166 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			166 lines
		
	
	
		
			4.3 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* IEEE754 floating point arithmetic
 | |
|  * double precision square root
 | |
|  */
 | |
| /*
 | |
|  * MIPS floating point support
 | |
|  * Copyright (C) 1994-2000 Algorithmics Ltd.
 | |
|  * http://www.algor.co.uk
 | |
|  *
 | |
|  * ########################################################################
 | |
|  *
 | |
|  *  This program is free software; you can distribute it and/or modify it
 | |
|  *  under the terms of the GNU General Public License (Version 2) as
 | |
|  *  published by the Free Software Foundation.
 | |
|  *
 | |
|  *  This program is distributed in the hope it will be useful, but WITHOUT
 | |
|  *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 | |
|  *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 | |
|  *  for more details.
 | |
|  *
 | |
|  *  You should have received a copy of the GNU General Public License along
 | |
|  *  with this program; if not, write to the Free Software Foundation, Inc.,
 | |
|  *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 | |
|  *
 | |
|  * ########################################################################
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include "ieee754dp.h"
 | |
| 
 | |
| static const unsigned table[] = {
 | |
| 	0, 1204, 3062, 5746, 9193, 13348, 18162, 23592,
 | |
| 	29598, 36145, 43202, 50740, 58733, 67158, 75992,
 | |
| 	85215, 83599, 71378, 60428, 50647, 41945, 34246,
 | |
| 	27478, 21581, 16499, 12183, 8588, 5674, 3403,
 | |
| 	1742, 661, 130
 | |
| };
 | |
| 
 | |
| ieee754dp ieee754dp_sqrt(ieee754dp x)
 | |
| {
 | |
| 	struct _ieee754_csr oldcsr;
 | |
| 	ieee754dp y, z, t;
 | |
| 	unsigned scalx, yh;
 | |
| 	COMPXDP;
 | |
| 
 | |
| 	EXPLODEXDP;
 | |
| 	CLEARCX;
 | |
| 	FLUSHXDP;
 | |
| 
 | |
| 	/* x == INF or NAN? */
 | |
| 	switch (xc) {
 | |
| 	case IEEE754_CLASS_QNAN:
 | |
| 		/* sqrt(Nan) = Nan */
 | |
| 		return ieee754dp_nanxcpt(x, "sqrt");
 | |
| 	case IEEE754_CLASS_SNAN:
 | |
| 		SETCX(IEEE754_INVALID_OPERATION);
 | |
| 		return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
 | |
| 	case IEEE754_CLASS_ZERO:
 | |
| 		/* sqrt(0) = 0 */
 | |
| 		return x;
 | |
| 	case IEEE754_CLASS_INF:
 | |
| 		if (xs) {
 | |
| 			/* sqrt(-Inf) = Nan */
 | |
| 			SETCX(IEEE754_INVALID_OPERATION);
 | |
| 			return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
 | |
| 		}
 | |
| 		/* sqrt(+Inf) = Inf */
 | |
| 		return x;
 | |
| 	case IEEE754_CLASS_DNORM:
 | |
| 		DPDNORMX;
 | |
| 		/* fall through */
 | |
| 	case IEEE754_CLASS_NORM:
 | |
| 		if (xs) {
 | |
| 			/* sqrt(-x) = Nan */
 | |
| 			SETCX(IEEE754_INVALID_OPERATION);
 | |
| 			return ieee754dp_nanxcpt(ieee754dp_indef(), "sqrt");
 | |
| 		}
 | |
| 		break;
 | |
| 	}
 | |
