3176 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
			
		
		
	
	
			3176 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
		
			Executable File
		
	
	
	
	
/* drivers/android/pmem.c
 | 
						|
 *
 | 
						|
 * Copyright (C) 2007 Google, Inc.
 | 
						|
 * Copyright (c) 2009-2010, Code Aurora Forum. All rights reserved.
 | 
						|
*
 | 
						|
 * This software is licensed under the terms of the GNU General Public
 | 
						|
 * License version 2, as published by the Free Software Foundation, and
 | 
						|
 * may be copied, distributed, and modified under those terms.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 */
 | 
						|
 | 
						|
#include <linux/miscdevice.h>
 | 
						|
#include <linux/platform_device.h>
 | 
						|
#include <linux/fs.h>
 | 
						|
#include <linux/file.h>
 | 
						|
#include <linux/mm.h>
 | 
						|
#include <linux/list.h>
 | 
						|
#include <linux/debugfs.h>
 | 
						|
#include <linux/android_pmem.h>
 | 
						|
#include <linux/mempolicy.h>
 | 
						|
#include <linux/kobject.h>
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
#include <linux/memory.h>
 | 
						|
#include <linux/memory_hotplug.h>
 | 
						|
#endif
 | 
						|
#include <asm/io.h>
 | 
						|
#include <asm/uaccess.h>
 | 
						|
#include <asm/cacheflush.h>
 | 
						|
#include <asm/sizes.h>
 | 
						|
#include <linux/pm_runtime.h>
 | 
						|
 | 
						|
#define PMEM_MAX_USER_SPACE_DEVICES (10)
 | 
						|
#define PMEM_MAX_KERNEL_SPACE_DEVICES (2)
 | 
						|
#define PMEM_MAX_DEVICES \
 | 
						|
	(PMEM_MAX_USER_SPACE_DEVICES + PMEM_MAX_KERNEL_SPACE_DEVICES)
 | 
						|
 | 
						|
#define PMEM_MAX_ORDER (128)
 | 
						|
#define PMEM_MIN_ALLOC PAGE_SIZE
 | 
						|
 | 
						|
#define PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS (64)
 | 
						|
 | 
						|
#define PMEM_32BIT_WORD_ORDER (5)
 | 
						|
#define PMEM_BITS_PER_WORD_MASK (BITS_PER_LONG - 1)
 | 
						|
 | 
						|
#ifdef CONFIG_ANDROID_PMEM_DEBUG
 | 
						|
#define PMEM_DEBUG 1
 | 
						|
#else
 | 
						|
#define PMEM_DEBUG 0
 | 
						|
#endif
 | 
						|
 | 
						|
#define SYSTEM_ALLOC_RETRY 10
 | 
						|
 | 
						|
/* indicates that a refernce to this file has been taken via get_pmem_file,
 | 
						|
 * the file should not be released until put_pmem_file is called */
 | 
						|
#define PMEM_FLAGS_BUSY 0x1
 | 
						|
/* indicates that this is a suballocation of a larger master range */
 | 
						|
#define PMEM_FLAGS_CONNECTED 0x1 << 1
 | 
						|
/* indicates this is a master and not a sub allocation and that it is mmaped */
 | 
						|
#define PMEM_FLAGS_MASTERMAP 0x1 << 2
 | 
						|
/* submap and unsubmap flags indicate:
 | 
						|
 * 00: subregion has never been mmaped
 | 
						|
 * 10: subregion has been mmaped, reference to the mm was taken
 | 
						|
 * 11: subretion has ben released, refernece to the mm still held
 | 
						|
 * 01: subretion has been released, reference to the mm has been released
 | 
						|
 */
 | 
						|
#define PMEM_FLAGS_SUBMAP 0x1 << 3
 | 
						|
#define PMEM_FLAGS_UNSUBMAP 0x1 << 4
 | 
						|
 | 
						|
struct pmem_data {
 | 
						|
	/* in alloc mode: an index into the bitmap
 | 
						|
	 * in no_alloc mode: the size of the allocation */
 | 
						|
	int index;
 | 
						|
	/* see flags above for descriptions */
 | 
						|
	unsigned int flags;
 | 
						|
	/* protects this data field, if the mm_mmap sem will be held at the
 | 
						|
	 * same time as this sem, the mm sem must be taken first (as this is
 | 
						|
	 * the order for vma_open and vma_close ops */
 | 
						|
	struct rw_semaphore sem;
 | 
						|
	/* info about the mmaping process */
 | 
						|
	struct vm_area_struct *vma;
 | 
						|
	/* task struct of the mapping process */
 | 
						|
	struct task_struct *task;
 | 
						|
	/* process id of teh mapping process */
 | 
						|
	pid_t pid;
 | 
						|
	/* file descriptor of the master */
 | 
						|
	int master_fd;
 | 
						|
	/* file struct of the master */
 | 
						|
	struct file *master_file;
 | 
						|
	/* a list of currently available regions if this is a suballocation */
 | 
						|
	struct list_head region_list;
 | 
						|
	/* a linked list of data so we can access them for debugging */
 | 
						|
	struct list_head list;
 | 
						|
#if PMEM_DEBUG
 | 
						|
	int ref;
 | 
						|
#endif
 | 
						|
};
 | 
						|
 | 
						|
struct pmem_bits {
 | 
						|
	unsigned allocated:1;		/* 1 if allocated, 0 if free */
 | 
						|
	unsigned order:7;		/* size of the region in pmem space */
 | 
						|
};
 | 
						|
 | 
						|
struct pmem_region_node {
 | 
						|
	struct pmem_region region;
 | 
						|
	struct list_head list;
 | 
						|
};
 | 
						|
 | 
						|
#define PMEM_DEBUG_MSGS 0
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
#define DLOG(fmt,args...) \
 | 
						|
	do { pr_debug("[%s:%s:%d] "fmt, __FILE__, __func__, __LINE__, \
 | 
						|
		    ##args); } \
 | 
						|
	while (0)
 | 
						|
#else
 | 
						|
#define DLOG(x...) do {} while (0)
 | 
						|
#endif
 | 
						|
 | 
						|
enum pmem_align {
 | 
						|
	PMEM_ALIGN_4K,
 | 
						|
	PMEM_ALIGN_1M,
 | 
						|
};
 | 
						|
 | 
						|
#define PMEM_NAME_SIZE 16
 | 
						|
 | 
						|
#define MEMORY_STABLE				0
 | 
						|
#define MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED	1
 | 
						|
#define MEMORY_UNSTABLE_MEMORY_ALLOCATED	2
 | 
						|
 | 
						|
#define	NO_UNSTABLE_MEMORY		0
 | 
						|
#define	UNSTABLE_UNINITIALIZED		1
 | 
						|
#define	UNSTABLE_INITIALIZED		2
 | 
						|
 | 
						|
int unstable_pmem_present;
 | 
						|
/* start of unstable PMEM physical memory */
 | 
						|
unsigned long unstable_pmem_start;
 | 
						|
/* size of unstable PMEM physical memory */
 | 
						|
unsigned long unstable_pmem_size;
 | 
						|
 | 
						|
struct alloc_list {
 | 
						|
	void *addr;                  /* physical addr of allocation */
 | 
						|
	void *aaddr;                 /* aligned physical addr       */
 | 
						|
	unsigned int size;           /* total size of allocation    */
 | 
						|
	unsigned char __iomem *vaddr; /* Virtual addr                */
 | 
						|
	struct list_head allocs;
 | 
						|
};
 | 
						|
 | 
						|
struct pmem_info {
 | 
						|
	struct miscdevice dev;
 | 
						|
	/* physical start address of the remaped pmem space */
 | 
						|
	unsigned long base;
 | 
						|
	/* vitual start address of the remaped pmem space */
 | 
						|
	unsigned char __iomem *vbase;
 | 
						|
	/* total size of the pmem space */
 | 
						|
	unsigned long size;
 | 
						|
	/* number of entries in the pmem space */
 | 
						|
	unsigned long num_entries;
 | 
						|
	/* pfn of the garbage page in memory */
 | 
						|
	unsigned long garbage_pfn;
 | 
						|
	/* memory state (stable/unstable with or without memory */
 | 
						|
	int memory_state;
 | 
						|
 | 
						|
	char name[PMEM_NAME_SIZE];
 | 
						|
 | 
						|
	/* index of the garbage page in the pmem space */
 | 
						|
	int garbage_index;
 | 
						|
 | 
						|
	enum pmem_allocator_type allocator_type;
 | 
						|
 | 
						|
	int (*allocate)(const int,
 | 
						|
			const unsigned long,
 | 
						|
			const unsigned int);
 | 
						|
	int (*free)(int, int);
 | 
						|
	int (*free_space)(int, struct pmem_freespace *);
 | 
						|
	unsigned long (*len)(int, struct pmem_data *);
 | 
						|
	unsigned long (*start_addr)(int, struct pmem_data *);
 | 
						|
	int (*kapi_free_index)(const int32_t, int);
 | 
						|
 | 
						|
	/* actual size of memory element, e.g.: (4 << 10) is 4K */
 | 
						|
	unsigned int quantum;
 | 
						|
 | 
						|
	/* indicates maps of this region should be cached, if a mix of
 | 
						|
	 * cached and uncached is desired, set this and open the device with
 | 
						|
	 * O_SYNC to get an uncached region */
 | 
						|
	unsigned cached;
 | 
						|
	unsigned buffered;
 | 
						|
	union {
 | 
						|
		struct {
 | 
						|
			/* in all_or_nothing allocator mode the first mapper
 | 
						|
			 * gets the whole space and sets this flag */
 | 
						|
			unsigned allocated;
 | 
						|
		} all_or_nothing;
 | 
						|
 | 
						|
		struct {
 | 
						|
			/* the buddy allocator bitmap for the region
 | 
						|
			 * indicating which entries are allocated and which
 | 
						|
			 * are free.
