3437 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			3437 lines
		
	
	
		
			81 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * Kernel-based Virtual Machine driver for Linux
 | |
|  *
 | |
|  * This module enables machines with Intel VT-x extensions to run virtual
 | |
|  * machines without emulation or binary translation.
 | |
|  *
 | |
|  * MMU support
 | |
|  *
 | |
|  * Copyright (C) 2006 Qumranet, Inc.
 | |
|  *
 | |
|  * Authors:
 | |
|  *   Yaniv Kamay  <yaniv@qumranet.com>
 | |
|  *   Avi Kivity   <avi@qumranet.com>
 | |
|  *
 | |
|  * This work is licensed under the terms of the GNU GPL, version 2.  See
 | |
|  * the COPYING file in the top-level directory.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include "mmu.h"
 | |
| #include "kvm_cache_regs.h"
 | |
| 
 | |
| #include <linux/kvm_host.h>
 | |
| #include <linux/types.h>
 | |
| #include <linux/string.h>
 | |
| #include <linux/mm.h>
 | |
| #include <linux/highmem.h>
 | |
| #include <linux/module.h>
 | |
| #include <linux/swap.h>
 | |
| #include <linux/hugetlb.h>
 | |
| #include <linux/compiler.h>
 | |
| 
 | |
| #include <asm/page.h>
 | |
| #include <asm/cmpxchg.h>
 | |
| #include <asm/io.h>
 | |
| #include <asm/vmx.h>
 | |
| 
 | |
| /*
 | |
|  * When setting this variable to true it enables Two-Dimensional-Paging
 | |
|  * where the hardware walks 2 page tables:
 | |
|  * 1. the guest-virtual to guest-physical
 | |
|  * 2. while doing 1. it walks guest-physical to host-physical
 | |
|  * If the hardware supports that we don't need to do shadow paging.
 | |
|  */
 | |
| bool tdp_enabled = false;
 | |
| 
 | |
| #undef MMU_DEBUG
 | |
| 
 | |
| #undef AUDIT
 | |
| 
 | |
| #ifdef AUDIT
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
 | |
| #else
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
 | |
| #endif
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| 
 | |
| #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
 | |
| #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
 | |
| 
 | |
| #else
 | |
| 
 | |
| #define pgprintk(x...) do { } while (0)
 | |
| #define rmap_printk(x...) do { } while (0)
 | |
| 
 | |
| #endif
 | |
| 
 | |
| #if defined(MMU_DEBUG) || defined(AUDIT)
 | |
| static int dbg = 0;
 | |
| module_param(dbg, bool, 0644);
 | |
| #endif
 | |
| 
 | |
| static int oos_shadow = 1;
 | |
| module_param(oos_shadow, bool, 0644);
 | |
| 
 | |
| #ifndef MMU_DEBUG
 | |
| #define ASSERT(x) do { } while (0)
 | |
| #else
 | |
| #define ASSERT(x)							\
 | |
| 	if (!(x)) {							\
 | |
| 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\
 | |
| 		       __FILE__, __LINE__, #x);				\
 | |
| 	}
 | |
| #endif
 | |
| 
 | |
| #define PT_FIRST_AVAIL_BITS_SHIFT 9
 | |
| #define PT64_SECOND_AVAIL_BITS_SHIFT 52
 | |
| 
 | |
| #define VALID_PAGE(x) ((x) != INVALID_PAGE)
 | |
| 
 | |
| #define PT64_LEVEL_BITS 9
 | |
| 
 | |
| #define PT64_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
 | |
| 
 | |
| #define PT64_LEVEL_MASK(level) \
 | |
| 		(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
 | |
| 
 | |
| #define PT64_INDEX(address, level)\
 | |
| 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT32_LEVEL_BITS 10
 | |
| 
 | |
| #define PT32_LEVEL_SHIFT(level) \
 | |
| 		(PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
 | |
| 
 | |
| #define PT32_LEVEL_MASK(level) \
 | |
| 		(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
 | |
| #define PT32_LVL_OFFSET_MASK(level) \
 | |
| 	(PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_INDEX(address, level)\
 | |
| 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
 | |
| 
 | |
| 
 | |
| #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
 | |
| #define PT64_DIR_BASE_ADDR_MASK \
 | |
| 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
 | |
| #define PT64_LVL_ADDR_MASK(level) \
 | |
| 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT64_LEVEL_BITS))) - 1))
 | |
| #define PT64_LVL_OFFSET_MASK(level) \
 | |
| 	(PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 						* PT64_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT32_BASE_ADDR_MASK PAGE_MASK
 | |
| #define PT32_DIR_BASE_ADDR_MASK \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
 | |
| #define PT32_LVL_ADDR_MASK(level) \
 | |
| 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
 | |
| 					    * PT32_LEVEL_BITS))) - 1))
 | |
| 
 | |
| #define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
 | |
| 			| PT64_NX_MASK)
 | |
| 
 | |
| #define PFERR_PRESENT_MASK (1U << 0)
 | |
| #define PFERR_WRITE_MASK (1U << 1)
 | |
| #define PFERR_USER_MASK (1U << 2)
 | |
| #define PFERR_RSVD_MASK (1U << 3)
 | |
| #define PFERR_FETCH_MASK (1U << 4)
 | |
| 
 | |
| #define PT_PDPE_LEVEL 3
 | |
| #define PT_DIRECTORY_LEVEL 2
 | |
| #define PT_PAGE_TABLE_LEVEL 1
 | |
| 
 | |
| #define RMAP_EXT 4
 | |
| 
 | |
| #define ACC_EXEC_MASK    1
 | |
| #define ACC_WRITE_MASK   PT_WRITABLE_MASK
 | |
| #define ACC_USER_MASK    PT_USER_MASK
 | |
| #define ACC_ALL          (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
 | |
| 
 | |
| #define CREATE_TRACE_POINTS
 | |
| #include "mmutrace.h"
 | |
| 
 | |
| #define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
 | |
| 
 | |
| #define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
 | |
| 
 | |
| struct kvm_rmap_desc {
 | |
| 	u64 *sptes[RMAP_EXT];
 | |
| 	struct kvm_rmap_desc *more;
 | |
| };
 | |
| 
 | |
| struct kvm_shadow_walk_iterator {
 | |
| 	u64 addr;
 | |
| 	hpa_t shadow_addr;
 | |
| 	int level;
 | |
| 	u64 *sptep;
 | |
| 	unsigned index;
 | |
| };
 | |
| 
 | |
| #define for_each_shadow_entry(_vcpu, _addr, _walker)    \
 | |
| 	for (shadow_walk_init(&(_walker), _vcpu, _addr);	\
 | |
| 	     shadow_walk_okay(&(_walker));			\
 | |
| 	     shadow_walk_next(&(_walker)))
 | |
| 
 | |
| 
 | |
| struct kvm_unsync_walk {
 | |
| 	int (*entry) (struct kvm_mmu_page *sp, struct kvm_unsync_walk *walk);
 | |
| };
 | |
| 
 | |
| typedef int (*mmu_parent_walk_fn) (struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp);
 | |
| 
 | |
| static struct kmem_cache *pte_chain_cache;
 | |
| static struct kmem_cache *rmap_desc_cache;
 | |
| static struct kmem_cache *mmu_page_header_cache;
 | |
| 
 | |
| static u64 __read_mostly shadow_trap_nonpresent_pte;
 | |
| static u64 __read_mostly shadow_notrap_nonpresent_pte;
 | |
| static u64 __read_mostly shadow_base_present_pte;
 | |
| static u64 __read_mostly shadow_nx_mask;
 | |
| static u64 __read_mostly shadow_x_mask;	/* mutual exclusive with nx_mask */
 | |
| static u64 __read_mostly shadow_user_mask;
 | |
| static u64 __read_mostly shadow_accessed_mask;
 | |
| static u64 __read_mostly shadow_dirty_mask;
 | |
| 
 | |
| static inline u64 rsvd_bits(int s, int e)
 | |
| {
 | |
| 	return ((1ULL << (e - s + 1)) - 1) << s;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
 | |
| {
 | |
| 	shadow_trap_nonpresent_pte = trap_pte;
 | |
| 	shadow_notrap_nonpresent_pte = notrap_pte;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
 | |
| 
 | |
| void kvm_mmu_set_base_ptes(u64 base_pte)
 | |
| {
 | |
| 	shadow_base_present_pte = base_pte;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_base_ptes);
 | |
| 
 | |
| void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
 | |
| 		u64 dirty_mask, u64 nx_mask, u64 x_mask)
 | |
| {
 | |
| 	shadow_user_mask = user_mask;
 | |
| 	shadow_accessed_mask = accessed_mask;
 | |
| 	shadow_dirty_mask = dirty_mask;
 | |
| 	shadow_nx_mask = nx_mask;
 | |
| 	shadow_x_mask = x_mask;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
 | |
| 
 | |
| static int is_write_protection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.cr0 & X86_CR0_WP;
 | |
| }
 | |
| 
 | |
| static int is_cpuid_PSE36(void)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int is_nx(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return vcpu->arch.shadow_efer & EFER_NX;
 | |
| }
 | |
| 
 | |
| static int is_shadow_present_pte(u64 pte)
 | |
| {
 | |
| 	return pte != shadow_trap_nonpresent_pte
 | |
| 		&& pte != shadow_notrap_nonpresent_pte;
 | |
| }
 | |
| 
 | |
| static int is_large_pte(u64 pte)
 | |
| {
 | |
| 	return pte & PT_PAGE_SIZE_MASK;
 | |
| }
 | |
| 
 | |
| static int is_writeble_pte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_WRITABLE_MASK;
 | |
| }
 | |
| 
 | |
| static int is_dirty_gpte(unsigned long pte)
 | |
| {
 | |
| 	return pte & PT_DIRTY_MASK;
 | |
| }
 | |
| 
 | |
| static int is_rmap_spte(u64 pte)
 | |
| {
 | |
| 	return is_shadow_present_pte(pte);
 | |
| }
 | |
| 
 | |
| static int is_last_spte(u64 pte, int level)
 | |
| {
 | |
| 	if (level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return 1;
 | |
| 	if (is_large_pte(pte))
 | |
| 		return 1;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static pfn_t spte_to_pfn(u64 pte)
 | |
| {
 | |
| 	return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| }
 | |
| 
 | |
| static gfn_t pse36_gfn_delta(u32 gpte)
 | |
| {
 | |
| 	int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
 | |
| 
 | |
| 	return (gpte & PT32_DIR_PSE36_MASK) << shift;
 | |
| }
 | |
| 
 | |
| static void __set_spte(u64 *sptep, u64 spte)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	set_64bit((unsigned long *)sptep, spte);
 | |
| #else
 | |
| 	set_64bit((unsigned long long *)sptep, spte);
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
 | |
| 				  struct kmem_cache *base_cache, int min)
 | |
| {
 | |
| 	void *obj;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
 | |
| 		if (!obj)
 | |
| 			return -ENOMEM;
 | |
| 		cache->objects[cache->nobjs++] = obj;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		kfree(mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
 | |
| 				       int min)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	if (cache->nobjs >= min)
 | |
| 		return 0;
 | |
| 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
 | |
| 		page = alloc_page(GFP_KERNEL);
 | |
| 		if (!page)
 | |
| 			return -ENOMEM;
 | |
| 		set_page_private(page, 0);
 | |
| 		cache->objects[cache->nobjs++] = page_address(page);
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
 | |
| {
 | |
| 	while (mc->nobjs)
 | |
| 		free_page((unsigned long)mc->objects[--mc->nobjs]);
 | |
| }
 | |
| 
 | |
| static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_chain_cache,
 | |
| 				   pte_chain_cache, 4);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_rmap_desc_cache,
 | |
| 				   rmap_desc_cache, 4);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
 | |
| 				   mmu_page_header_cache, 4);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_pte_chain_cache);
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_rmap_desc_cache);
 | |
| 	mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
 | |
| 	mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
 | |
| 				    size_t size)
 | |
| {
 | |
| 	void *p;
 | |
| 
 | |
| 	BUG_ON(!mc->nobjs);
 | |
| 	p = mc->objects[--mc->nobjs];
 | |
| 	return p;
 | |
| }
 | |
| 
 | |
| static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_chain_cache,
 | |
| 				      sizeof(struct kvm_pte_chain));
 | |
| }
 | |
| 
 | |
| static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
 | |
| {
 | |
| 	kfree(pc);
 | |
| }
 | |
| 
 | |
| static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	return mmu_memory_cache_alloc(&vcpu->arch.mmu_rmap_desc_cache,
 | |
| 				      sizeof(struct kvm_rmap_desc));
 | |
| }
 | |
| 
 | |
| static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
 | |
| {
 | |
| 	kfree(rd);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Return the pointer to the largepage write count for a given
 | |
|  * gfn, handling slots that are not large page aligned.
 | |
|  */
 | |
| static int *slot_largepage_idx(gfn_t gfn,
 | |
| 			       struct kvm_memory_slot *slot,
 | |
| 			       int level)
 | |
| {
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
 | |
| 	      (slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
 | |
| 	return &slot->lpage_info[level - 2][idx].write_count;
 | |
| }
 | |
| 
 | |
| static void account_shadowed(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	int *write_count;
 | |
| 	int i;
 | |
| 
 | |
| 	gfn = unalias_gfn(kvm, gfn);
 | |
| 
 | |
| 	slot = gfn_to_memslot_unaliased(kvm, gfn);
 | |
| 	for (i = PT_DIRECTORY_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		write_count   = slot_largepage_idx(gfn, slot, i);
 | |
| 		*write_count += 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	int *write_count;
 | |
| 	int i;
 | |
| 
 | |
| 	gfn = unalias_gfn(kvm, gfn);
 | |
| 	for (i = PT_DIRECTORY_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		slot          = gfn_to_memslot_unaliased(kvm, gfn);
 | |
| 		write_count   = slot_largepage_idx(gfn, slot, i);
 | |
| 		*write_count -= 1;
 | |
| 		WARN_ON(*write_count < 0);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int has_wrprotected_page(struct kvm *kvm,
 | |
| 				gfn_t gfn,
 | |
| 				int level)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	int *largepage_idx;
 | |
| 
 | |
| 	gfn = unalias_gfn(kvm, gfn);
 | |
| 	slot = gfn_to_memslot_unaliased(kvm, gfn);
 | |
| 	if (slot) {
 | |
| 		largepage_idx = slot_largepage_idx(gfn, slot, level);
 | |
| 		return *largepage_idx;
 | |
| 	}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned long page_size = PAGE_SIZE;
 | |
| 	struct vm_area_struct *vma;
 | |
| 	unsigned long addr;
 | |
| 	int i, ret = 0;
 | |
| 
 | |
| 	addr = gfn_to_hva(kvm, gfn);
 | |
| 	if (kvm_is_error_hva(addr))
 | |
| 		return PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	down_read(¤t->mm->mmap_sem);
 | |
| 	vma = find_vma(current->mm, addr);
 | |
| 	if (!vma)
 | |
| 		goto out;
 | |
| 
 | |
| 	page_size = vma_kernel_pagesize(vma);
 | |
| 
 | |
| out:
 | |
| 	up_read(¤t->mm->mmap_sem);
 | |
| 
 | |
| 	for (i = PT_PAGE_TABLE_LEVEL;
 | |
| 	     i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
 | |
| 		if (page_size >= KVM_HPAGE_SIZE(i))
 | |
| 			ret = i;
 | |
| 		else
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	int host_level;
 | |
| 	int level = PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	slot = gfn_to_memslot(vcpu->kvm, large_gfn);
 | |
| 	if (slot && slot->dirty_bitmap)
 | |
| 		return PT_PAGE_TABLE_LEVEL;
 | |
| 
 | |
| 	host_level = host_mapping_level(vcpu->kvm, large_gfn);
 | |
| 
 | |
| 	if (host_level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return host_level;
 | |
| 
 | |
| 	for (level = PT_DIRECTORY_LEVEL; level <= host_level; ++level)
 | |
| 		if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
 | |
| 			break;
 | |
| 
 | |
| 	return level - 1;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Take gfn and return the reverse mapping to it.