| 
 | |
| 	/* save old csr; switch off INX enable & flag; set RN rounding */
 | |
| 	oldcsr = ieee754_csr;
 | |
| 	ieee754_csr.mx &= ~IEEE754_INEXACT;
 | |
| 	ieee754_csr.sx &= ~IEEE754_INEXACT;
 | |
| 	ieee754_csr.rm = IEEE754_RN;
 | |
| 
 | |
| 	/* adjust exponent to prevent overflow */
 | |
| 	scalx = 0;
 | |
| 	if (xe > 512) {		/* x > 2**-512? */
 | |
| 		xe -= 512;	/* x = x / 2**512 */
 | |
| 		scalx += 256;
 | |
| 	} else if (xe < -512) {	/* x < 2**-512? */
 | |
| 		xe += 512;	/* x = x * 2**512 */
 | |
| 		scalx -= 256;
 | |
| 	}
 | |
| 
 | |
| 	y = x = builddp(0, xe + DP_EBIAS, xm & ~DP_HIDDEN_BIT);
 | |
| 
 | |
| 	/* magic initial approximation to almost 8 sig. bits */
 | |
| 	yh = y.bits >> 32;
 | |
| 	yh = (yh >> 1) + 0x1ff80000;
 | |
| 	yh = yh - table[(yh >> 15) & 31];
 | |
| 	y.bits = ((u64) yh << 32) | (y.bits & 0xffffffff);
 | |
| 
 | |
| 	/* Heron's rule once with correction to improve to ~18 sig. bits */
 | |
| 	/* t=x/y; y=y+t; py[n0]=py[n0]-0x00100006; py[n1]=0; */
 | |
| 	t = ieee754dp_div(x, y);
 | |
| 	y = ieee754dp_add(y, t);
 | |
| 	y.bits -= 0x0010000600000000LL;
 | |
| 	y.bits &= 0xffffffff00000000LL;
 | |
| 
 | |
| 	/* triple to almost 56 sig. bits: y ~= sqrt(x) to within 1 ulp */
 | |
| 	/* t=y*y; z=t;  pt[n0]+=0x00100000; t+=z; z=(x-z)*y; */
 | |
| 	z = t = ieee754dp_mul(y, y);
 | |
| 	t.parts.bexp += 0x001;
 | |
| 	t = ieee754dp_add(t, z);
 | |
| 	z = ieee754dp_mul(ieee754dp_sub(x, z), y);
 | |
| 
 | |
| 	/* t=z/(t+x) ;  pt[n0]+=0x00100000; y+=t; */
 | |
| 	t = ieee754dp_div(z, ieee754dp_add(t, x));
 | |
| 	t.parts.bexp += 0x001;
 | |
| 	y = ieee754dp_add(y, t);
 | |
| 
 | |
| 	/* twiddle last bit to force y correctly rounded */
 | |
| 
 | |
| 	/* set RZ, clear INEX flag */
 | |
| 	ieee754_csr.rm = IEEE754_RZ;
 | |
| 	ieee754_csr.sx &= ~IEEE754_INEXACT;
 | |
| 
 | |
| 	/* t=x/y; ...chopped quotient, possibly inexact */
 | |
| 	t = ieee754dp_div(x, y);
 | |
| 
 | |
| 	if (ieee754_csr.sx & IEEE754_INEXACT || t.bits != y.bits) {
 | |
| 
 | |
| 		if (!(ieee754_csr.sx & IEEE754_INEXACT))
 | |
| 			/* t = t-ulp */
 | |
| 			t.bits -= 1;
 | |
| 
 | |
| 		/* add inexact to result status */
 | |
| 		oldcsr.cx |= IEEE754_INEXACT;
 | |
| 		oldcsr.sx |= IEEE754_INEXACT;
 | |
| 
 | |
| 		switch (oldcsr.rm) {
 | |
| 		case IEEE754_RP:
 | |
| 			y.bits += 1;
 | |
| 			/* drop through */
 | |
| 		case IEEE754_RN:
 | |
| 			t.bits += 1;
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 		/* y=y+t; ...chopped sum */
 | |
| 		y = ieee754dp_add(y, t);
 | |
| 
 | |
| 		/* adjust scalx for correctly rounded sqrt(x) */
 | |
| 		scalx -= 1;
 | |
| 	}
 | |
| 
 | |
| 	/* py[n0]=py[n0]+scalx; ...scale back y */
 | |
| 	y.parts.bexp += scalx;
 | |
| 
 | |
| 	/* restore rounding mode, possibly set inexact */
 | |
| 	ieee754_csr = oldcsr;
 | |
| 
 | |
| 	return y;
 | |
| }
 |