 | 
						|
			 */
 | 
						|
 | 
						|
			struct pmem_bits *buddy_bitmap;
 | 
						|
		} buddy_bestfit;
 | 
						|
 | 
						|
		struct {
 | 
						|
			unsigned int bitmap_free; /* # of zero bits/quanta */
 | 
						|
			uint32_t *bitmap;
 | 
						|
			int32_t bitmap_allocs;
 | 
						|
			struct {
 | 
						|
				short bit;
 | 
						|
				unsigned short quanta;
 | 
						|
			} *bitm_alloc;
 | 
						|
		} bitmap;
 | 
						|
 | 
						|
		struct {
 | 
						|
			unsigned long used;      /* Bytes currently allocated */
 | 
						|
			struct list_head alist;  /* List of allocations       */
 | 
						|
		} system_mem;
 | 
						|
	} allocator;
 | 
						|
 | 
						|
	int id;
 | 
						|
	struct kobject kobj;
 | 
						|
 | 
						|
	/* for debugging, creates a list of pmem file structs, the
 | 
						|
	 * data_list_mutex should be taken before pmem_data->sem if both are
 | 
						|
	 * needed */
 | 
						|
	struct mutex data_list_mutex;
 | 
						|
	struct list_head data_list;
 | 
						|
	/* arena_mutex protects the global allocation arena
 | 
						|
	 *
 | 
						|
	 * IF YOU TAKE BOTH LOCKS TAKE THEM IN THIS ORDER:
 | 
						|
	 * down(pmem_data->sem) => mutex_lock(arena_mutex)
 | 
						|
	 */
 | 
						|
	struct mutex arena_mutex;
 | 
						|
 | 
						|
	long (*ioctl)(struct file *, unsigned int, unsigned long);
 | 
						|
	int (*release)(struct inode *, struct file *);
 | 
						|
};
 | 
						|
#define to_pmem_info_id(a) (container_of(a, struct pmem_info, kobj)->id)
 | 
						|
 | 
						|
static struct pmem_info pmem[PMEM_MAX_DEVICES];
 | 
						|
static int id_count;
 | 
						|
static struct {
 | 
						|
	const char * const name;
 | 
						|
	const int memtype;
 | 
						|
	const int fallback_memtype;
 | 
						|
	int info_id;
 | 
						|
} kapi_memtypes[] = {
 | 
						|
#ifdef CONFIG_KERNEL_PMEM_SMI_REGION
 | 
						|
	{ PMEM_KERNEL_SMI_DATA_NAME,
 | 
						|
		PMEM_MEMTYPE_SMI,
 | 
						|
		PMEM_MEMTYPE_EBI1,  /* Fall back to EBI1 automatically */
 | 
						|
		-1 },
 | 
						|
#endif
 | 
						|
	{ PMEM_KERNEL_EBI1_DATA_NAME,
 | 
						|
		PMEM_MEMTYPE_EBI1,
 | 
						|
		PMEM_INVALID_MEMTYPE, /* MUST be set invalid if no fallback */
 | 
						|
		-1 },
 | 
						|
};
 | 
						|
 | 
						|
#define PMEM_SYSFS_DIR_NAME "pmem_regions" /* under /sys/kernel/ */
 | 
						|
static struct kset *pmem_kset;
 | 
						|
 | 
						|
#define PMEM_IS_FREE_BUDDY(id, index) \
 | 
						|
	(!(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].allocated))
 | 
						|
#define PMEM_BUDDY_ORDER(id, index) \
 | 
						|
	(pmem[id].allocator.buddy_bestfit.buddy_bitmap[index].order)
 | 
						|
#define PMEM_BUDDY_INDEX(id, index) \
 | 
						|
	(index ^ (1 << PMEM_BUDDY_ORDER(id, index)))
 | 
						|
#define PMEM_BUDDY_NEXT_INDEX(id, index) \
 | 
						|
	(index + (1 << PMEM_BUDDY_ORDER(id, index)))
 | 
						|
#define PMEM_OFFSET(index) (index * pmem[id].quantum)
 | 
						|
#define PMEM_START_ADDR(id, index) \
 | 
						|
	(PMEM_OFFSET(index) + pmem[id].base)
 | 
						|
#define PMEM_BUDDY_LEN(id, index) \
 | 
						|
	((1 << PMEM_BUDDY_ORDER(id, index)) * pmem[id].quantum)
 | 
						|
#define PMEM_END_ADDR(id, index) \
 | 
						|
	(PMEM_START_ADDR(id, index) + PMEM_LEN(id, index))
 | 
						|
#define PMEM_START_VADDR(id, index) \
 | 
						|
	(PMEM_OFFSET(id, index) + pmem[id].vbase)
 | 
						|
#define PMEM_END_VADDR(id, index) \
 | 
						|
	(PMEM_START_VADDR(id, index) + PMEM_LEN(id, index))
 | 
						|
#define PMEM_REVOKED(data) (data->flags & PMEM_FLAGS_REVOKED)
 | 
						|
#define PMEM_IS_PAGE_ALIGNED(addr) (!((addr) & (~PAGE_MASK)))
 | 
						|
#define PMEM_IS_SUBMAP(data) \
 | 
						|
	((data->flags & PMEM_FLAGS_SUBMAP) && \
 | 
						|
	(!(data->flags & PMEM_FLAGS_UNSUBMAP)))
 | 
						|
 | 
						|
static int pmem_release(struct inode *, struct file *);
 | 
						|
static int pmem_mmap(struct file *, struct vm_area_struct *);
 | 
						|
static int pmem_open(struct inode *, struct file *);
 | 
						|
static long pmem_ioctl(struct file *, unsigned int, unsigned long);
 | 
						|
 | 
						|
struct file_operations pmem_fops = {
 | 
						|
	.release = pmem_release,
 | 
						|
	.mmap = pmem_mmap,
 | 
						|
	.open = pmem_open,
 | 
						|
	.unlocked_ioctl = pmem_ioctl,
 | 
						|
};
 | 
						|
 | 
						|
#define PMEM_ATTR(_name, _mode, _show, _store) {            \
 | 
						|
	.attr = {.name = __stringify(_name), .mode = _mode }, \
 | 
						|
	.show = _show,                                        \
 | 
						|
	.store = _store,                                      \
 | 
						|
}
 | 
						|
 | 
						|
struct pmem_attr {
 | 
						|
	struct attribute attr;
 | 
						|
	ssize_t(*show) (const int id, char * const);
 | 
						|
	ssize_t(*store) (const int id, const char * const, const size_t count);
 | 
						|
};
 | 
						|
#define to_pmem_attr(a) container_of(a, struct pmem_attr, attr)
 | 
						|
 | 
						|
#define RW_PMEM_ATTR(name)  \
 | 
						|
static struct pmem_attr pmem_attr_## name = \
 | 
						|
 PMEM_ATTR(name, S_IRUGO | S_IWUSR, show_pmem_## name, store_pmem_## name)
 | 
						|
 | 
						|
#define RO_PMEM_ATTR(name)  \
 | 
						|
static struct pmem_attr pmem_attr_## name = \
 | 
						|
 PMEM_ATTR(name, S_IRUGO, show_pmem_## name, NULL)
 | 
						|
 | 
						|
#define WO_PMEM_ATTR(name)  \
 | 
						|
static struct pmem_attr pmem_attr_## name = \
 | 
						|
 PMEM_ATTR(name, S_IWUSR, NULL, store_pmem_## name)
 | 
						|
 | 
						|
static ssize_t show_pmem(struct kobject *kobj,
 | 
						|
			struct attribute *attr,
 | 
						|
			char *buf)
 | 
						|
{
 | 
						|
	struct pmem_attr *a = to_pmem_attr(attr);
 | 
						|
	return a->show ? a->show(to_pmem_info_id(kobj), buf) : -EIO;
 | 
						|
}
 | 
						|
 | 
						|
static ssize_t store_pmem(struct kobject *kobj, struct attribute *attr,
 | 
						|
		     const char *buf, size_t count)
 | 
						|
{
 | 
						|
	struct pmem_attr *a = to_pmem_attr(attr);
 | 
						|
	return a->store ? a->store(to_pmem_info_id(kobj), buf, count) : -EIO;
 | 
						|
}
 | 
						|
 | 
						|
static struct sysfs_ops pmem_ops = {
 | 
						|
	.show = show_pmem,
 | 
						|
	.store = store_pmem,
 | 
						|
};
 | 
						|
 | 
						|
static ssize_t show_pmem_base(int id, char *buf)
 | 
						|
{
 | 
						|
	return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n",
 | 
						|
		pmem[id].base, pmem[id].base);
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(base);
 | 
						|
 | 
						|
static ssize_t show_pmem_size(int id, char *buf)
 | 
						|
{
 | 
						|
	return scnprintf(buf, PAGE_SIZE, "%lu(%#lx)\n",
 | 
						|
		pmem[id].size, pmem[id].size);
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(size);
 | 
						|
 | 
						|
static ssize_t show_pmem_allocator_type(int id, char *buf)
 | 
						|
{
 | 
						|
	switch (pmem[id].allocator_type) {
 | 
						|
	case  PMEM_ALLOCATORTYPE_ALLORNOTHING:
 | 
						|
		return scnprintf(buf, PAGE_SIZE, "%s\n", "All or Nothing");
 | 
						|
	case  PMEM_ALLOCATORTYPE_BUDDYBESTFIT:
 | 
						|
		return scnprintf(buf, PAGE_SIZE, "%s\n", "Buddy Bestfit");
 | 
						|
	case  PMEM_ALLOCATORTYPE_BITMAP:
 | 
						|
		return scnprintf(buf, PAGE_SIZE, "%s\n", "Bitmap");
 | 
						|
	case PMEM_ALLOCATORTYPE_SYSTEM:
 | 
						|
		return scnprintf(buf, PAGE_SIZE, "%s\n", "System heap");
 | 
						|
	default:
 | 
						|
		return scnprintf(buf, PAGE_SIZE,
 | 
						|
			"??? Invalid allocator type (%d) for this region! "
 | 
						|
			"Something isn't right.\n",
 | 
						|
			pmem[id].allocator_type);
 | 
						|
	}
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(allocator_type);
 | 
						|
 | 
						|
static ssize_t show_pmem_mapped_regions(int id, char *buf)
 | 
						|
{
 | 
						|
	struct list_head *elt;
 | 
						|
	int ret;
 | 
						|
 | 
						|
	ret = scnprintf(buf, PAGE_SIZE,
 | 
						|
		      "pid #: mapped regions (offset, len) (offset,len)...\n");
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].data_list_mutex);
 | 
						|
	list_for_each(elt, &pmem[id].data_list) {
 | 
						|
		struct pmem_data *data =
 | 
						|
			list_entry(elt, struct pmem_data, list);
 | 
						|
		struct list_head *elt2;
 | 
						|
 | 
						|
		down_read(&data->sem);
 | 
						|
		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "pid %u:",
 | 
						|
				data->pid);
 | 
						|
		list_for_each(elt2, &data->region_list) {
 | 
						|
			struct pmem_region_node *region_node = list_entry(elt2,
 | 
						|
					struct pmem_region_node,
 | 
						|
					list);
 | 
						|
			ret += scnprintf(buf + ret, PAGE_SIZE - ret,
 | 
						|
					"(%lx,%lx) ",
 | 
						|
					region_node->region.offset,
 | 
						|
					region_node->region.len);
 | 
						|
		}
 | 
						|
		up_read(&data->sem);
 | 
						|
		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "\n");
 | 
						|
	}
 | 
						|
	mutex_unlock(&pmem[id].data_list_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(mapped_regions);
 | 
						|
 | 
						|
#define PMEM_COMMON_SYSFS_ATTRS \
 | 
						|
	&pmem_attr_base.attr, \
 | 
						|
	&pmem_attr_size.attr, \
 | 
						|
	&pmem_attr_allocator_type.attr, \
 | 
						|
	&pmem_attr_mapped_regions.attr
 | 
						|
 | 
						|
 | 
						|
static ssize_t show_pmem_allocated(int id, char *buf)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].arena_mutex);
 | 
						|
	ret = scnprintf(buf, PAGE_SIZE, "%s\n",
 | 
						|
		pmem[id].allocator.all_or_nothing.allocated ?