 | |
|  * Note: gfn must be unaliased before this function get called
 | |
|  */
 | |
| 
 | |
| static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
 | |
| {
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned long idx;
 | |
| 
 | |
| 	slot = gfn_to_memslot(kvm, gfn);
 | |
| 	if (likely(level == PT_PAGE_TABLE_LEVEL))
 | |
| 		return &slot->rmap[gfn - slot->base_gfn];
 | |
| 
 | |
| 	idx = (gfn / KVM_PAGES_PER_HPAGE(level)) -
 | |
| 		(slot->base_gfn / KVM_PAGES_PER_HPAGE(level));
 | |
| 
 | |
| 	return &slot->lpage_info[level - 2][idx].rmap_pde;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Reverse mapping data structures:
 | |
|  *
 | |
|  * If rmapp bit zero is zero, then rmapp point to the shadw page table entry
 | |
|  * that points to page_address(page).
 | |
|  *
 | |
|  * If rmapp bit zero is one, (then rmap & ~1) points to a struct kvm_rmap_desc
 | |
|  * containing more mappings.
 | |
|  *
 | |
|  * Returns the number of rmap entries before the spte was added or zero if
 | |
|  * the spte was not added.
 | |
|  *
 | |
|  */
 | |
| static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct kvm_rmap_desc *desc;
 | |
| 	unsigned long *rmapp;
 | |
| 	int i, count = 0;
 | |
| 
 | |
| 	if (!is_rmap_spte(*spte))
 | |
| 		return count;
 | |
| 	gfn = unalias_gfn(vcpu->kvm, gfn);
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	sp->gfns[spte - sp->spt] = gfn;
 | |
| 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
 | |
| 	if (!*rmapp) {
 | |
| 		rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
 | |
| 		*rmapp = (unsigned long)spte;
 | |
| 	} else if (!(*rmapp & 1)) {
 | |
| 		rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
 | |
| 		desc = mmu_alloc_rmap_desc(vcpu);
 | |
| 		desc->sptes[0] = (u64 *)*rmapp;
 | |
| 		desc->sptes[1] = spte;
 | |
| 		*rmapp = (unsigned long)desc | 1;
 | |
| 	} else {
 | |
| 		rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 		while (desc->sptes[RMAP_EXT-1] && desc->more) {
 | |
| 			desc = desc->more;
 | |
| 			count += RMAP_EXT;
 | |
| 		}
 | |
| 		if (desc->sptes[RMAP_EXT-1]) {
 | |
| 			desc->more = mmu_alloc_rmap_desc(vcpu);
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		for (i = 0; desc->sptes[i]; ++i)
 | |
| 			;
 | |
| 		desc->sptes[i] = spte;
 | |
| 	}
 | |
| 	return count;
 | |
| }
 | |
| 
 | |
| static void rmap_desc_remove_entry(unsigned long *rmapp,
 | |
| 				   struct kvm_rmap_desc *desc,
 | |
| 				   int i,
 | |
| 				   struct kvm_rmap_desc *prev_desc)
 | |
| {
 | |
| 	int j;
 | |
| 
 | |
| 	for (j = RMAP_EXT - 1; !desc->sptes[j] && j > i; --j)
 | |
| 		;
 | |
| 	desc->sptes[i] = desc->sptes[j];
 | |
| 	desc->sptes[j] = NULL;
 | |
| 	if (j != 0)
 | |
| 		return;
 | |
| 	if (!prev_desc && !desc->more)
 | |
| 		*rmapp = (unsigned long)desc->sptes[0];
 | |
| 	else
 | |
| 		if (prev_desc)
 | |
| 			prev_desc->more = desc->more;
 | |
| 		else
 | |
| 			*rmapp = (unsigned long)desc->more | 1;
 | |
| 	mmu_free_rmap_desc(desc);
 | |
| }
 | |
| 
 | |
| static void rmap_remove(struct kvm *kvm, u64 *spte)
 | |
| {
 | |
| 	struct kvm_rmap_desc *desc;
 | |
| 	struct kvm_rmap_desc *prev_desc;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	pfn_t pfn;
 | |
| 	unsigned long *rmapp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!is_rmap_spte(*spte))
 | |
| 		return;
 | |
| 	sp = page_header(__pa(spte));
 | |
| 	pfn = spte_to_pfn(*spte);
 | |
| 	if (*spte & shadow_accessed_mask)
 | |
| 		kvm_set_pfn_accessed(pfn);
 | |
| 	if (is_writeble_pte(*spte))
 | |
| 		kvm_set_pfn_dirty(pfn);
 | |
| 	rmapp = gfn_to_rmap(kvm, sp->gfns[spte - sp->spt], sp->role.level);
 | |
| 	if (!*rmapp) {
 | |
| 		printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
 | |
| 		BUG();
 | |
| 	} else if (!(*rmapp & 1)) {
 | |
| 		rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
 | |
| 		if ((u64 *)*rmapp != spte) {
 | |
| 			printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
 | |
| 			       spte, *spte);
 | |
| 			BUG();
 | |
| 		}
 | |
| 		*rmapp = 0;
 | |
| 	} else {
 | |
| 		rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
 | |
| 		desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 		prev_desc = NULL;
 | |
| 		while (desc) {
 | |
| 			for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i)
 | |
| 				if (desc->sptes[i] == spte) {
 | |
| 					rmap_desc_remove_entry(rmapp,
 | |
| 							       desc, i,
 | |
| 							       prev_desc);
 | |
| 					return;
 | |
| 				}
 | |
| 			prev_desc = desc;
 | |
| 			desc = desc->more;
 | |
| 		}
 | |
| 		BUG();
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static u64 *rmap_next(struct kvm *kvm, unsigned long *rmapp, u64 *spte)
 | |
| {
 | |
| 	struct kvm_rmap_desc *desc;
 | |
| 	struct kvm_rmap_desc *prev_desc;
 | |
| 	u64 *prev_spte;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!*rmapp)
 | |
| 		return NULL;
 | |
| 	else if (!(*rmapp & 1)) {
 | |
| 		if (!spte)
 | |
| 			return (u64 *)*rmapp;
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	desc = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 	prev_desc = NULL;
 | |
| 	prev_spte = NULL;
 | |
| 	while (desc) {
 | |
| 		for (i = 0; i < RMAP_EXT && desc->sptes[i]; ++i) {
 | |
| 			if (prev_spte == spte)
 | |
| 				return desc->sptes[i];
 | |
| 			prev_spte = desc->sptes[i];
 | |
| 		}
 | |
| 		desc = desc->more;
 | |
| 	}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static int rmap_write_protect(struct kvm *kvm, u64 gfn)
 | |
| {
 | |
| 	unsigned long *rmapp;
 | |
| 	u64 *spte;
 | |
| 	int i, write_protected = 0;
 | |
| 
 | |
| 	gfn = unalias_gfn(kvm, gfn);
 | |
| 	rmapp = gfn_to_rmap(kvm, gfn, PT_PAGE_TABLE_LEVEL);
 | |
| 
 | |
| 	spte = rmap_next(kvm, rmapp, NULL);
 | |
| 	while (spte) {
 | |
| 		BUG_ON(!spte);
 | |
| 		BUG_ON(!(*spte & PT_PRESENT_MASK));
 | |
| 		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
 | |
| 		if (is_writeble_pte(*spte)) {
 | |
| 			__set_spte(spte, *spte & ~PT_WRITABLE_MASK);
 | |
| 			write_protected = 1;
 | |
| 		}
 | |
| 		spte = rmap_next(kvm, rmapp, spte);
 | |
| 	}
 | |
| 	if (write_protected) {
 | |
| 		pfn_t pfn;
 | |
| 
 | |
| 		spte = rmap_next(kvm, rmapp, NULL);
 | |
| 		pfn = spte_to_pfn(*spte);
 | |
| 		kvm_set_pfn_dirty(pfn);
 | |
| 	}
 | |
| 
 | |
| 	/* check for huge page mappings */
 | |
| 	for (i = PT_DIRECTORY_LEVEL;
 | |
| 	     i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
 | |
| 		rmapp = gfn_to_rmap(kvm, gfn, i);
 | |
| 		spte = rmap_next(kvm, rmapp, NULL);
 | |
| 		while (spte) {
 | |
| 			BUG_ON(!spte);
 | |
| 			BUG_ON(!(*spte & PT_PRESENT_MASK));
 | |
| 			BUG_ON((*spte & (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK)) != (PT_PAGE_SIZE_MASK|PT_PRESENT_MASK));
 | |
| 			pgprintk("rmap_write_protect(large): spte %p %llx %lld\n", spte, *spte, gfn);
 | |
| 			if (is_writeble_pte(*spte)) {
 | |
| 				rmap_remove(kvm, spte);
 | |
| 				--kvm->stat.lpages;
 | |
| 				__set_spte(spte, shadow_trap_nonpresent_pte);
 | |
| 				spte = NULL;
 | |
| 				write_protected = 1;
 | |
| 			}
 | |
| 			spte = rmap_next(kvm, rmapp, spte);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return write_protected;
 | |
| }
 | |
| 
 | |
| static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			   unsigned long data)
 | |
| {
 | |
| 	u64 *spte;
 | |
| 	int need_tlb_flush = 0;
 | |
| 
 | |
| 	while ((spte = rmap_next(kvm, rmapp, NULL))) {
 | |
| 		BUG_ON(!(*spte & PT_PRESENT_MASK));
 | |
| 		rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", spte, *spte);
 | |
| 		rmap_remove(kvm, spte);
 | |
| 		__set_spte(spte, shadow_trap_nonpresent_pte);
 | |
| 		need_tlb_flush = 1;
 | |
| 	}
 | |
| 	return need_tlb_flush;
 | |
| }
 | |
| 
 | |
| static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			     unsigned long data)
 | |
| {
 | |
| 	int need_flush = 0;
 | |
| 	u64 *spte, new_spte;
 | |
| 	pte_t *ptep = (pte_t *)data;
 | |
| 	pfn_t new_pfn;
 | |
| 
 | |
| 	WARN_ON(pte_huge(*ptep));
 | |
| 	new_pfn = pte_pfn(*ptep);
 | |
| 	spte = rmap_next(kvm, rmapp, NULL);
 | |
| 	while (spte) {
 | |
| 		BUG_ON(!is_shadow_present_pte(*spte));
 | |
| 		rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", spte, *spte);
 | |
| 		need_flush = 1;
 | |
| 		if (pte_write(*ptep)) {
 | |
| 			rmap_remove(kvm, spte);
 | |
| 			__set_spte(spte, shadow_trap_nonpresent_pte);
 | |
| 			spte = rmap_next(kvm, rmapp, NULL);
 | |
| 		} else {
 | |
| 			new_spte = *spte &~ (PT64_BASE_ADDR_MASK);
 | |
| 			new_spte |= (u64)new_pfn << PAGE_SHIFT;
 | |
| 
 | |
| 			new_spte &= ~PT_WRITABLE_MASK;
 | |
| 			new_spte &= ~SPTE_HOST_WRITEABLE;
 | |
| 			if (is_writeble_pte(*spte))
 | |
| 				kvm_set_pfn_dirty(spte_to_pfn(*spte));
 | |
| 			__set_spte(spte, new_spte);
 | |
| 			spte = rmap_next(kvm, rmapp, spte);
 | |
| 		}
 | |
| 	}
 | |
| 	if (need_flush)
 | |
| 		kvm_flush_remote_tlbs(kvm);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
 | |
| 			  unsigned long data,
 | |
| 			  int (*handler)(struct kvm *kvm, unsigned long *rmapp,
 | |
| 					 unsigned long data))
 | |
| {
 | |
| 	int i, j;
 | |
| 	int retval = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * If mmap_sem isn't taken, we can look the memslots with only
 | |
| 	 * the mmu_lock by skipping over the slots with userspace_addr == 0.
