm_arch_create_vm(void)
 | |
| {
 | |
| 	struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
 | |
| 
 | |
| 	if (!kvm)
 | |
| 		return ERR_PTR(-ENOMEM);
 | |
| 
 | |
| 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
 | |
| 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
 | |
| 
 | |
| 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
 | |
| 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
 | |
| 
 | |
| 	rdtscll(kvm->arch.vm_init_tsc);
 | |
| 
 | |
| 	return kvm;
 | |
| }
 | |
| 
 | |
| static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu_load(vcpu);
 | |
| 	kvm_mmu_unload(vcpu);
 | |
| 	vcpu_put(vcpu);
 | |
| }
 | |
| 
 | |
| static void kvm_free_vcpus(struct kvm *kvm)
 | |
| {
 | |
| 	unsigned int i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	/*
 | |
| 	 * Unpin any mmu pages first.
 | |
| 	 */
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_unload_vcpu_mmu(vcpu);
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		kvm_arch_vcpu_free(vcpu);
 | |
| 
 | |
| 	mutex_lock(&kvm->lock);
 | |
| 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
 | |
| 		kvm->vcpus[i] = NULL;
 | |
| 
 | |
| 	atomic_set(&kvm->online_vcpus, 0);
 | |
| 	mutex_unlock(&kvm->lock);
 | |
| }
 | |
| 
 | |
| void kvm_arch_sync_events(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_free_all_assigned_devices(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_arch_destroy_vm(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_iommu_unmap_guest(kvm);
 | |
| 	kvm_free_pit(kvm);
 | |
| 	kfree(kvm->arch.vpic);
 | |
| 	kfree(kvm->arch.vioapic);
 | |
| 	kvm_free_vcpus(kvm);
 | |
| 	kvm_free_physmem(kvm);
 | |
| 	if (kvm->arch.apic_access_page)
 | |
| 		put_page(kvm->arch.apic_access_page);
 | |
| 	if (kvm->arch.ept_identity_pagetable)
 | |
| 		put_page(kvm->arch.ept_identity_pagetable);
 | |
| 	kfree(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_set_memory_region(struct kvm *kvm,
 | |
| 				struct kvm_userspace_memory_region *mem,
 | |
| 				struct kvm_memory_slot old,
 | |
| 				int user_alloc)
 | |
| {
 | |
| 	int npages = mem->memory_size >> PAGE_SHIFT;
 | |
| 	struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot];
 | |
| 
 | |
| 	/*To keep backward compatibility with older userspace,
 | |
| 	 *x86 needs to hanlde !user_alloc case.
 | |
| 	 */
 | |
| 	if (!user_alloc) {
 | |
| 		if (npages && !old.rmap) {
 | |
| 			unsigned long userspace_addr;
 | |
| 
 | |
| 			down_write(¤t->mm->mmap_sem);
 | |
| 			userspace_addr = do_mmap(NULL, 0,
 | |
| 						 npages * PAGE_SIZE,
 | |
| 						 PROT_READ | PROT_WRITE,
 | |
| 						 MAP_PRIVATE | MAP_ANONYMOUS,
 | |
| 						 0);
 | |
| 			up_write(¤t->mm->mmap_sem);
 | |
| 
 | |
| 			if (IS_ERR((void *)userspace_addr))
 | |
| 				return PTR_ERR((void *)userspace_addr);
 | |
| 
 | |
| 			/* set userspace_addr atomically for kvm_hva_to_rmapp */
 | |
| 			spin_lock(&kvm->mmu_lock);
 | |
| 			memslot->userspace_addr = userspace_addr;
 | |
| 			spin_unlock(&kvm->mmu_lock);
 | |
| 		} else {
 | |
| 			if (!old.user_alloc && old.rmap) {
 | |
| 				int ret;
 | |
| 
 | |
| 				down_write(¤t->mm->mmap_sem);
 | |
| 				ret = do_munmap(current->mm, old.userspace_addr,
 | |
| 						old.npages * PAGE_SIZE);
 | |
| 				up_write(¤t->mm->mmap_sem);
 | |
| 				if (ret < 0)
 | |
| 					printk(KERN_WARNING
 | |
| 				       "kvm_vm_ioctl_set_memory_region: "
 | |
| 				       "failed to munmap memory\n");
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	if (!kvm->arch.n_requested_mmu_pages) {
 | |
| 		unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
 | |
| 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_slot_remove_write_access(kvm, mem->slot);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_arch_flush_shadow(struct kvm *kvm)
 | |
| {
 | |
| 	kvm_mmu_zap_all(kvm);
 | |
| 	kvm_reload_remote_mmus(kvm);
 | |
| }
 | |
| 
 | |
| int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE
 | |
| 		|| vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
 | |
| 		|| vcpu->arch.nmi_pending ||
 | |
| 		(kvm_arch_interrupt_allowed(vcpu) &&
 | |
| 		 kvm_cpu_has_interrupt(vcpu));
 | |
| }
 | |
| 
 | |
| void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int me;
 | |
| 	int cpu = vcpu->cpu;
 | |
| 
 | |
| 	if (waitqueue_active(&vcpu->wq)) {
 | |
| 		wake_up_interruptible(&vcpu->wq);
 | |
| 		++vcpu->stat.halt_wakeup;
 | |
| 	}
 | |
| 
 | |
| 	me = get_cpu();
 | |
| 	if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
 | |
| 		if (!test_and_set_bit(KVM_REQ_KICK, &vcpu->requests))
 | |
| 			smp_send_reschedule(cpu);
 | |
| 	put_cpu();
 | |
| }
 | |
| 
 | |
| int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return kvm_x86_ops->interrupt_allowed(vcpu);
 | |
| }
 | |
| 
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
 | |
| EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
 |