 | 
						|
		"is allocated" : "is NOT allocated");
 | 
						|
	mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(allocated);
 | 
						|
 | 
						|
static struct attribute *pmem_allornothing_attrs[] = {
 | 
						|
	PMEM_COMMON_SYSFS_ATTRS,
 | 
						|
 | 
						|
	&pmem_attr_allocated.attr,
 | 
						|
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static struct kobj_type pmem_allornothing_ktype = {
 | 
						|
	.sysfs_ops = &pmem_ops,
 | 
						|
	.default_attrs = pmem_allornothing_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static ssize_t show_pmem_total_entries(int id, char *buf)
 | 
						|
{
 | 
						|
	return scnprintf(buf, PAGE_SIZE, "%lu\n", pmem[id].num_entries);
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(total_entries);
 | 
						|
 | 
						|
static ssize_t show_pmem_quantum_size(int id, char *buf)
 | 
						|
{
 | 
						|
	return scnprintf(buf, PAGE_SIZE, "%u (%#x)\n",
 | 
						|
		pmem[id].quantum, pmem[id].quantum);
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(quantum_size);
 | 
						|
 | 
						|
static ssize_t show_pmem_buddy_bitmap_dump(int id, char *buf)
 | 
						|
{
 | 
						|
	int ret, i;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].data_list_mutex);
 | 
						|
	ret = scnprintf(buf, PAGE_SIZE, "index\torder\tlength\tallocated\n");
 | 
						|
 | 
						|
	for (i = 0; i < pmem[id].num_entries && (PAGE_SIZE - ret);
 | 
						|
			i = PMEM_BUDDY_NEXT_INDEX(id, i))
 | 
						|
		ret += scnprintf(buf + ret, PAGE_SIZE - ret, "%d\t%d\t%d\t%d\n",
 | 
						|
			i, PMEM_BUDDY_ORDER(id, i),
 | 
						|
			PMEM_BUDDY_LEN(id, i),
 | 
						|
			!PMEM_IS_FREE_BUDDY(id, i));
 | 
						|
 | 
						|
	mutex_unlock(&pmem[id].data_list_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(buddy_bitmap_dump);
 | 
						|
 | 
						|
#define PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS \
 | 
						|
	&pmem_attr_quantum_size.attr, \
 | 
						|
	&pmem_attr_total_entries.attr
 | 
						|
 | 
						|
static struct attribute *pmem_buddy_bestfit_attrs[] = {
 | 
						|
	PMEM_COMMON_SYSFS_ATTRS,
 | 
						|
 | 
						|
	PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS,
 | 
						|
 | 
						|
	&pmem_attr_buddy_bitmap_dump.attr,
 | 
						|
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static struct kobj_type pmem_buddy_bestfit_ktype = {
 | 
						|
	.sysfs_ops = &pmem_ops,
 | 
						|
	.default_attrs = pmem_buddy_bestfit_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static ssize_t show_pmem_free_quanta(int id, char *buf)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].arena_mutex);
 | 
						|
	ret = scnprintf(buf, PAGE_SIZE, "%u\n",
 | 
						|
		pmem[id].allocator.bitmap.bitmap_free);
 | 
						|
	mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(free_quanta);
 | 
						|
 | 
						|
static ssize_t show_pmem_bits_allocated(int id, char *buf)
 | 
						|
{
 | 
						|
	ssize_t ret;
 | 
						|
	unsigned int i;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].arena_mutex);
 | 
						|
 | 
						|
	ret = scnprintf(buf, PAGE_SIZE,
 | 
						|
		"id: %d\nbitnum\tindex\tquanta allocated\n", id);
 | 
						|
 | 
						|
	for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++)
 | 
						|
		if (pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1)
 | 
						|
			ret += scnprintf(buf + ret, PAGE_SIZE - ret,
 | 
						|
				"%u\t%u\t%u\n",
 | 
						|
				i,
 | 
						|
				pmem[id].allocator.bitmap.bitm_alloc[i].bit,
 | 
						|
				pmem[id].allocator.bitmap.bitm_alloc[i].quanta
 | 
						|
				);
 | 
						|
 | 
						|
	mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
RO_PMEM_ATTR(bits_allocated);
 | 
						|
 | 
						|
static struct attribute *pmem_bitmap_attrs[] = {
 | 
						|
	PMEM_COMMON_SYSFS_ATTRS,
 | 
						|
 | 
						|
	PMEM_BITMAP_BUDDY_BESTFIT_COMMON_SYSFS_ATTRS,
 | 
						|
 | 
						|
	&pmem_attr_free_quanta.attr,
 | 
						|
	&pmem_attr_bits_allocated.attr,
 | 
						|
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static struct attribute *pmem_system_attrs[] = {
 | 
						|
	PMEM_COMMON_SYSFS_ATTRS,
 | 
						|
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
static struct kobj_type pmem_bitmap_ktype = {
 | 
						|
	.sysfs_ops = &pmem_ops,
 | 
						|
	.default_attrs = pmem_bitmap_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static struct kobj_type pmem_system_ktype = {
 | 
						|
	.sysfs_ops = &pmem_ops,
 | 
						|
	.default_attrs = pmem_system_attrs,
 | 
						|
};
 | 
						|
 | 
						|
static int get_id(struct file *file)
 | 
						|
{
 | 
						|
	return MINOR(file->f_dentry->d_inode->i_rdev);
 | 
						|
}
 | 
						|
 | 
						|
static char *get_name(struct file *file)
 | 
						|
{
 | 
						|
	int id = get_id(file);
 | 
						|
	return pmem[id].name;
 | 
						|
}
 | 
						|
 | 
						|
static int is_pmem_file(struct file *file)
 | 
						|
{
 | 
						|
	int id;
 | 
						|
 | 
						|
	if (unlikely(!file || !file->f_dentry || !file->f_dentry->d_inode))
 | 
						|
		return 0;
 | 
						|
 | 
						|
	id = get_id(file);
 | 
						|
	return (unlikely(id >= PMEM_MAX_DEVICES ||
 | 
						|
		file->f_dentry->d_inode->i_rdev !=
 | 
						|
		     MKDEV(MISC_MAJOR, pmem[id].dev.minor))) ? 0 : 1;
 | 
						|
}
 | 
						|
 | 
						|
static int has_allocation(struct file *file)
 | 
						|
{
 | 
						|
	/* must be called with at least read lock held on
 | 
						|
	 * ((struct pmem_data *)(file->private_data))->sem which
 | 
						|
	 * means that file is guaranteed not to be NULL upon entry!!
 | 
						|
	 * check is_pmem_file first if not accessed via pmem_file_ops */
 | 
						|
	struct pmem_data *pdata = file->private_data;
 | 
						|
	return pdata && pdata->index != -1;
 | 
						|
}
 | 
						|
 | 
						|
static int is_master_owner(struct file *file)
 | 
						|
{
 | 
						|
	struct file *master_file;
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
	int put_needed, ret = 0;
 | 
						|
 | 
						|
	if (!has_allocation(file))
 | 
						|
		return 0;
 | 
						|
	if (PMEM_FLAGS_MASTERMAP & data->flags)
 | 
						|
		return 1;
 | 
						|
	master_file = fget_light(data->master_fd, &put_needed);
 | 
						|
	if (master_file && data->master_file == master_file)
 | 
						|
		ret = 1;
 | 
						|
	if (master_file)
 | 
						|
		fput_light(master_file, put_needed);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_free_all_or_nothing(int id, int index)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	DLOG("index %d\n", index);
 | 
						|
 | 
						|
	pmem[id].allocator.all_or_nothing.allocated =  0;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_free_space_all_or_nothing(int id,
 | 
						|
		struct pmem_freespace *fs)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	fs->total = (unsigned long)
 | 
						|
		pmem[id].allocator.all_or_nothing.allocated == 0 ?