 | |
| 	 */
 | |
| 	for (i = 0; i < kvm->nmemslots; i++) {
 | |
| 		struct kvm_memory_slot *memslot = &kvm->memslots[i];
 | |
| 		unsigned long start = memslot->userspace_addr;
 | |
| 		unsigned long end;
 | |
| 
 | |
| 		/* mmu_lock protects userspace_addr */
 | |
| 		if (!start)
 | |
| 			continue;
 | |
| 
 | |
| 		end = start + (memslot->npages << PAGE_SHIFT);
 | |
| 		if (hva >= start && hva < end) {
 | |
| 			gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
 | |
| 
 | |
| 			retval |= handler(kvm, &memslot->rmap[gfn_offset],
 | |
| 					  data);
 | |
| 
 | |
| 			for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
 | |
| 				int idx = gfn_offset;
 | |
| 				idx /= KVM_PAGES_PER_HPAGE(PT_DIRECTORY_LEVEL + j);
 | |
| 				retval |= handler(kvm,
 | |
| 					&memslot->lpage_info[j][idx].rmap_pde,
 | |
| 					data);
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return retval;
 | |
| }
 | |
| 
 | |
| int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
 | |
| }
 | |
| 
 | |
| void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
 | |
| {
 | |
| 	kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
 | |
| }
 | |
| 
 | |
| static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
 | |
| 			 unsigned long data)
 | |
| {
 | |
| 	u64 *spte;
 | |
| 	int young = 0;
 | |
| 
 | |
| 	/* always return old for EPT */
 | |
| 	if (!shadow_accessed_mask)
 | |
| 		return 0;
 | |
| 
 | |
| 	spte = rmap_next(kvm, rmapp, NULL);
 | |
| 	while (spte) {
 | |
| 		int _young;
 | |
| 		u64 _spte = *spte;
 | |
| 		BUG_ON(!(_spte & PT_PRESENT_MASK));
 | |
| 		_young = _spte & PT_ACCESSED_MASK;
 | |
| 		if (_young) {
 | |
| 			young = 1;
 | |
| 			clear_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
 | |
| 		}
 | |
| 		spte = rmap_next(kvm, rmapp, spte);
 | |
| 	}
 | |
| 	return young;
 | |
| }
 | |
| 
 | |
| #define RMAP_RECYCLE_THRESHOLD 1000
 | |
| 
 | |
| static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
 | |
| {
 | |
| 	unsigned long *rmapp;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = page_header(__pa(spte));
 | |
| 
 | |
| 	gfn = unalias_gfn(vcpu->kvm, gfn);
 | |
| 	rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
 | |
| 
 | |
| 	kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
 | |
| 	kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| }
 | |
| 
 | |
| int kvm_age_hva(struct kvm *kvm, unsigned long hva)
 | |
| {
 | |
| 	return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
 | |
| }
 | |
| 
 | |
| #ifdef MMU_DEBUG
 | |
| static int is_empty_shadow_page(u64 *spt)
 | |
| {
 | |
| 	u64 *pos;
 | |
| 	u64 *end;
 | |
| 
 | |
| 	for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
 | |
| 		if (is_shadow_present_pte(*pos)) {
 | |
| 			printk(KERN_ERR "%s: %p %llx\n", __func__,
 | |
| 			       pos, *pos);
 | |
| 			return 0;
 | |
| 		}
 | |
| 	return 1;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static void kvm_mmu_free_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	ASSERT(is_empty_shadow_page(sp->spt));
 | |
| 	list_del(&sp->link);
 | |
| 	__free_page(virt_to_page(sp->spt));
 | |
| 	__free_page(virt_to_page(sp->gfns));
 | |
| 	kfree(sp);
 | |
| 	++kvm->arch.n_free_mmu_pages;
 | |
| }
 | |
| 
 | |
| static unsigned kvm_page_table_hashfn(gfn_t gfn)
 | |
| {
 | |
| 	return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
 | |
| 					       u64 *parent_pte)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache, sizeof *sp);
 | |
| 	sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
 | |
| 	sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache, PAGE_SIZE);
 | |
| 	set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
 | |
| 	list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
 | |
| 	INIT_LIST_HEAD(&sp->oos_link);
 | |
| 	bitmap_zero(sp->slot_bitmap, KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS);
 | |
| 	sp->multimapped = 0;
 | |
| 	sp->parent_pte = parent_pte;
 | |
| 	--vcpu->kvm->arch.n_free_mmu_pages;
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	struct kvm_pte_chain *pte_chain;
 | |
| 	struct hlist_node *node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!parent_pte)
 | |
| 		return;
 | |
| 	if (!sp->multimapped) {
 | |
| 		u64 *old = sp->parent_pte;
 | |
| 
 | |
| 		if (!old) {
 | |
| 			sp->parent_pte = parent_pte;
 | |
| 			return;
 | |
| 		}
 | |
| 		sp->multimapped = 1;
 | |
| 		pte_chain = mmu_alloc_pte_chain(vcpu);
 | |
| 		INIT_HLIST_HEAD(&sp->parent_ptes);
 | |
| 		hlist_add_head(&pte_chain->link, &sp->parent_ptes);
 | |
| 		pte_chain->parent_ptes[0] = old;
 | |
| 	}
 | |
| 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link) {
 | |
| 		if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
 | |
| 			continue;
 | |
| 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
 | |
| 			if (!pte_chain->parent_ptes[i]) {
 | |
| 				pte_chain->parent_ptes[i] = parent_pte;
 | |
| 				return;
 | |
| 			}
 | |
| 	}
 | |
| 	pte_chain = mmu_alloc_pte_chain(vcpu);
 | |
| 	BUG_ON(!pte_chain);
 | |
| 	hlist_add_head(&pte_chain->link, &sp->parent_ptes);
 | |
| 	pte_chain->parent_ptes[0] = parent_pte;
 | |
| }
 | |
| 
 | |
| static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
 | |
| 				       u64 *parent_pte)
 | |
| {
 | |
| 	struct kvm_pte_chain *pte_chain;
 | |
| 	struct hlist_node *node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sp->multimapped) {
 | |
| 		BUG_ON(sp->parent_pte != parent_pte);
 | |
| 		sp->parent_pte = NULL;
 | |
| 		return;
 | |
| 	}
 | |
| 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
 | |
| 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
 | |
| 			if (!pte_chain->parent_ptes[i])
 | |
| 				break;
 | |
| 			if (pte_chain->parent_ptes[i] != parent_pte)
 | |
| 				continue;
 | |
| 			while (i + 1 < NR_PTE_CHAIN_ENTRIES
 | |
| 				&& pte_chain->parent_ptes[i + 1]) {
 | |
| 				pte_chain->parent_ptes[i]
 | |
| 					= pte_chain->parent_ptes[i + 1];
 | |
| 				++i;
 | |
| 			}
 | |
| 			pte_chain->parent_ptes[i] = NULL;
 | |
| 			if (i == 0) {
 | |
| 				hlist_del(&pte_chain->link);
 | |
| 				mmu_free_pte_chain(pte_chain);
 | |
| 				if (hlist_empty(&sp->parent_ptes)) {
 | |
| 					sp->multimapped = 0;
 | |
| 					sp->parent_pte = NULL;
 | |
| 				}
 | |
| 			}
 | |
| 			return;
 | |
| 		}
 | |
| 	BUG();
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mmu_parent_walk(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
 | |
| 			    mmu_parent_walk_fn fn)
 | |
| {
 | |
| 	struct kvm_pte_chain *pte_chain;
 | |
| 	struct hlist_node *node;
 | |
| 	struct kvm_mmu_page *parent_sp;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sp->multimapped && sp->parent_pte) {
 | |
| 		parent_sp = page_header(__pa(sp->parent_pte));
 | |
| 		fn(vcpu, parent_sp);
 | |
| 		mmu_parent_walk(vcpu, parent_sp, fn);
 | |
| 		return;
 | |
| 	}
 | |
| 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
 | |
| 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
 | |
| 			if (!pte_chain->parent_ptes[i])
 | |
| 				break;
 | |
| 			parent_sp = page_header(__pa(pte_chain->parent_ptes[i]));
 | |
| 			fn(vcpu, parent_sp);
 | |
| 			mmu_parent_walk(vcpu, parent_sp, fn);
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_update_unsync_bitmap(u64 *spte)
 | |
| {
 | |
| 	unsigned int index;
 | |
| 	struct kvm_mmu_page *sp = page_header(__pa(spte));
 | |
| 
 | |
| 	index = spte - sp->spt;
 | |
| 	if (!__test_and_set_bit(index, sp->unsync_child_bitmap))
 | |
| 		sp->unsync_children++;
 | |
| 	WARN_ON(!sp->unsync_children);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_update_parents_unsync(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	struct kvm_pte_chain *pte_chain;
 | |
| 	struct hlist_node *node;
 | |
| 	int i;
 | |
| 
 | |
| 	if (!sp->parent_pte)
 | |
| 		return;
 | |
| 
 | |
| 	if (!sp->multimapped) {
 | |
| 		kvm_mmu_update_unsync_bitmap(sp->parent_pte);
 | |
| 		return;
 | |
| 	}
 | |
| 
 | |
| 	hlist_for_each_entry(pte_chain, node, &sp->parent_ptes, link)
 | |
| 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
 | |
| 			if (!pte_chain->parent_ptes[i])
 | |
| 				break;
 | |
| 			kvm_mmu_update_unsync_bitmap(pte_chain->parent_ptes[i]);
 | |
| 		}
 | |
| }
 | |
| 
 | |
| static int unsync_walk_fn(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	kvm_mmu_update_parents_unsync(sp);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_mark_parents_unsync(struct kvm_vcpu *vcpu,
 | |
| 					struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	mmu_parent_walk(vcpu, sp, unsync_walk_fn);
 | |
| 	kvm_mmu_update_parents_unsync(sp);
 | |
| }
 | |
| 
 | |
| static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
 | |
| 				    struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 		sp->spt[i] = shadow_trap_nonpresent_pte;
 | |
| }
 | |
| 
 | |
| static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
 | |
| 			       struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| }
 | |
| 
 | |
| #define KVM_PAGE_ARRAY_NR 16
 | |
| 
 | |
| struct kvm_mmu_pages {
 | |
| 	struct mmu_page_and_offset {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 		unsigned int idx;
 | |
| 	} page[KVM_PAGE_ARRAY_NR];
 | |
| 	unsigned int nr;
 | |
| };
 | |
| 
 | |
| #define for_each_unsync_children(bitmap, idx)		\
 | |
| 	for (idx = find_first_bit(bitmap, 512);		\
 | |
| 	     idx < 512;					\
 | |
| 	     idx = find_next_bit(bitmap, 512, idx+1))
 | |
| 
 | |
| static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
 | |
| 			 int idx)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	if (sp->unsync)
 | |
| 		for (i=0; i < pvec->nr; i++)
 | |
| 			if (pvec->page[i].sp == sp)
 | |
| 				return 0;
 | |
| 
 | |
| 	pvec->page[pvec->nr].sp = sp;
 | |
| 	pvec->page[pvec->nr].idx = idx;
 | |
| 	pvec->nr++;
 | |
| 	return (pvec->nr == KVM_PAGE_ARRAY_NR);
 | |
| }
 | |
| 
 | |
| static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	int i, ret, nr_unsync_leaf = 0;
 | |
| 
 | |
| 	for_each_unsync_children(sp->unsync_child_bitmap, i) {
 | |
| 		u64 ent = sp->spt[i];
 | |
| 
 | |
| 		if (is_shadow_present_pte(ent) && !is_large_pte(ent)) {
 | |
| 			struct kvm_mmu_page *child;
 | |
| 			child = page_header(ent & PT64_BASE_ADDR_MASK);
 | |
| 
 | |
| 			if (child->unsync_children) {
 | |
| 				if (mmu_pages_add(pvec, child, i))
 | |
| 					return -ENOSPC;
 | |
| 
 | |
| 				ret = __mmu_unsync_walk(child, pvec);
 | |
| 				if (!ret)
 | |
| 					__clear_bit(i, sp->unsync_child_bitmap);
 | |
| 				else if (ret > 0)
 | |
| 					nr_unsync_leaf += ret;
 | |
| 				else
 | |
| 					return ret;
 | |
| 			}
 | |
| 
 | |
| 			if (child->unsync) {
 | |
| 				nr_unsync_leaf++;
 | |
| 				if (mmu_pages_add(pvec, child, i))
 | |
| 					return -ENOSPC;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (find_first_bit(sp->unsync_child_bitmap, 512) == 512)
 | |
| 		sp->unsync_children = 0;
 | |
| 
 | |
| 	return nr_unsync_leaf;
 | |
| }
 | |
| 
 | |
| static int mmu_unsync_walk(struct kvm_mmu_page *sp,
 | |
| 			   struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	if (!sp->unsync_children)
 | |
| 		return 0;
 | |
| 
 | |
| 	mmu_pages_add(pvec, sp, 0);
 | |
| 	return __mmu_unsync_walk(sp, pvec);
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
 | |
| 	index = kvm_page_table_hashfn(gfn);
 | |
| 	bucket = &kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry(sp, node, bucket, hash_link)
 | |
| 		if (sp->gfn == gfn && !sp->role.direct
 | |
| 		    && !sp->role.invalid) {
 | |
| 			pgprintk("%s: found role %x\n",
 | |
| 				 __func__, sp->role.word);
 | |
| 			return sp;
 | |
| 		}
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	WARN_ON(!sp->unsync);
 | |
| 	sp->unsync = 0;
 | |
| 	--kvm->stat.mmu_unsync;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp);
 | |
| 
 | |
| static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	if (sp->role.glevels != vcpu->arch.mmu.root_level) {
 | |
| 		kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	trace_kvm_mmu_sync_page(sp);
 | |
| 	if (rmap_write_protect(vcpu->kvm, sp->gfn))
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 	kvm_unlink_unsync_page(vcpu->kvm, sp);
 | |
| 	if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
 | |
| 		kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	kvm_mmu_flush_tlb(vcpu);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| struct mmu_page_path {
 | |
| 	struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
 | |
| 	unsigned int idx[PT64_ROOT_LEVEL-1];
 | |
| };
 | |
| 
 | |
| #define for_each_sp(pvec, sp, parents, i)			\
 | |
| 		for (i = mmu_pages_next(&pvec, &parents, -1),	\
 | |
| 			sp = pvec.page[i].sp;			\
 | |
| 			i < pvec.nr && ({ sp = pvec.page[i].sp; 1;});	\
 | |
| 			i = mmu_pages_next(&pvec, &parents, i))
 | |
| 
 | |
| static int mmu_pages_next(struct kvm_mmu_pages *pvec,
 | |
| 			  struct mmu_page_path *parents,
 | |
| 			  int i)
 | |
| {
 | |
| 	int n;
 | |
| 
 | |
| 	for (n = i+1; n < pvec->nr; n++) {
 | |
| 		struct kvm_mmu_page *sp = pvec->page[n].sp;
 | |
| 
 | |
| 		if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
 | |
| 			parents->idx[0] = pvec->page[n].idx;
 | |
| 			return n;
 | |
| 		}
 | |
| 
 | |
| 		parents->parent[sp->role.level-2] = sp;
 | |
| 		parents->idx[sp->role.level-1] = pvec->page[n].idx;
 | |
| 	}
 | |
| 
 | |
| 	return n;
 | |
| }
 | |
| 
 | |
| static void mmu_pages_clear_parents(struct mmu_page_path *parents)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	unsigned int level = 0;
 | |
| 
 | |
| 	do {
 | |
| 		unsigned int idx = parents->idx[level];
 | |
| 
 | |
| 		sp = parents->parent[level];
 | |
| 		if (!sp)
 | |
| 			return;
 | |
| 
 | |
| 		--sp->unsync_children;
 | |
| 		WARN_ON((int)sp->unsync_children < 0);
 | |
| 		__clear_bit(idx, sp->unsync_child_bitmap);
 | |
| 		level++;
 | |
| 	} while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
 | |
| 			       struct mmu_page_path *parents,
 | |
| 			       struct kvm_mmu_pages *pvec)
 | |
| {
 | |
| 	parents->parent[parent->role.level-1] = NULL;
 | |
| 	pvec->nr = 0;
 | |
| }
 | |
| 
 | |
| static void mmu_sync_children(struct kvm_vcpu *vcpu,
 | |
| 			      struct kvm_mmu_page *parent)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 
 | |
| 	kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		int protected = 0;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i)
 | |
| 			protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
 | |
| 
 | |
| 		if (protected)
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_sync_page(vcpu, sp);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 		}
 | |
| 		cond_resched_lock(&vcpu->kvm->mmu_lock);
 | |
| 		kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