 | 
						|
		pmem[id].size : 0;
 | 
						|
 | 
						|
	fs->largest = fs->total;
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int pmem_free_buddy_bestfit(int id, int index)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	int curr = index;
 | 
						|
	DLOG("index %d\n", index);
 | 
						|
 | 
						|
 | 
						|
	/* clean up the bitmap, merging any buddies */
 | 
						|
	pmem[id].allocator.buddy_bestfit.buddy_bitmap[curr].allocated = 0;
 | 
						|
	/* find a slots buddy Buddy# = Slot# ^ (1 << order)
 | 
						|
	 * if the buddy is also free merge them
 | 
						|
	 * repeat until the buddy is not free or end of the bitmap is reached
 | 
						|
	 */
 | 
						|
	do {
 | 
						|
		int buddy = PMEM_BUDDY_INDEX(id, curr);
 | 
						|
		if (buddy < pmem[id].num_entries &&
 | 
						|
		    PMEM_IS_FREE_BUDDY(id, buddy) &&
 | 
						|
		    PMEM_BUDDY_ORDER(id, buddy) ==
 | 
						|
				PMEM_BUDDY_ORDER(id, curr)) {
 | 
						|
			PMEM_BUDDY_ORDER(id, buddy)++;
 | 
						|
			PMEM_BUDDY_ORDER(id, curr)++;
 | 
						|
			curr = min(buddy, curr);
 | 
						|
		} else {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	} while (curr < pmem[id].num_entries);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static int pmem_free_space_buddy_bestfit(int id,
 | 
						|
		struct pmem_freespace *fs)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	int curr;
 | 
						|
	unsigned long size;
 | 
						|
	fs->total = 0;
 | 
						|
	fs->largest = 0;
 | 
						|
 | 
						|
	for (curr = 0; curr < pmem[id].num_entries;
 | 
						|
	     curr = PMEM_BUDDY_NEXT_INDEX(id, curr)) {
 | 
						|
		if (PMEM_IS_FREE_BUDDY(id, curr)) {
 | 
						|
			size = PMEM_BUDDY_LEN(id, curr);
 | 
						|
			if (size > fs->largest)
 | 
						|
				fs->largest = size;
 | 
						|
			fs->total += size;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline uint32_t start_mask(int bit_start)
 | 
						|
{
 | 
						|
	return (uint32_t)(~0) << (bit_start & PMEM_BITS_PER_WORD_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static inline uint32_t end_mask(int bit_end)
 | 
						|
{
 | 
						|
	return (uint32_t)(~0) >>
 | 
						|
		((BITS_PER_LONG - bit_end) & PMEM_BITS_PER_WORD_MASK);
 | 
						|
}
 | 
						|
 | 
						|
static inline int compute_total_words(int bit_end, int word_index)
 | 
						|
{
 | 
						|
	return ((bit_end + BITS_PER_LONG - 1) >>
 | 
						|
			PMEM_32BIT_WORD_ORDER) - word_index;
 | 
						|
}
 | 
						|
 | 
						|
static void bitmap_bits_clear_all(uint32_t *bitp, int bit_start, int bit_end)
 | 
						|
{
 | 
						|
	int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words;
 | 
						|
 | 
						|
	total_words = compute_total_words(bit_end, word_index);
 | 
						|
	if (total_words > 0) {
 | 
						|
		if (total_words == 1) {
 | 
						|
			bitp[word_index] &=
 | 
						|
				~(start_mask(bit_start) & end_mask(bit_end));
 | 
						|
		} else {
 | 
						|
			bitp[word_index++] &= ~start_mask(bit_start);
 | 
						|
			if (total_words > 2) {
 | 
						|
				int total_bytes;
 | 
						|
 | 
						|
				total_words -= 2;
 | 
						|
				total_bytes = total_words << 2;
 | 
						|
 | 
						|
				memset(&bitp[word_index], 0, total_bytes);
 | 
						|
				word_index += total_words;
 | 
						|
			}
 | 
						|
			bitp[word_index] &= ~end_mask(bit_end);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_free_bitmap(int id, int bitnum)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	int i;
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
 | 
						|
	DLOG("bitnum %d\n", bitnum);
 | 
						|
 | 
						|
	for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++) {
 | 
						|
		const int curr_bit =
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].bit;
 | 
						|
 | 
						|
		if (curr_bit == bitnum) {
 | 
						|
			const int curr_quanta =
 | 
						|
				pmem[id].allocator.bitmap.bitm_alloc[i].quanta;
 | 
						|
 | 
						|
			bitmap_bits_clear_all(pmem[id].allocator.bitmap.bitmap,
 | 
						|
				curr_bit, curr_bit + curr_quanta);
 | 
						|
			pmem[id].allocator.bitmap.bitmap_free += curr_quanta;
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1;
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	printk(KERN_ALERT "pmem: %s: Attempt to free unallocated index %d, id"
 | 
						|
		" %d, pid %d(%s)\n", __func__, bitnum, id,  current->pid,
 | 
						|
		get_task_comm(currtask_name, current));
 | 
						|
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_free_system(int id, int index)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	struct alloc_list *item;
 | 
						|
 | 
						|
	DLOG("index %d\n", index);
 | 
						|
	if (index != 0)
 | 
						|
		item = (struct alloc_list *)index;
 | 
						|
	else
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (item->vaddr != NULL) {
 | 
						|
		iounmap(item->vaddr);
 | 
						|
		kfree(__va(item->addr));
 | 
						|
		list_del(&item->allocs);
 | 
						|
		kfree(item);
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_free_space_bitmap(int id, struct pmem_freespace *fs)
 | 
						|
{
 | 
						|
	int i, j;
 | 
						|
	int max_allocs = pmem[id].allocator.bitmap.bitmap_allocs;
 | 
						|
	int alloc_start = 0;
 | 
						|
	int next_alloc;
 | 
						|
	unsigned long size = 0;
 | 
						|
 | 
						|
	fs->total = 0;
 | 
						|
	fs->largest = 0;
 | 
						|
 | 
						|
	for (i = 0; i < max_allocs; i++) {
 | 
						|
 | 
						|
		int alloc_quanta = 0;
 | 
						|
		int alloc_idx = 0;
 | 
						|
		next_alloc = pmem[id].num_entries;
 | 
						|
 | 
						|
		/* Look for the lowest bit where next allocation starts */
 | 
						|
		for (j = 0; j < max_allocs; j++) {
 | 
						|
			const int curr_alloc = pmem[id].allocator.
 | 
						|
						bitmap.bitm_alloc[j].bit;
 | 
						|
			if (curr_alloc != -1) {
 | 
						|
				if (alloc_start == curr_alloc)
 | 
						|
					alloc_idx = j;
 | 
						|
				if (alloc_start >= curr_alloc)
 | 
						|
					continue;
 | 
						|
				if (curr_alloc < next_alloc)
 | 
						|
					next_alloc = curr_alloc;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		alloc_quanta = pmem[id].allocator.bitmap.
 | 
						|
				bitm_alloc[alloc_idx].quanta;
 | 
						|
		size = (next_alloc - (alloc_start + alloc_quanta)) *
 | 
						|
				pmem[id].quantum;
 | 
						|
 | 
						|
		if (size > fs->largest)
 | 
						|
			fs->largest = size;
 | 
						|
		fs->total += size;
 | 
						|
 | 
						|
		if (next_alloc == pmem[id].num_entries)
 | 
						|
			break;
 | 
						|
		else
 | 
						|
			alloc_start = next_alloc;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_free_space_system(int id, struct pmem_freespace *fs)
 | 
						|
{
 | 
						|
	fs->total = pmem[id].size;
 | 
						|
	fs->largest = pmem[id].size;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_revoke(struct file *file, struct pmem_data *data);
 | 
						|
 | 
						|
static int pmem_release(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
	struct pmem_region_node *region_node;
 | 
						|
	struct list_head *elt, *elt2;
 | 
						|
	int id = get_id(file), ret = 0;
 | 
						|
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
	DLOG("releasing memory pid %u(%s) file %p(%ld) dev %s(id: %d)\n",
 | 
						|
		current->pid, get_task_comm(currtask_name, current),
 | 
						|
		file, file_count(file), get_name(file), id);
 | 
						|
	mutex_lock(&pmem[id].data_list_mutex);
 | 
						|
	/* if this file is a master, revoke all the memory in the connected
 | 
						|
	 *  files */
 | 
						|
	if (PMEM_FLAGS_MASTERMAP & data->flags) {
 | 
						|
		list_for_each(elt, &pmem[id].data_list) {
 | 
						|
			struct pmem_data *sub_data =
 | 
						|
				list_entry(elt, struct pmem_data, list);
 | 
						|
			int is_master;
 | 
						|
 | 
						|
			down_read(&sub_data->sem);
 | 
						|
			is_master = (PMEM_IS_SUBMAP(sub_data) &&
 | 
						|
				file == sub_data->master_file);
 | 
						|
			up_read(&sub_data->sem);
 | 
						|
 | 
						|
			if (is_master)
 | 
						|
				pmem_revoke(file, sub_data);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	list_del(&data->list);
 | 
						|
	mutex_unlock(&pmem[id].data_list_mutex);
 | 
						|
 | 
						|
	down_write(&data->sem);
 | 
						|
 | 
						|
	/* if it is not a connected file and it has an allocation, free it */
 | 
						|
	if (!(PMEM_FLAGS_CONNECTED & data->flags) && has_allocation(file)) {
 | 
						|
		mutex_lock(&pmem[id].arena_mutex);
 | 
						|
		ret = pmem[id].free(id, data->index);
 | 
						|
		mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
	}
 | 
						|
 | 
						|
	/* if this file is a submap (mapped, connected file), downref the
 | 
						|
	 * task struct */
 | 
						|
	if (PMEM_FLAGS_SUBMAP & data->flags)
 | 
						|
		if (data->task) {
 | 
						|
			put_task_struct(data->task);
 | 
						|
			data->task = NULL;
 | 
						|
		}
 | 
						|
 | 
						|
	file->private_data = NULL;
 | 
						|
 | 
						|
	list_for_each_safe(elt, elt2, &data->region_list) {
 | 
						|
		region_node = list_entry(elt, struct pmem_region_node, list);
 | 
						|
		list_del(elt);
 | 
						|
		kfree(region_node);
 | 
						|
	}
 | 
						|
	BUG_ON(!list_empty(&data->region_list));
 | 
						|
 | 
						|
	up_write(&data->sem);
 | 
						|
	kfree(data);
 | 
						|
	if (pmem[id].release)
 | 
						|
		ret = pmem[id].release(inode, file);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_open(struct inode *inode, struct file *file)
 | 
						|
{
 | 
						|
	struct pmem_data *data;
 | 
						|
	int id = get_id(file);
 | 
						|
	int ret = 0;
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
 | 
						|
	if (pmem[id].memory_state == MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED)
 | 
						|
		return -ENODEV;
 | 
						|
	DLOG("pid %u(%s) file %p(%ld) dev %s(id: %d)\n",
 | 
						|
		current->pid, get_task_comm(currtask_name, current),
 | 
						|
		file, file_count(file), get_name(file), id);
 | 
						|
	data = kmalloc(sizeof(struct pmem_data), GFP_KERNEL);
 | 
						|
	if (!data) {
 | 
						|
		printk(KERN_ALERT "pmem: %s: unable to allocate memory for "
 | 
						|
				"pmem metadata.", __func__);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	data->flags = 0;
 | 
						|
	data->index = -1;
 | 
						|
	data->task = NULL;
 | 
						|
	data->vma = NULL;
 | 
						|
	data->pid = 0;
 | 
						|
	data->master_file = NULL;
 | 
						|
#if PMEM_DEBUG
 | 
						|
	data->ref = 0;
 | 
						|
#endif
 | 
						|
	INIT_LIST_HEAD(&data->region_list);
 | 
						|
	init_rwsem(&data->sem);
 | 
						|
 | 
						|
	file->private_data = data;
 | 
						|
	INIT_LIST_HEAD(&data->list);
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].data_list_mutex);
 | 
						|
	list_add(&data->list, &pmem[id].data_list);
 | 
						|
	mutex_unlock(&pmem[id].data_list_mutex);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_order(unsigned long len, int id)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	len = (len + pmem[id].quantum - 1)/pmem[id].quantum;
 | 
						|
	len--;
 | 
						|
	for (i = 0; i < sizeof(len)*8; i++)
 | 
						|
		if (len >> i == 0)
 | 
						|
			break;
 | 
						|
	return i;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_allocator_all_or_nothing(const int id,
 | 
						|
		const unsigned long len,
 | 
						|
		const unsigned int align)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	DLOG("all or nothing\n");
 | 
						|
	if ((len > pmem[id].size) ||
 | 
						|
		pmem[id].allocator.all_or_nothing.allocated)
 | 
						|
		return -1;
 | 
						|
	pmem[id].allocator.all_or_nothing.allocated = 1;
 | 
						|
	return len;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_allocator_buddy_bestfit(const int id,
 | 
						|
		const unsigned long len,
 | 
						|
		unsigned int align)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	int curr;
 | 
						|
	int best_fit = -1;
 | 
						|
	unsigned long order;
 | 
						|
 | 
						|
	DLOG("buddy bestfit\n");
 | 
						|
	order = pmem_order(len, id);
 | 
						|
	if (order > PMEM_MAX_ORDER)
 | 
						|
		goto out;
 | 
						|
 | 
						|
	DLOG("order %lx\n", order);
 | 
						|
 | 
						|
	/* Look through the bitmap.
 | 
						|
	 * 	If a free slot of the correct order is found, use it.
 | 
						|
	 * 	Otherwise, use the best fit (smallest with size > order) slot.
 | 
						|
	 */
 | 
						|
	for (curr = 0;
 | 
						|
	     curr < pmem[id].num_entries;
 | 
						|
	     curr = PMEM_BUDDY_NEXT_INDEX(id, curr))
 | 
						|
		if (PMEM_IS_FREE_BUDDY(id, curr)) {
 | 
						|
			if (PMEM_BUDDY_ORDER(id, curr) ==
 | 
						|
					(unsigned char)order) {
 | 
						|
				/* set the not free bit and clear others */
 | 
						|
				best_fit = curr;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (PMEM_BUDDY_ORDER(id, curr) >
 | 
						|
					(unsigned char)order &&
 | 
						|
			    (best_fit < 0 ||
 | 
						|
			     PMEM_BUDDY_ORDER(id, curr) <
 | 
						|
					PMEM_BUDDY_ORDER(id, best_fit)))
 | 
						|
				best_fit = curr;
 | 
						|
		}
 | 
						|
 | 
						|
	/* if best_fit < 0, there are no suitable slots; return an error */
 | 
						|
	if (best_fit < 0) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		printk(KERN_ALERT "pmem: %s: no space left to allocate!\n",
 | 
						|
			__func__);
 | 
						|
#endif
 | 
						|
		goto out;
 | 
						|
	}
 | 
						|
 | 
						|
	/* now partition the best fit:
 | 
						|
	 * 	split the slot into 2 buddies of order - 1
 | 
						|
	 * 	repeat until the slot is of the correct order
 | 
						|
	 */
 | 
						|
	while (PMEM_BUDDY_ORDER(id, best_fit) > (unsigned char)order) {
 | 
						|
		int buddy;
 | 
						|
		PMEM_BUDDY_ORDER(id, best_fit) -= 1;
 | 
						|
		buddy = PMEM_BUDDY_INDEX(id, best_fit);
 | 
						|
		PMEM_BUDDY_ORDER(id, buddy) = PMEM_BUDDY_ORDER(id, best_fit);
 | 
						|
	}
 | 
						|
	pmem[id].allocator.buddy_bestfit.buddy_bitmap[best_fit].allocated = 1;
 | 
						|
out:
 | 
						|
	return best_fit;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static inline unsigned long paddr_from_bit(const int id, const int bitnum)
 | 
						|
{
 | 
						|
	return pmem[id].base + pmem[id].quantum * bitnum;
 | 
						|
}
 | 
						|
 | 
						|
static inline unsigned long bit_from_paddr(const int id,
 | 
						|
		const unsigned long paddr)
 | 
						|
{
 | 
						|
	return (paddr - pmem[id].base) / pmem[id].quantum;
 | 
						|
}
 | 
						|
 | 
						|
static void bitmap_bits_set_all(uint32_t *bitp, int bit_start, int bit_end)
 | 
						|
{
 | 
						|
	int word_index = bit_start >> PMEM_32BIT_WORD_ORDER, total_words;
 | 
						|
 | 
						|
	total_words = compute_total_words(bit_end, word_index);
 | 
						|
	if (total_words > 0) {
 | 
						|
		if (total_words == 1) {
 | 
						|
			bitp[word_index] |=
 | 
						|
				(start_mask(bit_start) & end_mask(bit_end));
 | 
						|
		} else {
 | 
						|
			bitp[word_index++] |= start_mask(bit_start);
 | 
						|
			if (total_words > 2) {
 | 
						|
				int total_bytes;
 | 
						|
 | 
						|
				total_words -= 2;
 | 
						|
				total_bytes = total_words << 2;
 | 
						|
 | 
						|
				memset(&bitp[word_index], ~0, total_bytes);
 | 
						|
				word_index += total_words;
 | 
						|
			}
 | 
						|
			bitp[word_index] |= end_mask(bit_end);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int
 | 
						|
bitmap_allocate_contiguous(uint32_t *bitp, int num_bits_to_alloc,
 | 
						|
		int total_bits, int spacing)
 | 
						|
{
 | 
						|
	int bit_start, last_bit, word_index;
 | 
						|
 | 
						|
	if (num_bits_to_alloc <= 0)
 | 
						|
		return -1;
 | 
						|
 | 
						|
	for (bit_start = 0; ;
 | 
						|
		bit_start = (last_bit +
 | 
						|
			(word_index << PMEM_32BIT_WORD_ORDER) + spacing - 1)
 | 
						|
			& ~(spacing - 1)) {
 | 
						|
		int bit_end = bit_start + num_bits_to_alloc, total_words;
 | 
						|
 | 
						|
		if (bit_end > total_bits)
 | 
						|
			return -1; /* out of contiguous memory */
 | 
						|
 | 
						|
		word_index = bit_start >> PMEM_32BIT_WORD_ORDER;
 | 
						|
		total_words = compute_total_words(bit_end, word_index);
 | 
						|
 | 
						|
		if (total_words <= 0)
 | 
						|
			return -1;
 | 
						|
 | 
						|
		if (total_words == 1) {
 | 
						|
			last_bit = fls(bitp[word_index] &
 | 
						|
					(start_mask(bit_start) &
 | 
						|
						end_mask(bit_end)));
 | 
						|
			if (last_bit)
 | 
						|
				continue;
 | 
						|
		} else {
 | 
						|
			int end_word = word_index + (total_words - 1);
 | 
						|
			last_bit =
 | 
						|
				fls(bitp[word_index] & start_mask(bit_start));
 | 
						|
			if (last_bit)
 | 
						|
				continue;
 | 
						|
 | 
						|
			for (word_index++;
 | 
						|
					word_index < end_word;
 | 
						|
					word_index++) {
 | 
						|
				last_bit = fls(bitp[word_index]);
 | 
						|
				if (last_bit)
 | 
						|
					break;
 | 
						|
			}
 | 
						|
			if (last_bit)
 | 
						|
				continue;
 | 
						|
 | 
						|
			last_bit = fls(bitp[word_index] & end_mask(bit_end));
 | 
						|
			if (last_bit)
 | 
						|
				continue;
 | 
						|
		}
 | 
						|
		bitmap_bits_set_all(bitp, bit_start, bit_end);
 | 
						|
		return bit_start;
 | 
						|
	}
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int reserve_quanta(const unsigned int quanta_needed,
 | 
						|
		const int id,
 | 
						|
		unsigned int align)
 | 
						|
{
 | 
						|
	/* alignment should be a valid power of 2 */
 | 
						|
	int ret = -1, start_bit = 0, spacing = 1;
 | 
						|
 | 
						|
	/* Sanity check */
 | 
						|
	if (quanta_needed > pmem[id].allocator.bitmap.bitmap_free) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		printk(KERN_ALERT "pmem: %s: request (%d) too big for"
 | 
						|
			" available free (%d)\n", __func__, quanta_needed,
 | 
						|
			pmem[id].allocator.bitmap.bitmap_free);
 | 
						|
#endif
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	start_bit = bit_from_paddr(id,
 | 
						|
		(pmem[id].base + align - 1) & ~(align - 1));
 | 
						|
	if (start_bit <= -1) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		printk(KERN_ALERT
 | 
						|
			"pmem: %s: bit_from_paddr fails for"
 | 
						|
			" %u alignment.\n", __func__, align);
 | 
						|
#endif
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	spacing = align / pmem[id].quantum;
 | 
						|
	spacing = spacing > 1 ? spacing : 1;
 | 
						|
 | 
						|
	ret = bitmap_allocate_contiguous(pmem[id].allocator.bitmap.bitmap,
 | 
						|
		quanta_needed,
 | 
						|
		(pmem[id].size + pmem[id].quantum - 1) / pmem[id].quantum,
 | 
						|
		spacing);
 | 
						|
 | 
						|
#if PMEM_DEBUG
 | 
						|
	if (ret < 0)
 | 
						|
		printk(KERN_ALERT "pmem: %s: not enough contiguous bits free "
 | 
						|
			"in bitmap! Region memory is either too fragmented or"
 | 
						|
			" request is too large for available memory.\n",
 | 
						|
			__func__);
 | 
						|
#endif
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_allocator_bitmap(const int id,
 | 
						|
		const unsigned long len,
 | 
						|
		const unsigned int align)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	int bitnum, i;
 | 
						|
	unsigned int quanta_needed;
 | 
						|
 | 
						|
	DLOG("bitmap id %d, len %ld, align %u\n", id, len, align);
 | 
						|
	if (!pmem[id].allocator.bitmap.bitm_alloc) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		printk(KERN_ALERT "pmem: bitm_alloc not present! id: %d\n",
 | 
						|
			id);
 | 
						|
#endif
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	quanta_needed = (len + pmem[id].quantum - 1) / pmem[id].quantum;
 | 
						|
	DLOG("quantum size %u quanta needed %u free %u id %d\n",
 | 
						|
		pmem[id].quantum, quanta_needed,
 | 
						|
		pmem[id].allocator.bitmap.bitmap_free, id);
 | 
						|
 | 
						|
	if (pmem[id].allocator.bitmap.bitmap_free < quanta_needed) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		printk(KERN_ALERT "pmem: memory allocation failure. "
 | 
						|
			"PMEM memory region exhausted, id %d."