 | |
| 					     gfn_t gfn,
 | |
| 					     gva_t gaddr,
 | |
| 					     unsigned level,
 | |
| 					     int direct,
 | |
| 					     unsigned access,
 | |
| 					     u64 *parent_pte)
 | |
| {
 | |
| 	union kvm_mmu_page_role role;
 | |
| 	unsigned index;
 | |
| 	unsigned quadrant;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node, *tmp;
 | |
| 
 | |
| 	role = vcpu->arch.mmu.base_role;
 | |
| 	role.level = level;
 | |
| 	role.direct = direct;
 | |
| 	role.access = access;
 | |
| 	if (vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
 | |
| 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
 | |
| 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
 | |
| 		role.quadrant = quadrant;
 | |
| 	}
 | |
| 	index = kvm_page_table_hashfn(gfn);
 | |
| 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry_safe(sp, node, tmp, bucket, hash_link)
 | |
| 		if (sp->gfn == gfn) {
 | |
| 			if (sp->unsync)
 | |
| 				if (kvm_sync_page(vcpu, sp))
 | |
| 					continue;
 | |
| 
 | |
| 			if (sp->role.word != role.word)
 | |
| 				continue;
 | |
| 
 | |
| 			mmu_page_add_parent_pte(vcpu, sp, parent_pte);
 | |
| 			if (sp->unsync_children) {
 | |
| 				set_bit(KVM_REQ_MMU_SYNC, &vcpu->requests);
 | |
| 				kvm_mmu_mark_parents_unsync(vcpu, sp);
 | |
| 			}
 | |
| 			trace_kvm_mmu_get_page(sp, false);
 | |
| 			return sp;
 | |
| 		}
 | |
| 	++vcpu->kvm->stat.mmu_cache_miss;
 | |
| 	sp = kvm_mmu_alloc_page(vcpu, parent_pte);
 | |
| 	if (!sp)
 | |
| 		return sp;
 | |
| 	sp->gfn = gfn;
 | |
| 	sp->role = role;
 | |
| 	hlist_add_head(&sp->hash_link, bucket);
 | |
| 	if (!direct) {
 | |
| 		if (rmap_write_protect(vcpu->kvm, gfn))
 | |
| 			kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 		account_shadowed(vcpu->kvm, gfn);
 | |
| 	}
 | |
| 	if (shadow_trap_nonpresent_pte != shadow_notrap_nonpresent_pte)
 | |
| 		vcpu->arch.mmu.prefetch_page(vcpu, sp);
 | |
| 	else
 | |
| 		nonpaging_prefetch_page(vcpu, sp);
 | |
| 	trace_kvm_mmu_get_page(sp, true);
 | |
| 	return sp;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
 | |
| 			     struct kvm_vcpu *vcpu, u64 addr)
 | |
| {
 | |
| 	iterator->addr = addr;
 | |
| 	iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
 | |
| 	iterator->level = vcpu->arch.mmu.shadow_root_level;
 | |
| 	if (iterator->level == PT32E_ROOT_LEVEL) {
 | |
| 		iterator->shadow_addr
 | |
| 			= vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
 | |
| 		iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
 | |
| 		--iterator->level;
 | |
| 		if (!iterator->shadow_addr)
 | |
| 			iterator->level = 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	if (iterator->level < PT_PAGE_TABLE_LEVEL)
 | |
| 		return false;
 | |
| 
 | |
| 	if (iterator->level == PT_PAGE_TABLE_LEVEL)
 | |
| 		if (is_large_pte(*iterator->sptep))
 | |
| 			return false;
 | |
| 
 | |
| 	iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
 | |
| 	iterator->sptep	= ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
 | |
| 	return true;
 | |
| }
 | |
| 
 | |
| static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
 | |
| {
 | |
| 	iterator->shadow_addr = *iterator->sptep & PT64_BASE_ADDR_MASK;
 | |
| 	--iterator->level;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_page_unlink_children(struct kvm *kvm,
 | |
| 					 struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	unsigned i;
 | |
| 	u64 *pt;
 | |
| 	u64 ent;
 | |
| 
 | |
| 	pt = sp->spt;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 		ent = pt[i];
 | |
| 
 | |
| 		if (is_shadow_present_pte(ent)) {
 | |
| 			if (!is_last_spte(ent, sp->role.level)) {
 | |
| 				ent &= PT64_BASE_ADDR_MASK;
 | |
| 				mmu_page_remove_parent_pte(page_header(ent),
 | |
| 							   &pt[i]);
 | |
| 			} else {
 | |
| 				if (is_large_pte(ent))
 | |
| 					--kvm->stat.lpages;
 | |
| 				rmap_remove(kvm, &pt[i]);
 | |
| 			}
 | |
| 		}
 | |
| 		pt[i] = shadow_trap_nonpresent_pte;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
 | |
| {
 | |
| 	mmu_page_remove_parent_pte(sp, parent_pte);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_vcpu *vcpu;
 | |
| 
 | |
| 	kvm_for_each_vcpu(i, vcpu, kvm)
 | |
| 		vcpu->arch.last_pte_updated = NULL;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	u64 *parent_pte;
 | |
| 
 | |
| 	while (sp->multimapped || sp->parent_pte) {
 | |
| 		if (!sp->multimapped)
 | |
| 			parent_pte = sp->parent_pte;
 | |
| 		else {
 | |
| 			struct kvm_pte_chain *chain;
 | |
| 
 | |
| 			chain = container_of(sp->parent_ptes.first,
 | |
| 					     struct kvm_pte_chain, link);
 | |
| 			parent_pte = chain->parent_ptes[0];
 | |
| 		}
 | |
| 		BUG_ON(!parent_pte);
 | |
| 		kvm_mmu_put_page(sp, parent_pte);
 | |
| 		__set_spte(parent_pte, shadow_trap_nonpresent_pte);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int mmu_zap_unsync_children(struct kvm *kvm,
 | |
| 				   struct kvm_mmu_page *parent)
 | |
| {
 | |
| 	int i, zapped = 0;
 | |
| 	struct mmu_page_path parents;
 | |
| 	struct kvm_mmu_pages pages;
 | |
| 
 | |
| 	if (parent->role.level == PT_PAGE_TABLE_LEVEL)
 | |
| 		return 0;
 | |
| 
 | |
| 	kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	while (mmu_unsync_walk(parent, &pages)) {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 
 | |
| 		for_each_sp(pages, sp, parents, i) {
 | |
| 			kvm_mmu_zap_page(kvm, sp);
 | |
| 			mmu_pages_clear_parents(&parents);
 | |
| 		}
 | |
| 		zapped += pages.nr;
 | |
| 		kvm_mmu_pages_init(parent, &parents, &pages);
 | |
| 	}
 | |
| 
 | |
| 	return zapped;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int ret;
 | |
| 
 | |
| 	trace_kvm_mmu_zap_page(sp);
 | |
| 	++kvm->stat.mmu_shadow_zapped;
 | |
| 	ret = mmu_zap_unsync_children(kvm, sp);
 | |
| 	kvm_mmu_page_unlink_children(kvm, sp);
 | |
| 	kvm_mmu_unlink_parents(kvm, sp);
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| 	if (!sp->role.invalid && !sp->role.direct)
 | |
| 		unaccount_shadowed(kvm, sp->gfn);
 | |
| 	if (sp->unsync)
 | |
| 		kvm_unlink_unsync_page(kvm, sp);
 | |
| 	if (!sp->root_count) {
 | |
| 		hlist_del(&sp->hash_link);
 | |
| 		kvm_mmu_free_page(kvm, sp);
 | |
| 	} else {
 | |
| 		sp->role.invalid = 1;
 | |
| 		list_move(&sp->link, &kvm->arch.active_mmu_pages);
 | |
| 		kvm_reload_remote_mmus(kvm);
 | |
| 	}
 | |
| 	kvm_mmu_reset_last_pte_updated(kvm);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Changing the number of mmu pages allocated to the vm
 | |
|  * Note: if kvm_nr_mmu_pages is too small, you will get dead lock
 | |
|  */
 | |
| void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int kvm_nr_mmu_pages)
 | |
| {
 | |
| 	int used_pages;
 | |
| 
 | |
| 	used_pages = kvm->arch.n_alloc_mmu_pages - kvm->arch.n_free_mmu_pages;
 | |
| 	used_pages = max(0, used_pages);
 | |
| 
 | |
| 	/*
 | |
| 	 * If we set the number of mmu pages to be smaller be than the
 | |
| 	 * number of actived pages , we must to free some mmu pages before we
 | |
| 	 * change the value
 | |
| 	 */
 | |
| 
 | |
| 	if (used_pages > kvm_nr_mmu_pages) {
 | |
| 		while (used_pages > kvm_nr_mmu_pages) {
 | |
| 			struct kvm_mmu_page *page;
 | |
| 
 | |
| 			page = container_of(kvm->arch.active_mmu_pages.prev,
 | |
| 					    struct kvm_mmu_page, link);
 | |
| 			kvm_mmu_zap_page(kvm, page);
 | |
| 			used_pages--;
 | |
| 		}
 | |
| 		kvm->arch.n_free_mmu_pages = 0;
 | |
| 	}
 | |
| 	else
 | |
| 		kvm->arch.n_free_mmu_pages += kvm_nr_mmu_pages
 | |
| 					 - kvm->arch.n_alloc_mmu_pages;
 | |
| 
 | |
| 	kvm->arch.n_alloc_mmu_pages = kvm_nr_mmu_pages;
 | |
| }
 | |
| 
 | |
| static int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node, *n;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: looking for gfn %lx\n", __func__, gfn);
 | |
| 	r = 0;
 | |
| 	index = kvm_page_table_hashfn(gfn);
 | |
| 	bucket = &kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry_safe(sp, node, n, bucket, hash_link)
 | |
| 		if (sp->gfn == gfn && !sp->role.direct) {
 | |
| 			pgprintk("%s: gfn %lx role %x\n", __func__, gfn,
 | |
| 				 sp->role.word);
 | |
| 			r = 1;
 | |
| 			if (kvm_mmu_zap_page(kvm, sp))
 | |
| 				n = bucket->first;
 | |
| 		}
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static void mmu_unshadow(struct kvm *kvm, gfn_t gfn)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node, *nn;
 | |
| 
 | |
| 	index = kvm_page_table_hashfn(gfn);
 | |
| 	bucket = &kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry_safe(sp, node, nn, bucket, hash_link) {
 | |
| 		if (sp->gfn == gfn && !sp->role.direct
 | |
| 		    && !sp->role.invalid) {
 | |
| 			pgprintk("%s: zap %lx %x\n",
 | |
| 				 __func__, gfn, sp->role.word);
 | |
| 			kvm_mmu_zap_page(kvm, sp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
 | |
| {
 | |
| 	int slot = memslot_id(kvm, gfn_to_memslot(kvm, gfn));
 | |
| 	struct kvm_mmu_page *sp = page_header(__pa(pte));
 | |
| 
 | |
| 	__set_bit(slot, sp->slot_bitmap);
 | |
| }
 | |
| 
 | |
| static void mmu_convert_notrap(struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 *pt = sp->spt;
 | |
| 
 | |
| 	if (shadow_trap_nonpresent_pte == shadow_notrap_nonpresent_pte)
 | |
| 		return;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 		if (pt[i] == shadow_notrap_nonpresent_pte)
 | |
| 			__set_spte(&pt[i], shadow_trap_nonpresent_pte);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	struct page *page;
 | |
| 
 | |
| 	gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
 | |
| 
 | |
| 	if (gpa == UNMAPPED_GVA)
 | |
| 		return NULL;
 | |
| 
 | |
| 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 
 | |
| 	return page;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * The function is based on mtrr_type_lookup() in
 | |
|  * arch/x86/kernel/cpu/mtrr/generic.c
 | |
|  */
 | |
| static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
 | |
| 			 u64 start, u64 end)
 | |
| {
 | |
| 	int i;
 | |
| 	u64 base, mask;
 | |
| 	u8 prev_match, curr_match;
 | |
| 	int num_var_ranges = KVM_NR_VAR_MTRR;
 | |
| 
 | |
| 	if (!mtrr_state->enabled)
 | |
| 		return 0xFF;
 | |
| 
 | |
| 	/* Make end inclusive end, instead of exclusive */
 | |
| 	end--;
 | |
| 
 | |
| 	/* Look in fixed ranges. Just return the type as per start */
 | |
| 	if (mtrr_state->have_fixed && (start < 0x100000)) {
 | |
| 		int idx;
 | |
| 
 | |
| 		if (start < 0x80000) {
 | |
| 			idx = 0;
 | |
| 			idx += (start >> 16);
 | |
| 			return mtrr_state->fixed_ranges[idx];
 | |
| 		} else if (start < 0xC0000) {
 | |
| 			idx = 1 * 8;
 | |
| 			idx += ((start - 0x80000) >> 14);
 | |
| 			return mtrr_state->fixed_ranges[idx];
 | |
| 		} else if (start < 0x1000000) {
 | |
| 			idx = 3 * 8;
 | |
| 			idx += ((start - 0xC0000) >> 12);
 | |
| 			return mtrr_state->fixed_ranges[idx];
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/*
 | |
| 	 * Look in variable ranges
 | |
| 	 * Look of multiple ranges matching this address and pick type
 | |
| 	 * as per MTRR precedence
 | |
| 	 */
 | |
| 	if (!(mtrr_state->enabled & 2))
 | |
| 		return mtrr_state->def_type;
 | |
| 
 | |
| 	prev_match = 0xFF;
 | |
| 	for (i = 0; i < num_var_ranges; ++i) {
 | |
| 		unsigned short start_state, end_state;
 | |
| 
 | |
| 		if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
 | |
| 			continue;
 | |
| 
 | |
| 		base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
 | |
| 		       (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
 | |
| 		mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
 | |
| 		       (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
 | |
| 
 | |
| 		start_state = ((start & mask) == (base & mask));
 | |
| 		end_state = ((end & mask) == (base & mask));
 | |
| 		if (start_state != end_state)
 | |
| 			return 0xFE;
 | |
| 
 | |
| 		if ((start & mask) != (base & mask))
 | |
| 			continue;
 | |
| 
 | |
| 		curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
 | |
| 		if (prev_match == 0xFF) {
 | |
| 			prev_match = curr_match;
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_match == MTRR_TYPE_UNCACHABLE ||
 | |
| 		    curr_match == MTRR_TYPE_UNCACHABLE)
 | |
| 			return MTRR_TYPE_UNCACHABLE;
 | |
| 
 | |
| 		if ((prev_match == MTRR_TYPE_WRBACK &&
 | |
| 		     curr_match == MTRR_TYPE_WRTHROUGH) ||
 | |
| 		    (prev_match == MTRR_TYPE_WRTHROUGH &&
 | |
| 		     curr_match == MTRR_TYPE_WRBACK)) {
 | |
| 			prev_match = MTRR_TYPE_WRTHROUGH;
 | |
| 			curr_match = MTRR_TYPE_WRTHROUGH;
 | |
| 		}
 | |
| 
 | |
| 		if (prev_match != curr_match)
 | |
| 			return MTRR_TYPE_UNCACHABLE;
 | |
| 	}
 | |
| 
 | |
| 	if (prev_match != 0xFF)
 | |
| 		return prev_match;
 | |
| 
 | |
| 	return mtrr_state->def_type;
 | |
| }
 | |
| 
 | |
| u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u8 mtrr;
 | |
| 
 | |
| 	mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
 | |
| 			     (gfn << PAGE_SHIFT) + PAGE_SIZE);
 | |
| 	if (mtrr == 0xfe || mtrr == 0xff)
 | |
| 		mtrr = MTRR_TYPE_WRBACK;
 | |
| 	return mtrr;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
 | |
| 
 | |
| static int kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
 | |
| {
 | |
| 	unsigned index;
 | |
| 	struct hlist_head *bucket;
 | |
| 	struct kvm_mmu_page *s;
 | |
| 	struct hlist_node *node, *n;
 | |
| 
 | |
| 	trace_kvm_mmu_unsync_page(sp);
 | |
| 	index = kvm_page_table_hashfn(sp->gfn);
 | |
| 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
 | |
| 	/* don't unsync if pagetable is shadowed with multiple roles */
 | |
| 	hlist_for_each_entry_safe(s, node, n, bucket, hash_link) {
 | |
| 		if (s->gfn != sp->gfn || s->role.direct)
 | |
| 			continue;
 | |
| 		if (s->role.word != sp->role.word)
 | |
| 			return 1;
 | |
| 	}
 | |
| 	++vcpu->kvm->stat.mmu_unsync;
 | |
| 	sp->unsync = 1;
 | |
| 
 | |
| 	kvm_mmu_mark_parents_unsync(vcpu, sp);
 | |
| 
 | |
| 	mmu_convert_notrap(sp);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
 | |
| 				  bool can_unsync)
 | |
| {
 | |
| 	struct kvm_mmu_page *shadow;
 | |
| 
 | |
| 	shadow = kvm_mmu_lookup_page(vcpu->kvm, gfn);
 | |
| 	if (shadow) {
 | |
| 		if (shadow->role.level != PT_PAGE_TABLE_LEVEL)
 | |
| 			return 1;
 | |
| 		if (shadow->unsync)
 | |
| 			return 0;
 | |
| 		if (can_unsync && oos_shadow)
 | |
| 			return kvm_unsync_page(vcpu, shadow);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 		    unsigned pte_access, int user_fault,
 | |
| 		    int write_fault, int dirty, int level,
 | |
| 		    gfn_t gfn, pfn_t pfn, bool speculative,
 | |
| 		    bool can_unsync, bool reset_host_protection)
 | |
| {
 | |
| 	u64 spte;
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	/*
 | |
| 	 * We don't set the accessed bit, since we sometimes want to see
 | |
| 	 * whether the guest actually used the pte (in order to detect
 | |
| 	 * demand paging).