 | 
						|
			" Unable to comply with allocation request.\n", id);
 | 
						|
#endif
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	bitnum = reserve_quanta(quanta_needed, id, align);
 | 
						|
	if (bitnum == -1)
 | 
						|
		goto leave;
 | 
						|
 | 
						|
	for (i = 0;
 | 
						|
		i < pmem[id].allocator.bitmap.bitmap_allocs &&
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].bit != -1;
 | 
						|
		i++)
 | 
						|
		;
 | 
						|
 | 
						|
	if (i >= pmem[id].allocator.bitmap.bitmap_allocs) {
 | 
						|
		void *temp;
 | 
						|
		int32_t new_bitmap_allocs =
 | 
						|
			pmem[id].allocator.bitmap.bitmap_allocs << 1;
 | 
						|
		int j;
 | 
						|
 | 
						|
		if (!new_bitmap_allocs) { /* failed sanity check!! */
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_alert("pmem: bitmap_allocs number"
 | 
						|
				" wrapped around to zero! Something "
 | 
						|
				"is VERY wrong.\n");
 | 
						|
#endif
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
 | 
						|
		if (new_bitmap_allocs > pmem[id].num_entries) {
 | 
						|
			/* failed sanity check!! */
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_alert("pmem: required bitmap_allocs"
 | 
						|
				" number exceeds maximum entries possible"
 | 
						|
				" for current quanta\n");
 | 
						|
#endif
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
 | 
						|
		temp = krealloc(pmem[id].allocator.bitmap.bitm_alloc,
 | 
						|
				new_bitmap_allocs *
 | 
						|
				sizeof(*pmem[id].allocator.bitmap.bitm_alloc),
 | 
						|
				GFP_KERNEL);
 | 
						|
		if (!temp) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_alert("pmem: can't realloc bitmap_allocs,"
 | 
						|
				"id %d, current num bitmap allocs %d\n",
 | 
						|
				id, pmem[id].allocator.bitmap.bitmap_allocs);
 | 
						|
#endif
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
		pmem[id].allocator.bitmap.bitmap_allocs = new_bitmap_allocs;
 | 
						|
		pmem[id].allocator.bitmap.bitm_alloc = temp;
 | 
						|
 | 
						|
		for (j = i; j < new_bitmap_allocs; j++) {
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[j].bit = -1;
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		DLOG("increased # of allocated regions to %d for id %d\n",
 | 
						|
			pmem[id].allocator.bitmap.bitmap_allocs, id);
 | 
						|
	}
 | 
						|
 | 
						|
	DLOG("bitnum %d, bitm_alloc index %d\n", bitnum, i);
 | 
						|
 | 
						|
	pmem[id].allocator.bitmap.bitmap_free -= quanta_needed;
 | 
						|
	pmem[id].allocator.bitmap.bitm_alloc[i].bit = bitnum;
 | 
						|
	pmem[id].allocator.bitmap.bitm_alloc[i].quanta = quanta_needed;
 | 
						|
leave:
 | 
						|
	return bitnum;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_allocator_system(const int id,
 | 
						|
		const unsigned long len,
 | 
						|
		const unsigned int align)
 | 
						|
{
 | 
						|
	/* caller should hold the lock on arena_mutex! */
 | 
						|
	struct alloc_list *list;
 | 
						|
	unsigned long aligned_len;
 | 
						|
	int count = SYSTEM_ALLOC_RETRY;
 | 
						|
	void *buf;
 | 
						|
 | 
						|
	DLOG("system id %d, len %ld, align %u\n", id, len, align);
 | 
						|
 | 
						|
	if ((pmem[id].allocator.system_mem.used + len) > pmem[id].size) {
 | 
						|
		DLOG("requested size would be larger than quota\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* Handle alignment */
 | 
						|
	aligned_len = len + align;
 | 
						|
 | 
						|
	/* Attempt allocation */
 | 
						|
	list = kmalloc(sizeof(struct alloc_list), GFP_KERNEL);
 | 
						|
	if (list == NULL) {
 | 
						|
		printk(KERN_ERR "pmem: failed to allocate system metadata\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	list->vaddr = NULL;
 | 
						|
 | 
						|
	buf = NULL;
 | 
						|
	while ((buf == NULL) && count--) {
 | 
						|
		buf = kmalloc((aligned_len), GFP_KERNEL);
 | 
						|
		if (buf == NULL) {
 | 
						|
			DLOG("pmem: kmalloc %d temporarily failed len= %ld\n",
 | 
						|
				count, aligned_len);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (!buf) {
 | 
						|
		printk(KERN_CRIT "pmem: kmalloc failed for id= %d len= %ld\n",
 | 
						|
			id, aligned_len);
 | 
						|
		kfree(list);
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	list->size = aligned_len;
 | 
						|
	list->addr = (void *)__pa(buf);
 | 
						|
	list->aaddr = (void *)(((unsigned int)(list->addr) + (align - 1)) &
 | 
						|
			~(align - 1));
 | 
						|
 | 
						|
	if (!pmem[id].cached)
 | 
						|
		list->vaddr = ioremap(__pa(buf), aligned_len);
 | 
						|
	else
 | 
						|
		list->vaddr = ioremap_cached(__pa(buf), aligned_len);
 | 
						|
 | 
						|
	INIT_LIST_HEAD(&list->allocs);
 | 
						|
	list_add(&list->allocs, &pmem[id].allocator.system_mem.alist);
 | 
						|
 | 
						|
	return (int)list;
 | 
						|
}
 | 
						|
 | 
						|
static pgprot_t phys_mem_access_prot(struct file *file, pgprot_t vma_prot)
 | 
						|
{
 | 
						|
	int id = get_id(file);
 | 
						|
#ifdef pgprot_writecombine
 | 
						|
	if (pmem[id].cached == 0 || file->f_flags & O_SYNC)
 | 
						|
		/* on ARMv6 and ARMv7 this expands to Normal Noncached */
 | 
						|
		return pgprot_writecombine(vma_prot);
 | 
						|
#endif
 | 
						|
#ifdef pgprot_ext_buffered
 | 
						|
	else if (pmem[id].buffered)
 | 
						|
		return pgprot_ext_buffered(vma_prot);
 | 
						|
#endif
 | 
						|
	return vma_prot;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_start_addr_all_or_nothing(int id,
 | 
						|
		struct pmem_data *data)
 | 
						|
{
 | 
						|
	return PMEM_START_ADDR(id, 0);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_start_addr_buddy_bestfit(int id,
 | 
						|
		struct pmem_data *data)
 | 
						|
{
 | 
						|
	return PMEM_START_ADDR(id, data->index);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_start_addr_bitmap(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	return data->index * pmem[id].quantum + pmem[id].base;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_start_addr_system(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	return (unsigned long)(((struct alloc_list *)(data->index))->aaddr);
 | 
						|
}
 | 
						|
 | 
						|
static void *pmem_start_vaddr(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM)
 | 
						|
		return ((struct alloc_list *)(data->index))->vaddr;
 | 
						|
	else
 | 
						|
	return pmem[id].start_addr(id, data) - pmem[id].base + pmem[id].vbase;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_len_all_or_nothing(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	return data->index;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_len_buddy_bestfit(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	return PMEM_BUDDY_LEN(id, data->index);
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_len_bitmap(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	unsigned long ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].arena_mutex);
 | 
						|
 | 
						|
	for (i = 0; i < pmem[id].allocator.bitmap.bitmap_allocs; i++)
 | 
						|
		if (pmem[id].allocator.bitmap.bitm_alloc[i].bit ==
 | 
						|
				data->index) {
 | 
						|
			ret = pmem[id].allocator.bitmap.bitm_alloc[i].quanta *
 | 
						|
				pmem[id].quantum;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
	mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
#if PMEM_DEBUG
 | 
						|
	if (i >= pmem[id].allocator.bitmap.bitmap_allocs)
 | 
						|
		pr_alert("pmem: %s: can't find bitnum %d in "
 | 
						|
			"alloc'd array!\n", __func__, data->index);
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static unsigned long pmem_len_system(int id, struct pmem_data *data)
 | 
						|
{
 | 
						|
	unsigned long ret = 0;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].arena_mutex);
 | 
						|
 | 
						|
	ret = ((struct alloc_list *)data->index)->size;
 | 
						|
	mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_map_garbage(int id, struct vm_area_struct *vma,
 | 
						|
			    struct pmem_data *data, unsigned long offset,
 | 
						|
			    unsigned long len)
 | 
						|
{
 | 
						|
	int i, garbage_pages = len >> PAGE_SHIFT;
 | 
						|
 | 
						|
	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP | VM_SHARED | VM_WRITE;
 | 
						|
	for (i = 0; i < garbage_pages; i++) {
 | 
						|
		if (vm_insert_pfn(vma, vma->vm_start + offset + (i * PAGE_SIZE),
 | 
						|
		    pmem[id].garbage_pfn))
 | 
						|
			return -EAGAIN;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_unmap_pfn_range(int id, struct vm_area_struct *vma,
 | 
						|
				struct pmem_data *data, unsigned long offset,
 | 
						|
				unsigned long len)
 | 
						|
{
 | 
						|
	int garbage_pages;
 | 
						|
	DLOG("unmap offset %lx len %lx\n", offset, len);
 | 
						|
 | 
						|
	BUG_ON(!PMEM_IS_PAGE_ALIGNED(len));
 | 
						|
 | 
						|
	garbage_pages = len >> PAGE_SHIFT;
 | 
						|
	zap_page_range(vma, vma->vm_start + offset, len, NULL);
 | 
						|
	pmem_map_garbage(id, vma, data, offset, len);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_map_pfn_range(int id, struct vm_area_struct *vma,
 | 
						|
			      struct pmem_data *data, unsigned long offset,
 | 
						|
			      unsigned long len)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	DLOG("map offset %lx len %lx\n", offset, len);
 | 
						|
	BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_start));
 | 
						|
	BUG_ON(!PMEM_IS_PAGE_ALIGNED(vma->vm_end));
 | 
						|
	BUG_ON(!PMEM_IS_PAGE_ALIGNED(len));
 | 
						|
	BUG_ON(!PMEM_IS_PAGE_ALIGNED(offset));
 | 
						|
 | 
						|
	ret = io_remap_pfn_range(vma, vma->vm_start + offset,
 | 
						|
		(pmem[id].start_addr(id, data) + offset) >> PAGE_SHIFT,
 | 
						|
		len, vma->vm_page_prot);
 | 
						|
	if (ret) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_alert("pmem: %s: io_remap_pfn_range fails with "
 | 
						|
			"return value: %d!\n",	__func__, ret);
 | 
						|
#endif
 | 
						|
 | 
						|
		ret = -EAGAIN;
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_remap_pfn_range(int id, struct vm_area_struct *vma,
 | 
						|
			      struct pmem_data *data, unsigned long offset,
 | 
						|
			      unsigned long len)
 | 
						|
{
 | 
						|
	/* hold the mm semp for the vma you are modifying when you call this */
 | 
						|