 | |
| 	 */
 | |
| 	spte = shadow_base_present_pte | shadow_dirty_mask;
 | |
| 	if (!speculative)
 | |
| 		spte |= shadow_accessed_mask;
 | |
| 	if (!dirty)
 | |
| 		pte_access &= ~ACC_WRITE_MASK;
 | |
| 	if (pte_access & ACC_EXEC_MASK)
 | |
| 		spte |= shadow_x_mask;
 | |
| 	else
 | |
| 		spte |= shadow_nx_mask;
 | |
| 	if (pte_access & ACC_USER_MASK)
 | |
| 		spte |= shadow_user_mask;
 | |
| 	if (level > PT_PAGE_TABLE_LEVEL)
 | |
| 		spte |= PT_PAGE_SIZE_MASK;
 | |
| 	if (tdp_enabled)
 | |
| 		spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
 | |
| 			kvm_is_mmio_pfn(pfn));
 | |
| 
 | |
| 	if (reset_host_protection)
 | |
| 		spte |= SPTE_HOST_WRITEABLE;
 | |
| 
 | |
| 	spte |= (u64)pfn << PAGE_SHIFT;
 | |
| 
 | |
| 	if ((pte_access & ACC_WRITE_MASK)
 | |
| 	    || (write_fault && !is_write_protection(vcpu) && !user_fault)) {
 | |
| 
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL &&
 | |
| 		    has_wrprotected_page(vcpu->kvm, gfn, level)) {
 | |
| 			ret = 1;
 | |
| 			spte = shadow_trap_nonpresent_pte;
 | |
| 			goto set_pte;
 | |
| 		}
 | |
| 
 | |
| 		spte |= PT_WRITABLE_MASK;
 | |
| 
 | |
| 		/*
 | |
| 		 * Optimization: for pte sync, if spte was writable the hash
 | |
| 		 * lookup is unnecessary (and expensive). Write protection
 | |
| 		 * is responsibility of mmu_get_page / kvm_sync_page.
 | |
| 		 * Same reasoning can be applied to dirty page accounting.
 | |
| 		 */
 | |
| 		if (!can_unsync && is_writeble_pte(*sptep))
 | |
| 			goto set_pte;
 | |
| 
 | |
| 		if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
 | |
| 			pgprintk("%s: found shadow page for %lx, marking ro\n",
 | |
| 				 __func__, gfn);
 | |
| 			ret = 1;
 | |
| 			pte_access &= ~ACC_WRITE_MASK;
 | |
| 			if (is_writeble_pte(spte))
 | |
| 				spte &= ~PT_WRITABLE_MASK;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (pte_access & ACC_WRITE_MASK)
 | |
| 		mark_page_dirty(vcpu->kvm, gfn);
 | |
| 
 | |
| set_pte:
 | |
| 	__set_spte(sptep, spte);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
 | |
| 			 unsigned pt_access, unsigned pte_access,
 | |
| 			 int user_fault, int write_fault, int dirty,
 | |
| 			 int *ptwrite, int level, gfn_t gfn,
 | |
| 			 pfn_t pfn, bool speculative,
 | |
| 			 bool reset_host_protection)
 | |
| {
 | |
| 	int was_rmapped = 0;
 | |
| 	int was_writeble = is_writeble_pte(*sptep);
 | |
| 	int rmap_count;
 | |
| 
 | |
| 	pgprintk("%s: spte %llx access %x write_fault %d"
 | |
| 		 " user_fault %d gfn %lx\n",
 | |
| 		 __func__, *sptep, pt_access,
 | |
| 		 write_fault, user_fault, gfn);
 | |
| 
 | |
| 	if (is_rmap_spte(*sptep)) {
 | |
| 		/*
 | |
| 		 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
 | |
| 		 * the parent of the now unreachable PTE.
 | |
| 		 */
 | |
| 		if (level > PT_PAGE_TABLE_LEVEL &&
 | |
| 		    !is_large_pte(*sptep)) {
 | |
| 			struct kvm_mmu_page *child;
 | |
| 			u64 pte = *sptep;
 | |
| 
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			mmu_page_remove_parent_pte(child, sptep);
 | |
| 		} else if (pfn != spte_to_pfn(*sptep)) {
 | |
| 			pgprintk("hfn old %lx new %lx\n",
 | |
| 				 spte_to_pfn(*sptep), pfn);
 | |
| 			rmap_remove(vcpu->kvm, sptep);
 | |
| 		} else
 | |
| 			was_rmapped = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
 | |
| 		      dirty, level, gfn, pfn, speculative, true,
 | |
| 		      reset_host_protection)) {
 | |
| 		if (write_fault)
 | |
| 			*ptwrite = 1;
 | |
| 		kvm_x86_ops->tlb_flush(vcpu);
 | |
| 	}
 | |
| 
 | |
| 	pgprintk("%s: setting spte %llx\n", __func__, *sptep);
 | |
| 	pgprintk("instantiating %s PTE (%s) at %ld (%llx) addr %p\n",
 | |
| 		 is_large_pte(*sptep)? "2MB" : "4kB",
 | |
| 		 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
 | |
| 		 *sptep, sptep);
 | |
| 	if (!was_rmapped && is_large_pte(*sptep))
 | |
| 		++vcpu->kvm->stat.lpages;
 | |
| 
 | |
| 	page_header_update_slot(vcpu->kvm, sptep, gfn);
 | |
| 	if (!was_rmapped) {
 | |
| 		rmap_count = rmap_add(vcpu, sptep, gfn);
 | |
| 		kvm_release_pfn_clean(pfn);
 | |
| 		if (rmap_count > RMAP_RECYCLE_THRESHOLD)
 | |
| 			rmap_recycle(vcpu, sptep, gfn);
 | |
| 	} else {
 | |
| 		if (was_writeble)
 | |
| 			kvm_release_pfn_dirty(pfn);
 | |
| 		else
 | |
| 			kvm_release_pfn_clean(pfn);
 | |
| 	}
 | |
| 	if (speculative) {
 | |
| 		vcpu->arch.last_pte_updated = sptep;
 | |
| 		vcpu->arch.last_pte_gfn = gfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| }
 | |
| 
 | |
| static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
 | |
| 			int level, gfn_t gfn, pfn_t pfn)
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int pt_write = 0;
 | |
| 	gfn_t pseudo_gfn;
 | |
| 
 | |
| 	for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
 | |
| 		if (iterator.level == level) {
 | |
| 			mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, ACC_ALL,
 | |
| 				     0, write, 1, &pt_write,
 | |
| 				     level, gfn, pfn, false, true);
 | |
| 			++vcpu->stat.pf_fixed;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		if (*iterator.sptep == shadow_trap_nonpresent_pte) {
 | |
| 			pseudo_gfn = (iterator.addr & PT64_DIR_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| 			sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
 | |
| 					      iterator.level - 1,
 | |
| 					      1, ACC_ALL, iterator.sptep);
 | |
| 			if (!sp) {
 | |
| 				pgprintk("nonpaging_map: ENOMEM\n");
 | |
| 				kvm_release_pfn_clean(pfn);
 | |
| 				return -ENOMEM;
 | |
| 			}
 | |
| 
 | |
| 			__set_spte(iterator.sptep,
 | |
| 				   __pa(sp->spt)
 | |
| 				   | PT_PRESENT_MASK | PT_WRITABLE_MASK
 | |
| 				   | shadow_user_mask | shadow_x_mask);
 | |
| 		}
 | |
| 	}
 | |
| 	return pt_write;
 | |
| }
 | |
| 
 | |
| static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn)
 | |
| {
 | |
| 	int r;
 | |
| 	int level;
 | |
| 	pfn_t pfn;
 | |
| 	unsigned long mmu_seq;
 | |
| 
 | |
| 	level = mapping_level(vcpu, gfn);
 | |
| 
 | |
| 	/*
 | |
| 	 * This path builds a PAE pagetable - so we can map 2mb pages at
 | |
| 	 * maximum. Therefore check if the level is larger than that.
 | |
| 	 */
 | |
| 	if (level > PT_DIRECTORY_LEVEL)
 | |
| 		level = PT_DIRECTORY_LEVEL;
 | |
| 
 | |
| 	gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
 | |
| 
 | |
| 	/* mmio */
 | |
| 	if (is_error_pfn(pfn)) {
 | |
| 		kvm_release_pfn_clean(pfn);
 | |
| 		return 1;
 | |
| 	}
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	r = __direct_map(vcpu, v, write, level, gfn, pfn);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 
 | |
| 	return r;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static void mmu_free_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		return;
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 
 | |
| 		sp = page_header(root);
 | |
| 		--sp->root_count;
 | |
| 		if (!sp->root_count && sp->role.invalid)
 | |
| 			kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 		spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 		return;
 | |
| 	}
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		if (root) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			--sp->root_count;
 | |
| 			if (!sp->root_count && sp->role.invalid)
 | |
| 				kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 		}
 | |
| 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
 | |
| 	}
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| }
 | |
| 
 | |
| static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
 | |
| {
 | |
| 	int ret = 0;
 | |
| 
 | |
| 	if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
 | |
| 		set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests);
 | |
| 		ret = 1;
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	gfn_t root_gfn;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int direct = 0;
 | |
| 	u64 pdptr;
 | |
| 
 | |
| 	root_gfn = vcpu->arch.cr3 >> PAGE_SHIFT;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 
 | |
| 		ASSERT(!VALID_PAGE(root));
 | |
| 		if (tdp_enabled)
 | |
| 			direct = 1;
 | |
| 		if (mmu_check_root(vcpu, root_gfn))
 | |
| 			return 1;
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
 | |
| 				      PT64_ROOT_LEVEL, direct,
 | |
| 				      ACC_ALL, NULL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		vcpu->arch.mmu.root_hpa = root;
 | |
| 		return 0;
 | |
| 	}
 | |
| 	direct = !is_paging(vcpu);
 | |
| 	if (tdp_enabled)
 | |
| 		direct = 1;
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		ASSERT(!VALID_PAGE(root));
 | |
| 		if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
 | |
| 			pdptr = kvm_pdptr_read(vcpu, i);
 | |
| 			if (!is_present_gpte(pdptr)) {
 | |
| 				vcpu->arch.mmu.pae_root[i] = 0;
 | |
| 				continue;
 | |
| 			}
 | |
| 			root_gfn = pdptr >> PAGE_SHIFT;
 | |
| 		} else if (vcpu->arch.mmu.root_level == 0)
 | |
| 			root_gfn = 0;
 | |
| 		if (mmu_check_root(vcpu, root_gfn))
 | |
| 			return 1;
 | |
| 		sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
 | |
| 				      PT32_ROOT_LEVEL, direct,
 | |
| 				      ACC_ALL, NULL);
 | |
| 		root = __pa(sp->spt);
 | |
| 		++sp->root_count;
 | |
| 		vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
 | |
| 	}
 | |
| 	vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void mmu_sync_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		return;
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 		sp = page_header(root);
 | |
| 		mmu_sync_children(vcpu, sp);
 | |
| 		return;
 | |
| 	}
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		if (root && VALID_PAGE(root)) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			mmu_sync_children(vcpu, sp);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	mmu_sync_roots(vcpu);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| }
 | |
| 
 | |
| static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
 | |
| {
 | |
| 	return vaddr;
 | |
| }
 | |
| 
 | |
| static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
 | |
| 				u32 error_code)
 | |
| {
 | |
| 	gfn_t gfn;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	gfn = gva >> PAGE_SHIFT;
 | |
| 
 | |
| 	return nonpaging_map(vcpu, gva & PAGE_MASK,
 | |
| 			     error_code & PFERR_WRITE_MASK, gfn);
 | |
| }
 | |
| 
 | |
| static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa,
 | |
| 				u32 error_code)
 | |
| {
 | |
| 	pfn_t pfn;
 | |
| 	int r;
 | |
| 	int level;
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	unsigned long mmu_seq;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	level = mapping_level(vcpu, gfn);
 | |
| 
 | |
| 	gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
 | |
| 
 | |
| 	mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
 | |
| 	if (is_error_pfn(pfn)) {
 | |
| 		kvm_release_pfn_clean(pfn);
 | |
| 		return 1;
 | |
| 	}
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	if (mmu_notifier_retry(vcpu, mmu_seq))
 | |
| 		goto out_unlock;
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	r = __direct_map(vcpu, gpa, error_code & PFERR_WRITE_MASK,
 | |
| 			 level, gfn, pfn);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	return r;
 | |
| 
 | |
| out_unlock:
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_release_pfn_clean(pfn);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void nonpaging_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static int nonpaging_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	context->new_cr3 = nonpaging_new_cr3;
 | |
| 	context->page_fault = nonpaging_page_fault;
 | |
| 	context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 	context->free = nonpaging_free;
 | |
| 	context->prefetch_page = nonpaging_prefetch_page;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = nonpaging_invlpg;
 | |
| 	context->root_level = 0;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	++vcpu->stat.tlb_flush;
 | |
| 	kvm_x86_ops->tlb_flush(vcpu);
 | |
| }
 | |
| 
 | |
| static void paging_new_cr3(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	pgprintk("%s: cr3 %lx\n", __func__, vcpu->arch.cr3);
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static void inject_page_fault(struct kvm_vcpu *vcpu,
 | |
| 			      u64 addr,
 | |
| 			      u32 err_code)
 | |
| {
 | |
| 	kvm_inject_page_fault(vcpu, addr, err_code);
 | |
| }
 | |
| 
 | |
| static void paging_free(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	nonpaging_free(vcpu);
 | |
| }
 | |
| 
 | |
| static bool is_rsvd_bits_set(struct kvm_vcpu *vcpu, u64 gpte, int level)
 | |
| {
 | |
| 	int bit7;
 | |
| 
 | |
| 	bit7 = (gpte >> 7) & 1;
 | |
| 	return (gpte & vcpu->arch.mmu.rsvd_bits_mask[bit7][level-1]) != 0;
 | |
| }
 | |
| 
 | |
| #define PTTYPE 64
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| #define PTTYPE 32
 | |
| #include "paging_tmpl.h"
 | |
| #undef PTTYPE
 | |
| 
 | |
| static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu, int level)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 	int maxphyaddr = cpuid_maxphyaddr(vcpu);
 | |
| 	u64 exb_bit_rsvd = 0;
 | |
| 
 | |
| 	if (!is_nx(vcpu))
 | |
| 		exb_bit_rsvd = rsvd_bits(63, 63);
 | |
| 	switch (level) {
 | |
| 	case PT32_ROOT_LEVEL:
 | |
| 		/* no rsvd bits for 2 level 4K page table entries */
 | |
| 		context->rsvd_bits_mask[0][1] = 0;
 | |
| 		context->rsvd_bits_mask[0][0] = 0;
 | |
| 		if (is_cpuid_PSE36())
 | |
| 			/* 36bits PSE 4MB page */
 | |
| 			context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
 | |
| 		else
 | |
| 			/* 32 bits PSE 4MB page */
 | |
| 			context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
 | |
| 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
 | |
| 		break;
 | |
| 	case PT32E_ROOT_LEVEL:
 | |
| 		context->rsvd_bits_mask[0][2] =
 | |
| 			rsvd_bits(maxphyaddr, 63) |
 | |
| 			rsvd_bits(7, 8) | rsvd_bits(1, 2);	/* PDPTE */
 | |
| 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62);	/* PDE */
 | |
| 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62); 	/* PTE */
 | |
| 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 62) |
 | |
| 			rsvd_bits(13, 20);		/* large page */
 | |
| 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
 | |
| 		break;
 | |
| 	case PT64_ROOT_LEVEL:
 | |
| 		context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
 | |
| 		context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
 | |
| 		context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51);
 | |
| 		context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
 | |
| 		context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) |
 | |
| 			rsvd_bits(13, 29);
 | |
| 		context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
 | |
| 			rsvd_bits(maxphyaddr, 51) |
 | |
| 			rsvd_bits(13, 20);		/* large page */
 | |
| 		context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[1][0];
 | |
| 		break;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	ASSERT(is_pae(vcpu));
 | |
| 	context->new_cr3 = paging_new_cr3;
 | |
| 	context->page_fault = paging64_page_fault;
 | |
| 	context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 	context->prefetch_page = paging64_prefetch_page;
 | |
| 	context->sync_page = paging64_sync_page;
 | |
| 	context->invlpg = paging64_invlpg;
 | |
| 	context->free = paging_free;
 | |
| 	context->root_level = level;
 | |
| 	context->shadow_root_level = level;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int paging64_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
 | |
| 	return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static int paging32_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
 | |
| 	context->new_cr3 = paging_new_cr3;
 | |
| 	context->page_fault = paging32_page_fault;
 | |
| 	context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 	context->free = paging_free;
 | |
| 	context->prefetch_page = paging32_prefetch_page;
 | |
| 	context->sync_page = paging32_sync_page;
 | |
| 	context->invlpg = paging32_invlpg;
 | |
| 	context->root_level = PT32_ROOT_LEVEL;
 | |
| 	context->shadow_root_level = PT32E_ROOT_LEVEL;
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int paging32E_init_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
 | |
| 	return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
 | |
| }
 | |
| 
 | |
| static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu *context = &vcpu->arch.mmu;
 | |
| 
 | |
| 	context->new_cr3 = nonpaging_new_cr3;
 | |
| 	context->page_fault = tdp_page_fault;
 | |
| 	context->free = nonpaging_free;
 | |
| 	context->prefetch_page = nonpaging_prefetch_page;
 | |
| 	context->sync_page = nonpaging_sync_page;
 | |
| 	context->invlpg = nonpaging_invlpg;
 | |
| 	context->shadow_root_level = kvm_x86_ops->get_tdp_level();
 | |
| 	context->root_hpa = INVALID_PAGE;
 | |
| 
 | |
| 	if (!is_paging(vcpu)) {
 | |
| 		context->gva_to_gpa = nonpaging_gva_to_gpa;
 | |
| 		context->root_level = 0;
 | |
| 	} else if (is_long_mode(vcpu)) {
 | |
| 		reset_rsvds_bits_mask(vcpu, PT64_ROOT_LEVEL);
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 		context->root_level = PT64_ROOT_LEVEL;
 | |
| 	} else if (is_pae(vcpu)) {
 | |
| 		reset_rsvds_bits_mask(vcpu, PT32E_ROOT_LEVEL);
 | |
| 		context->gva_to_gpa = paging64_gva_to_gpa;
 | |
| 		context->root_level = PT32E_ROOT_LEVEL;
 | |
| 	} else {
 | |
| 		reset_rsvds_bits_mask(vcpu, PT32_ROOT_LEVEL);
 | |
| 		context->gva_to_gpa = paging32_gva_to_gpa;
 | |
| 		context->root_level = PT32_ROOT_LEVEL;
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	if (!is_paging(vcpu))
 | |
| 		r = nonpaging_init_context(vcpu);
 | |
| 	else if (is_long_mode(vcpu))
 | |
| 		r = paging64_init_context(vcpu);
 | |
| 	else if (is_pae(vcpu))
 | |
| 		r = paging32E_init_context(vcpu);
 | |
| 	else
 | |
| 		r = paging32_init_context(vcpu);
 | |
| 
 | |
| 	vcpu->arch.mmu.base_role.glevels = vcpu->arch.mmu.root_level;
 | |
| 
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| static int init_kvm_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	vcpu->arch.update_pte.pfn = bad_pfn;
 | |
| 
 | |
| 	if (tdp_enabled)
 | |
| 		return init_kvm_tdp_mmu(vcpu);
 | |
| 	else
 | |
| 		return init_kvm_softmmu(vcpu);
 | |
| }
 | |
| 
 | |
| static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	if (VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
 | |
| 		vcpu->arch.mmu.free(vcpu);
 | |
| 		vcpu->arch.mmu.root_hpa = INVALID_PAGE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	destroy_kvm_mmu(vcpu);
 | |
| 	return init_kvm_mmu(vcpu);
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
 | |
| 
 | |
| int kvm_mmu_load(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int r;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	r = mmu_alloc_roots(vcpu);
 | |
| 	mmu_sync_roots(vcpu);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 	/* set_cr3() should ensure TLB has been flushed */
 | |
| 	kvm_x86_ops->set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_load);
 | |
| 
 | |
| void kvm_mmu_unload(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_free_roots(vcpu);
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp,
 | |
| 				  u64 *spte)
 | |
| {
 | |
| 	u64 pte;
 | |
| 	struct kvm_mmu_page *child;
 | |
| 
 | |
| 	pte = *spte;
 | |
| 	if (is_shadow_present_pte(pte)) {
 | |
| 		if (is_last_spte(pte, sp->role.level))
 | |
| 			rmap_remove(vcpu->kvm, spte);
 | |
| 		else {
 | |
| 			child = page_header(pte & PT64_BASE_ADDR_MASK);
 | |
| 			mmu_page_remove_parent_pte(child, spte);
 | |
| 		}
 | |
| 	}
 | |
| 	__set_spte(spte, shadow_trap_nonpresent_pte);
 | |
| 	if (is_large_pte(pte))
 | |
| 		--vcpu->kvm->stat.lpages;
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
 | |
| 				  struct kvm_mmu_page *sp,
 | |
| 				  u64 *spte,
 | |
| 				  const void *new)
 | |
| {
 | |
| 	if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
 | |
| 		++vcpu->kvm->stat.mmu_pde_zapped;
 | |
| 		return;
 | |
|         }
 | |
| 
 | |
| 	++vcpu->kvm->stat.mmu_pte_updated;
 | |
| 	if (sp->role.glevels == PT32_ROOT_LEVEL)
 | |
| 		paging32_update_pte(vcpu, sp, spte, new);
 | |
| 	else
 | |
| 		paging64_update_pte(vcpu, sp, spte, new);
 | |
| }
 | |
| 
 | |
| static bool need_remote_flush(u64 old, u64 new)
 | |
| {
 | |
| 	if (!is_shadow_present_pte(old))
 | |
| 		return false;
 | |
| 	if (!is_shadow_present_pte(new))
 | |
| 		return true;
 | |
| 	if ((old ^ new) & PT64_BASE_ADDR_MASK)
 | |
| 		return true;
 | |
| 	old ^= PT64_NX_MASK;
 | |
| 	new ^= PT64_NX_MASK;
 | |
| 	return (old & ~new & PT64_PERM_MASK) != 0;
 | |
| }
 | |
| 
 | |
| static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, u64 old, u64 new)
 | |
| {
 | |
| 	if (need_remote_flush(old, new))
 | |
| 		kvm_flush_remote_tlbs(vcpu->kvm);
 | |
| 	else
 | |
| 		kvm_mmu_flush_tlb(vcpu);
 | |
| }
 | |
| 
 | |
| static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	u64 *spte = vcpu->arch.last_pte_updated;
 | |
| 
 | |
| 	return !!(spte && (*spte & shadow_accessed_mask));
 | |
| }
 | |
| 
 | |
| static void mmu_guess_page_from_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 					  const u8 *new, int bytes)
 | |
| {
 | |
| 	gfn_t gfn;
 | |
| 	int r;
 | |
| 	u64 gpte = 0;
 | |
| 	pfn_t pfn;
 | |
| 
 | |
| 	if (bytes != 4 && bytes != 8)
 | |
| 		return;
 | |
| 
 | |
| 	/*
 | |
| 	 * Assume that the pte write on a page table of the same type
 | |
| 	 * as the current vcpu paging mode.  This is nearly always true
 | |
| 	 * (might be false while changing modes).  Note it is verified later
 | |
| 	 * by update_pte().
 | |
| 	 */
 | |
| 	if (is_pae(vcpu)) {
 | |
| 		/* Handle a 32-bit guest writing two halves of a 64-bit gpte */
 | |
| 		if ((bytes == 4) && (gpa % 4 == 0)) {
 | |
| 			r = kvm_read_guest(vcpu->kvm, gpa & ~(u64)7, &gpte, 8);
 | |
| 			if (r)
 | |
| 				return;
 | |
| 			memcpy((void *)&gpte + (gpa % 8), new, 4);
 | |
| 		} else if ((bytes == 8) && (gpa % 8 == 0)) {
 | |
| 			memcpy((void *)&gpte, new, 8);
 | |
| 		}
 | |
| 	} else {
 | |
| 		if ((bytes == 4) && (gpa % 4 == 0))
 | |
| 			memcpy((void *)&gpte, new, 4);
 | |
| 	}
 | |
| 	if (!is_present_gpte(gpte))
 | |
| 		return;
 | |
| 	gfn = (gpte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
 | |
| 
 | |
| 	vcpu->arch.update_pte.mmu_seq = vcpu->kvm->mmu_notifier_seq;
 | |
| 	smp_rmb();
 | |
| 	pfn = gfn_to_pfn(vcpu->kvm, gfn);
 | |
| 
 | |
| 	if (is_error_pfn(pfn)) {
 | |
| 		kvm_release_pfn_clean(pfn);
 | |
| 		return;
 | |
| 	}
 | |
| 	vcpu->arch.update_pte.gfn = gfn;
 | |
| 	vcpu->arch.update_pte.pfn = pfn;
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_access_page(struct kvm_vcpu *vcpu, gfn_t gfn)
 | |
| {
 | |
| 	u64 *spte = vcpu->arch.last_pte_updated;
 | |
| 
 | |
| 	if (spte
 | |
| 	    && vcpu->arch.last_pte_gfn == gfn
 | |
| 	    && shadow_accessed_mask
 | |
| 	    && !(*spte & shadow_accessed_mask)
 | |
| 	    && is_shadow_present_pte(*spte))
 | |
| 		set_bit(PT_ACCESSED_SHIFT, (unsigned long *)spte);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
 | |
| 		       const u8 *new, int bytes,
 | |
| 		       bool guest_initiated)
 | |
| {
 | |
| 	gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct hlist_node *node, *n;
 | |
| 	struct hlist_head *bucket;
 | |
| 	unsigned index;
 | |
| 	u64 entry, gentry;
 | |
| 	u64 *spte;
 | |
| 	unsigned offset = offset_in_page(gpa);
 | |
| 	unsigned pte_size;
 | |
| 	unsigned page_offset;
 | |
| 	unsigned misaligned;
 | |
| 	unsigned quadrant;
 | |
| 	int level;
 | |
| 	int flooded = 0;
 | |
| 	int npte;
 | |
| 	int r;
 | |
| 
 | |
| 	pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
 | |
| 	mmu_guess_page_from_pte_write(vcpu, gpa, new, bytes);
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	kvm_mmu_access_page(vcpu, gfn);
 | |
| 	kvm_mmu_free_some_pages(vcpu);
 | |
| 	++vcpu->kvm->stat.mmu_pte_write;
 | |
| 	kvm_mmu_audit(vcpu, "pre pte write");
 | |
| 	if (guest_initiated) {
 | |
| 		if (gfn == vcpu->arch.last_pt_write_gfn
 | |
| 		    && !last_updated_pte_accessed(vcpu)) {
 | |
| 			++vcpu->arch.last_pt_write_count;
 | |
| 			if (vcpu->arch.last_pt_write_count >= 3)
 | |
| 				flooded = 1;
 | |
| 		} else {
 | |
| 			vcpu->arch.last_pt_write_gfn = gfn;
 | |
| 			vcpu->arch.last_pt_write_count = 1;
 | |
| 			vcpu->arch.last_pte_updated = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	index = kvm_page_table_hashfn(gfn);
 | |
| 	bucket = &vcpu->kvm->arch.mmu_page_hash[index];
 | |
| 	hlist_for_each_entry_safe(sp, node, n, bucket, hash_link) {
 | |
| 		if (sp->gfn != gfn || sp->role.direct || sp->role.invalid)
 | |
| 			continue;
 | |
| 		pte_size = sp->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
 | |
| 		misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
 | |
| 		misaligned |= bytes < 4;
 | |
| 		if (misaligned || flooded) {
 | |
| 			/*
 | |
| 			 * Misaligned accesses are too much trouble to fix
 | |
| 			 * up; also, they usually indicate a page is not used
 | |
| 			 * as a page table.