	BUG_ON(!vma);
 | 
						|
	zap_page_range(vma, vma->vm_start + offset, len, NULL);
 | 
						|
	return pmem_map_pfn_range(id, vma, data, offset, len);
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_vma_open(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct file *file = vma->vm_file;
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
	int id = get_id(file);
 | 
						|
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
	DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n",
 | 
						|
		get_name(file), id, current->pid,
 | 
						|
		get_task_comm(currtask_name, current),
 | 
						|
		current->parent->pid, file, file_count(file));
 | 
						|
	/* this should never be called as we don't support copying pmem
 | 
						|
	 * ranges via fork */
 | 
						|
	down_read(&data->sem);
 | 
						|
	BUG_ON(!has_allocation(file));
 | 
						|
	/* remap the garbage pages, forkers don't get access to the data */
 | 
						|
	pmem_unmap_pfn_range(id, vma, data, 0, vma->vm_start - vma->vm_end);
 | 
						|
	up_read(&data->sem);
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_vma_close(struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct file *file = vma->vm_file;
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
	DLOG("Dev %s(id: %d) pid %u(%s) ppid %u file %p count %ld\n",
 | 
						|
		get_name(file), get_id(file), current->pid,
 | 
						|
		get_task_comm(currtask_name, current),
 | 
						|
		current->parent->pid, file, file_count(file));
 | 
						|
 | 
						|
	if (unlikely(!is_pmem_file(file))) {
 | 
						|
		pr_warning("pmem: something is very wrong, you are "
 | 
						|
		       "closing a vm backing an allocation that doesn't "
 | 
						|
		       "exist!\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	down_write(&data->sem);
 | 
						|
	if (unlikely(!has_allocation(file))) {
 | 
						|
		up_write(&data->sem);
 | 
						|
		pr_warning("pmem: something is very wrong, you are "
 | 
						|
		       "closing a vm backing an allocation that doesn't "
 | 
						|
		       "exist!\n");
 | 
						|
		return;
 | 
						|
	}
 | 
						|
	if (data->vma == vma) {
 | 
						|
		data->vma = NULL;
 | 
						|
		if ((data->flags & PMEM_FLAGS_CONNECTED) &&
 | 
						|
		    (data->flags & PMEM_FLAGS_SUBMAP))
 | 
						|
			data->flags |= PMEM_FLAGS_UNSUBMAP;
 | 
						|
	}
 | 
						|
	/* the kernel is going to free this vma now anyway */
 | 
						|
	up_write(&data->sem);
 | 
						|
}
 | 
						|
 | 
						|
static struct vm_operations_struct vm_ops = {
 | 
						|
	.open = pmem_vma_open,
 | 
						|
	.close = pmem_vma_close,
 | 
						|
};
 | 
						|
 | 
						|
static int pmem_mmap(struct file *file, struct vm_area_struct *vma)
 | 
						|
{
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
	int index;
 | 
						|
	unsigned long vma_size =  vma->vm_end - vma->vm_start;
 | 
						|
	int ret = 0, id = get_id(file);
 | 
						|
 | 
						|
	if (!data) {
 | 
						|
		pr_err("pmem: Invalid file descriptor, no private data\n");
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
	DLOG("pid %u(%s) mmap vma_size %lu on dev %s(id: %d)\n", current->pid,
 | 
						|
		get_task_comm(currtask_name, current), vma_size,
 | 
						|
		get_name(file), id);
 | 
						|
	if (vma->vm_pgoff || !PMEM_IS_PAGE_ALIGNED(vma_size)) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: mmaps must be at offset zero, aligned"
 | 
						|
				" and a multiple of pages_size.\n");
 | 
						|
#endif
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	down_write(&data->sem);
 | 
						|
	/* check this file isn't already mmaped, for submaps check this file
 | 
						|
	 * has never been mmaped */
 | 
						|
	if ((data->flags & PMEM_FLAGS_MASTERMAP) ||
 | 
						|
	    (data->flags & PMEM_FLAGS_SUBMAP) ||
 | 
						|
	    (data->flags & PMEM_FLAGS_UNSUBMAP)) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: you can only mmap a pmem file once, "
 | 
						|
		       "this file is already mmaped. %x\n", data->flags);
 | 
						|
#endif
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
	/* if file->private_data == unalloced, alloc*/
 | 
						|
	if (data->index == -1) {
 | 
						|
		mutex_lock(&pmem[id].arena_mutex);
 | 
						|
		index = pmem[id].allocate(id,
 | 
						|
				vma->vm_end - vma->vm_start,
 | 
						|
				SZ_4K);
 | 
						|
		mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
		/* either no space was available or an error occured */
 | 
						|
		if (index == -1) {
 | 
						|
			pr_err("pmem: mmap unable to allocate memory"
 | 
						|
				"on %s\n", get_name(file));
 | 
						|
			ret = -ENOMEM;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		/* store the index of a successful allocation */
 | 
						|
		data->index = index;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pmem[id].len(id, data) < vma_size) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: mmap size [%lu] does not match"
 | 
						|
		       " size of backing region [%lu].\n", vma_size,
 | 
						|
		       pmem[id].len(id, data));
 | 
						|
#endif
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto error;
 | 
						|
	}
 | 
						|
 | 
						|
	vma->vm_pgoff = pmem[id].start_addr(id, data) >> PAGE_SHIFT;
 | 
						|
 | 
						|
	vma->vm_page_prot = phys_mem_access_prot(file, vma->vm_page_prot);
 | 
						|
 | 
						|
	if (data->flags & PMEM_FLAGS_CONNECTED) {
 | 
						|
		struct pmem_region_node *region_node;
 | 
						|
		struct list_head *elt;
 | 
						|
		if (pmem_map_garbage(id, vma, data, 0, vma_size)) {
 | 
						|
			pr_alert("pmem: mmap failed in kernel!\n");
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		list_for_each(elt, &data->region_list) {
 | 
						|
			region_node = list_entry(elt, struct pmem_region_node,
 | 
						|
						 list);
 | 
						|
			DLOG("remapping file: %p %lx %lx\n", file,
 | 
						|
				region_node->region.offset,
 | 
						|
				region_node->region.len);
 | 
						|
			if (pmem_remap_pfn_range(id, vma, data,
 | 
						|
						 region_node->region.offset,
 | 
						|
						 region_node->region.len)) {
 | 
						|
				ret = -EAGAIN;
 | 
						|
				goto error;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		data->flags |= PMEM_FLAGS_SUBMAP;
 | 
						|
		get_task_struct(current->group_leader);
 | 
						|
		data->task = current->group_leader;
 | 
						|
		data->vma = vma;
 | 
						|
#if PMEM_DEBUG
 | 
						|
		data->pid = current->pid;
 | 
						|
#endif
 | 
						|
		DLOG("submmapped file %p vma %p pid %u\n", file, vma,
 | 
						|
		     current->pid);
 | 
						|
	} else {
 | 
						|
		if (pmem_map_pfn_range(id, vma, data, 0, vma_size)) {
 | 
						|
			pr_err("pmem: mmap failed in kernel!\n");
 | 
						|
			ret = -EAGAIN;
 | 
						|
			goto error;
 | 
						|
		}
 | 
						|
		data->flags |= PMEM_FLAGS_MASTERMAP;
 | 
						|
		data->pid = current->pid;
 | 
						|
	}
 | 
						|
	vma->vm_ops = &vm_ops;
 | 
						|
error:
 | 
						|
	up_write(&data->sem);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
/* the following are the api for accessing pmem regions by other drivers
 | 
						|
 * from inside the kernel */
 | 
						|
int get_pmem_user_addr(struct file *file, unsigned long *start,
 | 
						|
		   unsigned long *len)
 | 
						|
{
 | 
						|
	int ret = -1;
 | 
						|
 | 
						|
	if (is_pmem_file(file)) {
 | 
						|
		struct pmem_data *data = file->private_data;
 | 
						|
 | 
						|
		down_read(&data->sem);
 | 
						|
		if (has_allocation(file)) {
 | 
						|
			if (data->vma) {
 | 
						|
				*start = data->vma->vm_start;
 | 
						|
				*len = data->vma->vm_end - data->vma->vm_start;
 | 
						|
			} else {
 | 
						|
				*start = *len = 0;
 | 
						|
#if PMEM_DEBUG
 | 
						|
				pr_err("pmem: %s: no vma present.\n",
 | 
						|
					__func__);
 | 
						|
#endif
 | 
						|
			}
 | 
						|
			ret = 0;
 | 
						|
		}
 | 
						|
		up_read(&data->sem);
 | 
						|
	}
 | 
						|
 | 
						|
#if PMEM_DEBUG
 | 
						|
	if (ret)
 | 
						|
		pr_err("pmem: %s: requested pmem data from invalid"
 | 
						|
			"file.\n", __func__);
 | 
						|
#endif
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int get_pmem_addr(struct file *file, unsigned long *start,
 | 
						|
		  unsigned long *vstart, unsigned long *len)
 | 
						|
{
 | 
						|
	int ret = -1;
 | 
						|
 | 
						|
	if (is_pmem_file(file)) {
 | 
						|
		struct pmem_data *data = file->private_data;
 | 
						|
 | 
						|
		down_read(&data->sem);
 | 
						|
		if (has_allocation(file)) {
 | 
						|
			int id = get_id(file);
 | 
						|
 | 
						|
			*start = pmem[id].start_addr(id, data);
 | 
						|
			*len = pmem[id].len(id, data);
 | 
						|
			*vstart = (unsigned long)
 | 
						|
				pmem_start_vaddr(id, data);
 | 
						|
			up_read(&data->sem);
 | 
						|
#if PMEM_DEBUG
 | 
						|
			down_write(&data->sem);
 | 
						|
			data->ref++;
 | 
						|
			up_write(&data->sem);
 | 
						|
#endif
 | 
						|
			DLOG("returning start %#lx len %lu "
 | 
						|
				"vstart %#lx\n",
 | 
						|
				*start, *len, *vstart);
 | 
						|
			ret = 0;
 | 
						|
		} else {
 | 
						|
			up_read(&data->sem);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int get_pmem_file(unsigned int fd, unsigned long *start, unsigned long *vstart,
 | 
						|
		  unsigned long *len, struct file **filp)
 | 
						|
{
 | 
						|
	int ret = -1;
 | 
						|
	struct file *file = fget(fd);
 | 
						|
 | 
						|
	if (unlikely(file == NULL)) {
 | 
						|
		pr_err("pmem: %s: requested data from file "
 | 
						|
			"descriptor that doesn't exist.\n", __func__);
 | 
						|
	} else {
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
		char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
		DLOG("filp %p rdev %d pid %u(%s) file %p(%ld)"
 | 
						|
			" dev %s(id: %d)\n", filp,
 | 
						|
			file->f_dentry->d_inode->i_rdev,
 | 
						|
			current->pid, get_task_comm(currtask_name, current),
 | 
						|
			file, file_count(file), get_name(file), get_id(file));
 | 
						|
 | 
						|
		if (!get_pmem_addr(file, start, vstart, len)) {
 | 
						|
			if (filp)
 | 
						|
				*filp = file;
 | 
						|
			ret = 0;
 | 
						|
		} else {
 | 
						|
			fput(file);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(get_pmem_file);
 | 
						|
 | 
						|