 | |
| 			 *
 | |
| 			 * If we're seeing too many writes to a page,
 | |
| 			 * it may no longer be a page table, or we may be
 | |
| 			 * forking, in which case it is better to unmap the
 | |
| 			 * page.
 | |
| 			 */
 | |
| 			pgprintk("misaligned: gpa %llx bytes %d role %x\n",
 | |
| 				 gpa, bytes, sp->role.word);
 | |
| 			if (kvm_mmu_zap_page(vcpu->kvm, sp))
 | |
| 				n = bucket->first;
 | |
| 			++vcpu->kvm->stat.mmu_flooded;
 | |
| 			continue;
 | |
| 		}
 | |
| 		page_offset = offset;
 | |
| 		level = sp->role.level;
 | |
| 		npte = 1;
 | |
| 		if (sp->role.glevels == PT32_ROOT_LEVEL) {
 | |
| 			page_offset <<= 1;	/* 32->64 */
 | |
| 			/*
 | |
| 			 * A 32-bit pde maps 4MB while the shadow pdes map
 | |
| 			 * only 2MB.  So we need to double the offset again
 | |
| 			 * and zap two pdes instead of one.
 | |
| 			 */
 | |
| 			if (level == PT32_ROOT_LEVEL) {
 | |
| 				page_offset &= ~7; /* kill rounding error */
 | |
| 				page_offset <<= 1;
 | |
| 				npte = 2;
 | |
| 			}
 | |
| 			quadrant = page_offset >> PAGE_SHIFT;
 | |
| 			page_offset &= ~PAGE_MASK;
 | |
| 			if (quadrant != sp->role.quadrant)
 | |
| 				continue;
 | |
| 		}
 | |
| 		spte = &sp->spt[page_offset / sizeof(*spte)];
 | |
| 		if ((gpa & (pte_size - 1)) || (bytes < pte_size)) {
 | |
| 			gentry = 0;
 | |
| 			r = kvm_read_guest_atomic(vcpu->kvm,
 | |
| 						  gpa & ~(u64)(pte_size - 1),
 | |
| 						  &gentry, pte_size);
 | |
| 			new = (const void *)&gentry;
 | |
| 			if (r < 0)
 | |
| 				new = NULL;
 | |
| 		}
 | |
| 		while (npte--) {
 | |
| 			entry = *spte;
 | |
| 			mmu_pte_write_zap_pte(vcpu, sp, spte);
 | |
| 			if (new)
 | |
| 				mmu_pte_write_new_pte(vcpu, sp, spte, new);
 | |
| 			mmu_pte_write_flush_tlb(vcpu, entry, *spte);
 | |
| 			++spte;
 | |
| 		}
 | |
| 	}
 | |
| 	kvm_mmu_audit(vcpu, "post pte write");
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	if (!is_error_pfn(vcpu->arch.update_pte.pfn)) {
 | |
| 		kvm_release_pfn_clean(vcpu->arch.update_pte.pfn);
 | |
| 		vcpu->arch.update_pte.pfn = bad_pfn;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	gpa_t gpa;
 | |
| 	int r;
 | |
| 
 | |
| 	if (tdp_enabled)
 | |
| 		return 0;
 | |
| 
 | |
| 	gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gva);
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
 | |
| 
 | |
| void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	while (vcpu->kvm->arch.n_free_mmu_pages < KVM_REFILL_PAGES &&
 | |
| 	       !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
 | |
| 		struct kvm_mmu_page *sp;
 | |
| 
 | |
| 		sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
 | |
| 				  struct kvm_mmu_page, link);
 | |
| 		kvm_mmu_zap_page(vcpu->kvm, sp);
 | |
| 		++vcpu->kvm->stat.mmu_recycled;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code)
 | |
| {
 | |
| 	int r;
 | |
| 	enum emulation_result er;
 | |
| 
 | |
| 	r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code);
 | |
| 	if (r < 0)
 | |
| 		goto out;
 | |
| 
 | |
| 	if (!r) {
 | |
| 		r = 1;
 | |
| 		goto out;
 | |
| 	}
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	er = emulate_instruction(vcpu, vcpu->run, cr2, error_code, 0);
 | |
| 
 | |
| 	switch (er) {
 | |
| 	case EMULATE_DONE:
 | |
| 		return 1;
 | |
| 	case EMULATE_DO_MMIO:
 | |
| 		++vcpu->stat.mmio_exits;
 | |
| 		return 0;
 | |
| 	case EMULATE_FAIL:
 | |
| 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
 | |
| 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
 | |
| 		return 0;
 | |
| 	default:
 | |
| 		BUG();
 | |
| 	}
 | |
| out:
 | |
| 	return r;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
 | |
| 
 | |
| void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
 | |
| {
 | |
| 	vcpu->arch.mmu.invlpg(vcpu, gva);
 | |
| 	kvm_mmu_flush_tlb(vcpu);
 | |
| 	++vcpu->stat.invlpg;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
 | |
| 
 | |
| void kvm_enable_tdp(void)
 | |
| {
 | |
| 	tdp_enabled = true;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_enable_tdp);
 | |
| 
 | |
| void kvm_disable_tdp(void)
 | |
| {
 | |
| 	tdp_enabled = false;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_disable_tdp);
 | |
| 
 | |
| static void free_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	free_page((unsigned long)vcpu->arch.mmu.pae_root);
 | |
| }
 | |
| 
 | |
| static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct page *page;
 | |
| 	int i;
 | |
| 
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	/*
 | |
| 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
 | |
| 	 * Therefore we need to allocate shadow page tables in the first
 | |
| 	 * 4GB of memory, which happens to fit the DMA32 zone.
 | |
| 	 */
 | |
| 	page = alloc_page(GFP_KERNEL | __GFP_DMA32);
 | |
| 	if (!page)
 | |
| 		goto error_1;
 | |
| 	vcpu->arch.mmu.pae_root = page_address(page);
 | |
| 	for (i = 0; i < 4; ++i)
 | |
| 		vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| error_1:
 | |
| 	free_mmu_pages(vcpu);
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_create(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	return alloc_mmu_pages(vcpu);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_setup(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 	ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
 | |
| 
 | |
| 	return init_kvm_mmu(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	ASSERT(vcpu);
 | |
| 
 | |
| 	destroy_kvm_mmu(vcpu);
 | |
| 	free_mmu_pages(vcpu);
 | |
| 	mmu_free_memory_caches(vcpu);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
 | |
| 		int i;
 | |
| 		u64 *pt;
 | |
| 
 | |
| 		if (!test_bit(slot, sp->slot_bitmap))
 | |
| 			continue;
 | |
| 
 | |
| 		pt = sp->spt;
 | |
| 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
 | |
| 			/* avoid RMW */
 | |
| 			if (pt[i] & PT_WRITABLE_MASK)
 | |
| 				pt[i] &= ~PT_WRITABLE_MASK;
 | |
| 	}
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_zap_all(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp, *node;
 | |
| 
 | |
| 	spin_lock(&kvm->mmu_lock);
 | |
| 	list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
 | |
| 		if (kvm_mmu_zap_page(kvm, sp))
 | |
| 			node = container_of(kvm->arch.active_mmu_pages.next,
 | |
| 					    struct kvm_mmu_page, link);
 | |
| 	spin_unlock(&kvm->mmu_lock);
 | |
| 
 | |
| 	kvm_flush_remote_tlbs(kvm);
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_remove_one_alloc_mmu_page(struct kvm *kvm)
 | |
| {
 | |
| 	struct kvm_mmu_page *page;
 | |
| 
 | |
| 	page = container_of(kvm->arch.active_mmu_pages.prev,
 | |
| 			    struct kvm_mmu_page, link);
 | |
| 	kvm_mmu_zap_page(kvm, page);
 | |
| }
 | |
| 
 | |
| static int mmu_shrink(int nr_to_scan, gfp_t gfp_mask)
 | |
| {
 | |
| 	struct kvm *kvm;
 | |
| 	struct kvm *kvm_freed = NULL;
 | |
| 	int cache_count = 0;
 | |
| 
 | |
| 	spin_lock(&kvm_lock);
 | |
| 
 | |
| 	list_for_each_entry(kvm, &vm_list, vm_list) {
 | |
| 		int npages;
 | |
| 
 | |
| 		if (!down_read_trylock(&kvm->slots_lock))
 | |
| 			continue;
 | |
| 		spin_lock(&kvm->mmu_lock);
 | |
| 		npages = kvm->arch.n_alloc_mmu_pages -
 | |
| 			 kvm->arch.n_free_mmu_pages;
 | |
| 		cache_count += npages;
 | |
| 		if (!kvm_freed && nr_to_scan > 0 && npages > 0) {
 | |
| 			kvm_mmu_remove_one_alloc_mmu_page(kvm);
 | |
| 			cache_count--;
 | |
| 			kvm_freed = kvm;
 | |
| 		}
 | |
| 		nr_to_scan--;
 | |
| 
 | |
| 		spin_unlock(&kvm->mmu_lock);
 | |
| 		up_read(&kvm->slots_lock);
 | |
| 	}
 | |
| 	if (kvm_freed)
 | |
| 		list_move_tail(&kvm_freed->vm_list, &vm_list);
 | |
| 
 | |
| 	spin_unlock(&kvm_lock);
 | |
| 
 | |
| 	return cache_count;
 | |
| }
 | |
| 
 | |
| static struct shrinker mmu_shrinker = {
 | |
| 	.shrink = mmu_shrink,
 | |
| 	.seeks = DEFAULT_SEEKS * 10,
 | |
| };
 | |
| 
 | |
| static void mmu_destroy_caches(void)
 | |
| {
 | |
| 	if (pte_chain_cache)
 | |
| 		kmem_cache_destroy(pte_chain_cache);
 | |
| 	if (rmap_desc_cache)
 | |
| 		kmem_cache_destroy(rmap_desc_cache);
 | |
| 	if (mmu_page_header_cache)
 | |
| 		kmem_cache_destroy(mmu_page_header_cache);
 | |
| }
 | |
| 
 | |
| void kvm_mmu_module_exit(void)
 | |
| {
 | |
| 	mmu_destroy_caches();
 | |
| 	unregister_shrinker(&mmu_shrinker);
 | |
| }
 | |
| 
 | |
| int kvm_mmu_module_init(void)
 | |
| {
 | |
| 	pte_chain_cache = kmem_cache_create("kvm_pte_chain",
 | |
| 					    sizeof(struct kvm_pte_chain),
 | |
| 					    0, 0, NULL);
 | |
| 	if (!pte_chain_cache)
 | |
| 		goto nomem;
 | |
| 	rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
 | |
| 					    sizeof(struct kvm_rmap_desc),
 | |
| 					    0, 0, NULL);
 | |
| 	if (!rmap_desc_cache)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
 | |
| 						  sizeof(struct kvm_mmu_page),
 | |
| 						  0, 0, NULL);
 | |
| 	if (!mmu_page_header_cache)
 | |
| 		goto nomem;
 | |
| 
 | |
| 	register_shrinker(&mmu_shrinker);
 | |
| 
 | |
| 	return 0;
 | |
| 
 | |
| nomem:
 | |
| 	mmu_destroy_caches();
 | |
| 	return -ENOMEM;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Caculate mmu pages needed for kvm.
 | |
|  */
 | |
| unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
 | |
| {
 | |
| 	int i;
 | |
| 	unsigned int nr_mmu_pages;
 | |
| 	unsigned int  nr_pages = 0;
 | |
| 
 | |
| 	for (i = 0; i < kvm->nmemslots; i++)
 | |
| 		nr_pages += kvm->memslots[i].npages;
 | |
| 
 | |
| 	nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
 | |
| 	nr_mmu_pages = max(nr_mmu_pages,
 | |
| 			(unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
 | |
| 
 | |
| 	return nr_mmu_pages;
 | |
| }
 | |
| 
 | |
| static void *pv_mmu_peek_buffer(struct kvm_pv_mmu_op_buffer *buffer,
 | |
| 				unsigned len)
 | |
| {
 | |
| 	if (len > buffer->len)
 | |
| 		return NULL;
 | |
| 	return buffer->ptr;
 | |
| }
 | |
| 
 | |
| static void *pv_mmu_read_buffer(struct kvm_pv_mmu_op_buffer *buffer,
 | |
| 				unsigned len)
 | |
| {
 | |
| 	void *ret;
 | |
| 
 | |
| 	ret = pv_mmu_peek_buffer(buffer, len);
 | |
| 	if (!ret)
 | |
| 		return ret;
 | |
| 	buffer->ptr += len;
 | |
| 	buffer->len -= len;
 | |
| 	buffer->processed += len;
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_mmu_write(struct kvm_vcpu *vcpu,
 | |
| 			     gpa_t addr, gpa_t value)
 | |
| {
 | |
| 	int bytes = 8;
 | |
| 	int r;
 | |
| 
 | |
| 	if (!is_long_mode(vcpu) && !is_pae(vcpu))
 | |
| 		bytes = 4;
 | |
| 
 | |
| 	r = mmu_topup_memory_caches(vcpu);
 | |
| 	if (r)
 | |
| 		return r;
 | |
| 
 | |
| 	if (!emulator_write_phys(vcpu, addr, &value, bytes))
 | |
| 		return -EFAULT;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_mmu_flush_tlb(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	kvm_set_cr3(vcpu, vcpu->arch.cr3);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_mmu_release_pt(struct kvm_vcpu *vcpu, gpa_t addr)
 | |
| {
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	mmu_unshadow(vcpu->kvm, addr >> PAGE_SHIFT);
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| static int kvm_pv_mmu_op_one(struct kvm_vcpu *vcpu,
 | |
| 			     struct kvm_pv_mmu_op_buffer *buffer)
 | |
| {
 | |
| 	struct kvm_mmu_op_header *header;
 | |
| 
 | |
| 	header = pv_mmu_peek_buffer(buffer, sizeof *header);
 | |
| 	if (!header)
 | |
| 		return 0;
 | |
| 	switch (header->op) {
 | |
| 	case KVM_MMU_OP_WRITE_PTE: {
 | |
| 		struct kvm_mmu_op_write_pte *wpte;
 | |
| 
 | |
| 		wpte = pv_mmu_read_buffer(buffer, sizeof *wpte);
 | |
| 		if (!wpte)
 | |
| 			return 0;
 | |
| 		return kvm_pv_mmu_write(vcpu, wpte->pte_phys,
 | |
| 					wpte->pte_val);
 | |
| 	}
 | |
| 	case KVM_MMU_OP_FLUSH_TLB: {
 | |
| 		struct kvm_mmu_op_flush_tlb *ftlb;
 | |
| 
 | |
| 		ftlb = pv_mmu_read_buffer(buffer, sizeof *ftlb);
 | |
| 		if (!ftlb)
 | |
| 			return 0;
 | |
| 		return kvm_pv_mmu_flush_tlb(vcpu);
 | |
| 	}
 | |
| 	case KVM_MMU_OP_RELEASE_PT: {
 | |
| 		struct kvm_mmu_op_release_pt *rpt;
 | |
| 
 | |
| 		rpt = pv_mmu_read_buffer(buffer, sizeof *rpt);
 | |
| 		if (!rpt)
 | |
| 			return 0;
 | |
| 		return kvm_pv_mmu_release_pt(vcpu, rpt->pt_phys);
 | |
| 	}
 | |
| 	default: return 0;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| int kvm_pv_mmu_op(struct kvm_vcpu *vcpu, unsigned long bytes,
 | |
| 		  gpa_t addr, unsigned long *ret)
 | |
| {
 | |
| 	int r;
 | |
| 	struct kvm_pv_mmu_op_buffer *buffer = &vcpu->arch.mmu_op_buffer;
 | |
| 
 | |
| 	buffer->ptr = buffer->buf;
 | |
| 	buffer->len = min_t(unsigned long, bytes, sizeof buffer->buf);
 | |
| 	buffer->processed = 0;
 | |
| 
 | |
| 	r = kvm_read_guest(vcpu->kvm, addr, buffer->buf, buffer->len);
 | |
| 	if (r)
 | |
| 		goto out;
 | |
| 
 | |
| 	while (buffer->len) {
 | |
| 		r = kvm_pv_mmu_op_one(vcpu, buffer);
 | |
| 		if (r < 0)
 | |
| 			goto out;
 | |
| 		if (r == 0)
 | |
| 			break;
 | |
| 	}
 | |
| 
 | |
| 	r = 1;
 | |
| out:
 | |
| 	*ret = buffer->processed;
 | |
| 	return r;
 | |
| }
 | |
| 
 | |
| int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
 | |
| {
 | |
| 	struct kvm_shadow_walk_iterator iterator;
 | |
| 	int nr_sptes = 0;
 | |
| 
 | |
| 	spin_lock(&vcpu->kvm->mmu_lock);
 | |
| 	for_each_shadow_entry(vcpu, addr, iterator) {
 | |
| 		sptes[iterator.level-1] = *iterator.sptep;
 | |
| 		nr_sptes++;
 | |
| 		if (!is_shadow_present_pte(*iterator.sptep))
 | |
| 			break;
 | |
| 	}
 | |
| 	spin_unlock(&vcpu->kvm->mmu_lock);
 | |
| 
 | |
| 	return nr_sptes;
 | |
| }
 | |
| EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
 | |
| 
 | |
| #ifdef AUDIT
 | |
| 
 | |
| static const char *audit_msg;
 | |
| 
 | |
| static gva_t canonicalize(gva_t gva)
 | |
| {
 | |
| #ifdef CONFIG_X86_64
 | |
| 	gva = (long long)(gva << 16) >> 16;
 | |
| #endif
 | |
| 	return gva;
 | |
| }
 | |
| 
 | |
| 
 | |
| typedef void (*inspect_spte_fn) (struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 				 u64 *sptep);
 | |
| 
 | |
| static void __mmu_spte_walk(struct kvm *kvm, struct kvm_mmu_page *sp,
 | |
| 			    inspect_spte_fn fn)
 | |
| {
 | |
| 	int i;
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 		u64 ent = sp->spt[i];
 | |
| 
 | |
| 		if (is_shadow_present_pte(ent)) {
 | |
| 			if (!is_last_spte(ent, sp->role.level)) {
 | |
| 				struct kvm_mmu_page *child;
 | |
| 				child = page_header(ent & PT64_BASE_ADDR_MASK);
 | |
| 				__mmu_spte_walk(kvm, child, fn);
 | |
| 			} else
 | |
| 				fn(kvm, sp, &sp->spt[i]);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void mmu_spte_walk(struct kvm_vcpu *vcpu, inspect_spte_fn fn)
 | |
| {
 | |
| 	int i;
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 
 | |
| 	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
 | |
| 		return;
 | |
| 	if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
 | |
| 		hpa_t root = vcpu->arch.mmu.root_hpa;
 | |
| 		sp = page_header(root);
 | |
| 		__mmu_spte_walk(vcpu->kvm, sp, fn);
 | |
| 		return;
 | |
| 	}
 | |
| 	for (i = 0; i < 4; ++i) {
 | |
| 		hpa_t root = vcpu->arch.mmu.pae_root[i];
 | |
| 
 | |
| 		if (root && VALID_PAGE(root)) {
 | |
| 			root &= PT64_BASE_ADDR_MASK;
 | |
| 			sp = page_header(root);
 | |
| 			__mmu_spte_walk(vcpu->kvm, sp, fn);
 | |
| 		}
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
 | |
| 				gva_t va, int level)
 | |
| {
 | |
| 	u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
 | |
| 	int i;
 | |
| 	gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
 | |
| 
 | |
| 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
 | |
| 		u64 ent = pt[i];
 | |
| 
 | |
| 		if (ent == shadow_trap_nonpresent_pte)
 | |
| 			continue;
 | |
| 
 | |
| 		va = canonicalize(va);
 | |
| 		if (is_shadow_present_pte(ent) && !is_last_spte(ent, level))
 | |
| 			audit_mappings_page(vcpu, ent, va, level - 1);
 | |
| 		else {
 | |
| 			gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, va);
 | |
| 			gfn_t gfn = gpa >> PAGE_SHIFT;
 | |
| 			pfn_t pfn = gfn_to_pfn(vcpu->kvm, gfn);
 | |
| 			hpa_t hpa = (hpa_t)pfn << PAGE_SHIFT;
 | |
| 
 | |
| 			if (is_error_pfn(pfn)) {
 | |
| 				kvm_release_pfn_clean(pfn);
 | |
| 				continue;
 | |
| 			}
 | |
| 
 | |
| 			if (is_shadow_present_pte(ent)
 | |
| 			    && (ent & PT64_BASE_ADDR_MASK) != hpa)
 | |
| 				printk(KERN_ERR "xx audit error: (%s) levels %d"
 | |
| 				       " gva %lx gpa %llx hpa %llx ent %llx %d\n",
 | |
| 				       audit_msg, vcpu->arch.mmu.root_level,
 | |
| 				       va, gpa, hpa, ent,
 | |
| 				       is_shadow_present_pte(ent));
 | |
| 			else if (ent == shadow_notrap_nonpresent_pte
 | |
| 				 && !is_error_hpa(hpa))
 | |
| 				printk(KERN_ERR "audit: (%s) notrap shadow,"
 | |
| 				       " valid guest gva %lx\n", audit_msg, va);
 | |
| 			kvm_release_pfn_clean(pfn);
 | |
| 
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void audit_mappings(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	unsigned i;
 | |
| 
 | |
| 	if (vcpu->arch.mmu.root_level == 4)
 | |
| 		audit_mappings_page(vcpu, vcpu->arch.mmu.root_hpa, 0, 4);
 | |
| 	else
 | |
| 		for (i = 0; i < 4; ++i)
 | |
| 			if (vcpu->arch.mmu.pae_root[i] & PT_PRESENT_MASK)
 | |
| 				audit_mappings_page(vcpu,
 | |
| 						    vcpu->arch.mmu.pae_root[i],
 | |
| 						    i << 30,
 | |
| 						    2);
 | |
| }
 | |
| 
 | |
| static int count_rmaps(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	int nmaps = 0;
 | |
| 	int i, j, k;
 | |
| 
 | |
| 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
 | |
| 		struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
 | |
| 		struct kvm_rmap_desc *d;
 | |
| 
 | |
| 		for (j = 0; j < m->npages; ++j) {
 | |
| 			unsigned long *rmapp = &m->rmap[j];
 | |
| 
 | |
| 			if (!*rmapp)
 | |
| 				continue;
 | |
| 			if (!(*rmapp & 1)) {
 | |
| 				++nmaps;
 | |
| 				continue;
 | |
| 			}
 | |
| 			d = (struct kvm_rmap_desc *)(*rmapp & ~1ul);
 | |
| 			while (d) {
 | |
| 				for (k = 0; k < RMAP_EXT; ++k)
 | |
| 					if (d->sptes[k])
 | |
| 						++nmaps;
 | |
| 					else
 | |
| 						break;
 | |
| 				d = d->more;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	return nmaps;
 | |
| }
 | |
| 
 | |
| void inspect_spte_has_rmap(struct kvm *kvm, struct kvm_mmu_page *sp, u64 *sptep)
 | |
| {
 | |
| 	unsigned long *rmapp;
 | |
| 	struct kvm_mmu_page *rev_sp;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	if (*sptep & PT_WRITABLE_MASK) {
 | |
| 		rev_sp = page_header(__pa(sptep));
 | |
| 		gfn = rev_sp->gfns[sptep - rev_sp->spt];
 | |
| 
 | |
| 		if (!gfn_to_memslot(kvm, gfn)) {
 | |
| 			if (!printk_ratelimit())
 | |
| 				return;
 | |
| 			printk(KERN_ERR "%s: no memslot for gfn %ld\n",
 | |
| 					 audit_msg, gfn);
 | |
| 			printk(KERN_ERR "%s: index %ld of sp (gfn=%lx)\n",
 | |
| 					audit_msg, sptep - rev_sp->spt,
 | |
| 					rev_sp->gfn);
 | |
| 			dump_stack();
 | |
| 			return;
 | |
| 		}
 | |
| 
 | |
| 		rmapp = gfn_to_rmap(kvm, rev_sp->gfns[sptep - rev_sp->spt],
 | |
| 				    is_large_pte(*sptep));
 | |
| 		if (!*rmapp) {
 | |
| 			if (!printk_ratelimit())
 | |
| 				return;
 | |
| 			printk(KERN_ERR "%s: no rmap for writable spte %llx\n",
 | |
| 					 audit_msg, *sptep);
 | |
| 			dump_stack();
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| }
 | |
| 
 | |
| void audit_writable_sptes_have_rmaps(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	mmu_spte_walk(vcpu, inspect_spte_has_rmap);
 | |
| }
 | |
| 
 | |
| static void check_writable_mappings_rmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	int i;
 | |
| 
 | |
| 	list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
 | |
| 		u64 *pt = sp->spt;
 | |
| 
 | |
| 		if (sp->role.level != PT_PAGE_TABLE_LEVEL)
 | |
| 			continue;
 | |
| 
 | |
| 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
 | |
| 			u64 ent = pt[i];
 | |
| 
 | |
| 			if (!(ent & PT_PRESENT_MASK))
 | |
| 				continue;
 | |
| 			if (!(ent & PT_WRITABLE_MASK))
 | |
| 				continue;
 | |
| 			inspect_spte_has_rmap(vcpu->kvm, sp, &pt[i]);
 | |
| 		}
 | |
| 	}
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| static void audit_rmap(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	check_writable_mappings_rmap(vcpu);
 | |
| 	count_rmaps(vcpu);
 | |
| }
 | |
| 
 | |
| static void audit_write_protection(struct kvm_vcpu *vcpu)
 | |
| {
 | |
| 	struct kvm_mmu_page *sp;
 | |
| 	struct kvm_memory_slot *slot;
 | |
| 	unsigned long *rmapp;
 | |
| 	u64 *spte;
 | |
| 	gfn_t gfn;
 | |
| 
 | |
| 	list_for_each_entry(sp, &vcpu->kvm->arch.active_mmu_pages, link) {
 | |
| 		if (sp->role.direct)
 | |
| 			continue;
 | |
| 		if (sp->unsync)
 | |
| 			continue;
 | |
| 
 | |
| 		gfn = unalias_gfn(vcpu->kvm, sp->gfn);
 | |
| 		slot = gfn_to_memslot_unaliased(vcpu->kvm, sp->gfn);
 | |
| 		rmapp = &slot->rmap[gfn - slot->base_gfn];
 | |
| 
 | |
| 		spte = rmap_next(vcpu->kvm, rmapp, NULL);
 | |
| 		while (spte) {
 | |
| 			if (*spte & PT_WRITABLE_MASK)
 | |
| 				printk(KERN_ERR "%s: (%s) shadow page has "
 | |
| 				"writable mappings: gfn %lx role %x\n",
 | |
| 			       __func__, audit_msg, sp->gfn,
 | |
| 			       sp->role.word);
 | |
| 			spte = rmap_next(vcpu->kvm, rmapp, spte);
 | |
| 		}
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
 | |
| {
 | |
| 	int olddbg = dbg;
 | |
| 
 | |
| 	dbg = 0;
 | |
| 	audit_msg = msg;
 | |
| 	audit_rmap(vcpu);
 | |
| 	audit_write_protection(vcpu);
 | |
| 	if (strcmp("pre pte write", audit_msg) != 0)
 | |
| 		audit_mappings(vcpu);
 | |
| 	audit_writable_sptes_have_rmaps(vcpu);
 | |
| 	dbg = olddbg;
 | |
| }
 | |
| 
 | |
| #endif
 |