int get_pmem_fd(int fd, unsigned long *start, unsigned long *len)
 | 
						|
{
 | 
						|
	unsigned long vstart;
 | 
						|
	return get_pmem_file(fd, start, &vstart, len, NULL);
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(get_pmem_fd);
 | 
						|
 | 
						|
void put_pmem_file(struct file *file)
 | 
						|
{
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
	DLOG("rdev %d pid %u(%s) file %p(%ld)" " dev %s(id: %d)\n",
 | 
						|
		file->f_dentry->d_inode->i_rdev, current->pid,
 | 
						|
		get_task_comm(currtask_name, current), file,
 | 
						|
		file_count(file), get_name(file), get_id(file));
 | 
						|
	if (is_pmem_file(file)) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		struct pmem_data *data = file->private_data;
 | 
						|
 | 
						|
		down_write(&data->sem);
 | 
						|
		if (!data->ref--) {
 | 
						|
			data->ref++;
 | 
						|
			pr_alert("pmem: pmem_put > pmem_get %s "
 | 
						|
				"(pid %d)\n",
 | 
						|
			       pmem[get_id(file)].dev.name, data->pid);
 | 
						|
			BUG();
 | 
						|
		}
 | 
						|
		up_write(&data->sem);
 | 
						|
#endif
 | 
						|
		fput(file);
 | 
						|
	}
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(put_pmem_file);
 | 
						|
 | 
						|
void put_pmem_fd(int fd)
 | 
						|
{
 | 
						|
	int put_needed;
 | 
						|
	struct file *file = fget_light(fd, &put_needed);
 | 
						|
 | 
						|
	if (file) {
 | 
						|
		put_pmem_file(file);
 | 
						|
		fput_light(file, put_needed);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void flush_pmem_fd(int fd, unsigned long offset, unsigned long len)
 | 
						|
{
 | 
						|
	int fput_needed;
 | 
						|
	struct file *file = fget_light(fd, &fput_needed);
 | 
						|
 | 
						|
	if (file) {
 | 
						|
		flush_pmem_file(file, offset, len);
 | 
						|
		fput_light(file, fput_needed);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
void flush_pmem_file(struct file *file, unsigned long offset, unsigned long len)
 | 
						|
{
 | 
						|
	struct pmem_data *data;
 | 
						|
	int id;
 | 
						|
	void *vaddr;
 | 
						|
	struct pmem_region_node *region_node;
 | 
						|
	struct list_head *elt;
 | 
						|
	void *flush_start, *flush_end;
 | 
						|
#ifdef CONFIG_OUTER_CACHE
 | 
						|
	unsigned long phy_start, phy_end;
 | 
						|
#endif
 | 
						|
	if (!is_pmem_file(file))
 | 
						|
		return;
 | 
						|
 | 
						|
	id = get_id(file);
 | 
						|
	if (!pmem[id].cached)
 | 
						|
		return;
 | 
						|
 | 
						|
	/* is_pmem_file fails if !file */
 | 
						|
	data = file->private_data;
 | 
						|
 | 
						|
	down_read(&data->sem);
 | 
						|
	if (!has_allocation(file))
 | 
						|
		goto end;
 | 
						|
 | 
						|
	vaddr = pmem_start_vaddr(id, data);
 | 
						|
 | 
						|
	if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_SYSTEM) {
 | 
						|
		dmac_flush_range(vaddr,
 | 
						|
			(void *)((unsigned long)vaddr +
 | 
						|
				 ((struct alloc_list *)(data->index))->size));
 | 
						|
#ifdef CONFIG_OUTER_CACHE
 | 
						|
		phy_start = pmem_start_addr_system(id, data);
 | 
						|
 | 
						|
		phy_end = phy_start +
 | 
						|
			((struct alloc_list *)(data->index))->size;
 | 
						|
 | 
						|
		outer_flush_range(phy_start, phy_end);
 | 
						|
#endif
 | 
						|
		goto end;
 | 
						|
	}
 | 
						|
	/* if this isn't a submmapped file, flush the whole thing */
 | 
						|
	if (unlikely(!(data->flags & PMEM_FLAGS_CONNECTED))) {
 | 
						|
		dmac_flush_range(vaddr, vaddr + pmem[id].len(id, data));
 | 
						|
#ifdef CONFIG_OUTER_CACHE
 | 
						|
		phy_start = (unsigned long)vaddr -
 | 
						|
				(unsigned long)pmem[id].vbase + pmem[id].base;
 | 
						|
 | 
						|
		phy_end  =  phy_start + pmem[id].len(id, data);
 | 
						|
 | 
						|
		outer_flush_range(phy_start, phy_end);
 | 
						|
#endif
 | 
						|
		goto end;
 | 
						|
	}
 | 
						|
	/* otherwise, flush the region of the file we are drawing */
 | 
						|
	list_for_each(elt, &data->region_list) {
 | 
						|
		region_node = list_entry(elt, struct pmem_region_node, list);
 | 
						|
		if ((offset >= region_node->region.offset) &&
 | 
						|
		    ((offset + len) <= (region_node->region.offset +
 | 
						|
			region_node->region.len))) {
 | 
						|
			flush_start = vaddr + region_node->region.offset;
 | 
						|
			flush_end = flush_start + region_node->region.len;
 | 
						|
			dmac_flush_range(flush_start, flush_end);
 | 
						|
#ifdef CONFIG_OUTER_CACHE
 | 
						|
 | 
						|
			phy_start = (unsigned long)flush_start -
 | 
						|
				(unsigned long)pmem[id].vbase + pmem[id].base;
 | 
						|
 | 
						|
			phy_end  =  phy_start + region_node->region.len;
 | 
						|
 | 
						|
			outer_flush_range(phy_start, phy_end);
 | 
						|
#endif
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
end:
 | 
						|
	up_read(&data->sem);
 | 
						|
}
 | 
						|
 | 
						|
int pmem_cache_maint(struct file *file, unsigned int cmd,
 | 
						|
		struct pmem_addr *pmem_addr)
 | 
						|
{
 | 
						|
	struct pmem_data *data;
 | 
						|
	int id;
 | 
						|
	unsigned long vaddr, paddr, length, offset,
 | 
						|
		      pmem_len, pmem_start_addr;
 | 
						|
 | 
						|
	/* Called from kernel-space so file may be NULL */
 | 
						|
	if (!file)
 | 
						|
		return -EBADF;
 | 
						|
 | 
						|
	data = file->private_data;
 | 
						|
	id = get_id(file);
 | 
						|
 | 
						|
	if (!pmem[id].cached)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	offset = pmem_addr->offset;
 | 
						|
	length = pmem_addr->length;
 | 
						|
 | 
						|
	down_read(&data->sem);
 | 
						|
	if (!has_allocation(file)) {
 | 
						|
		up_read(&data->sem);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	pmem_len = pmem[id].len(id, data);
 | 
						|
	pmem_start_addr = pmem[id].start_addr(id, data);
 | 
						|
	up_read(&data->sem);
 | 
						|
 | 
						|
	if (offset + length > pmem_len)
 | 
						|
		return -EINVAL;
 | 
						|
 | 
						|
	vaddr = pmem_addr->vaddr;
 | 
						|
	paddr = pmem_start_addr + offset;
 | 
						|
 | 
						|
	DLOG("pmem cache maint on dev %s(id: %d)"
 | 
						|
		"(vaddr %lx paddr %lx len %lu bytes)\n",
 | 
						|
		get_name(file), id, vaddr, paddr, length);
 | 
						|
	if (cmd == PMEM_CLEAN_INV_CACHES)
 | 
						|
		clean_and_invalidate_caches(vaddr,
 | 
						|
				length, paddr);
 | 
						|
	else if (cmd == PMEM_CLEAN_CACHES)
 | 
						|
		clean_caches(vaddr, length, paddr);
 | 
						|
	else if (cmd == PMEM_INV_CACHES)
 | 
						|
		invalidate_caches(vaddr, length, paddr);
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pmem_cache_maint);
 | 
						|
 | 
						|
int32_t pmem_kalloc(const size_t size, const uint32_t flags)
 | 
						|
{
 | 
						|
	int info_id, i, memtype, fallback = 0;
 | 
						|
	unsigned int align;
 | 
						|
	int32_t index = -1;
 | 
						|
 | 
						|
	switch (flags & PMEM_ALIGNMENT_MASK) {
 | 
						|
	case PMEM_ALIGNMENT_4K:
 | 
						|
		align = SZ_4K;
 | 
						|
		break;
 | 
						|
	case PMEM_ALIGNMENT_1M:
 | 
						|
		align = SZ_1M;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		pr_alert("pmem: %s: Invalid alignment %#x\n",
 | 
						|
			__func__, (flags & PMEM_ALIGNMENT_MASK));
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	memtype = flags & PMEM_MEMTYPE_MASK;
 | 
						|
retry_memalloc:
 | 
						|
	info_id = -1;
 | 
						|
	for (i = 0; i < ARRAY_SIZE(kapi_memtypes); i++)
 | 
						|
		if (kapi_memtypes[i].memtype == memtype) {
 | 
						|
			info_id = kapi_memtypes[i].info_id;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	if (info_id < 0) {
 | 
						|
		pr_alert("pmem: %s: Kernel %#x memory arena is not "
 | 
						|
			"initialized. Check board file!\n",
 | 
						|
			__func__, (flags & PMEM_MEMTYPE_MASK));
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pmem[info_id].allocate) {
 | 
						|
		pr_alert("pmem: %s: Attempt to allocate size %u, alignment %#x"
 | 
						|
			" from non-existent PMEM kernel region %d. "
 | 
						|
			"Driver/board setup is faulty!",
 | 
						|
			__func__, size, (flags & PMEM_ALIGNMENT_MASK),
 | 
						|
			info_id);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
#if PMEM_DEBUG
 | 
						|
	if (align != SZ_4K &&
 | 
						|
			(pmem[info_id].allocator_type ==
 | 
						|
				PMEM_ALLOCATORTYPE_ALLORNOTHING ||
 | 
						|
			pmem[info_id].allocator_type ==
 | 
						|
				PMEM_ALLOCATORTYPE_BUDDYBESTFIT))
 | 
						|
		pr_warning("pmem: %s: alignment other than on 4K "
 | 
						|
			"pages not supported with %s allocator for PMEM "
 | 
						|
			"memory region '%s'. Memory will be aligned to 4K "
 | 
						|
			"boundary. Check your board file or allocation "
 | 
						|
			"invocation.\n", __func__,
 | 
						|
			(pmem[info_id].allocator_type ==
 | 
						|
				PMEM_ALLOCATORTYPE_ALLORNOTHING ?
 | 
						|
					"'All Or Nothing'"
 | 
						|
					:
 | 
						|
					"'Buddy / Best Fit'"),
 | 
						|
			pmem[info_id].dev.name);
 | 
						|
#endif
 | 
						|
 | 
						|
	mutex_lock(&pmem[info_id].arena_mutex);
 | 
						|
	index = pmem[info_id].allocate(info_id, size, align);
 | 
						|
	mutex_unlock(&pmem[info_id].arena_mutex);
 | 
						|
 | 
						|
	if (index < 0 &&
 | 
						|
		!fallback &&
 | 
						|
		kapi_memtypes[i].fallback_memtype != PMEM_INVALID_MEMTYPE) {
 | 
						|
		fallback = 1;
 | 
						|
		memtype = kapi_memtypes[i].fallback_memtype;
 | 
						|
		goto retry_memalloc;
 | 
						|
	}
 | 
						|
 | 
						|
	return index >= 0 ?
 | 
						|
		index * pmem[info_id].quantum + pmem[info_id].base : -ENOMEM;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pmem_kalloc);
 | 
						|
 | 
						|
static int pmem_kapi_free_index_allornothing(const int32_t physaddr, int id)
 | 
						|
{
 | 
						|
	return physaddr == pmem[id].base ? 0 : -1;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_kapi_free_index_buddybestfit(const int32_t physaddr, int id)
 | 
						|
{
 | 
						|
	return (physaddr >= pmem[id].base &&
 | 
						|
		physaddr < (pmem[id].base + pmem[id].size &&
 | 
						|
		!(physaddr % pmem[id].quantum))) ?
 | 
						|
		(physaddr - pmem[id].base) / pmem[id].quantum : -1;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_kapi_free_index_bitmap(const int32_t physaddr, int id)
 | 
						|
{
 | 
						|
	return (physaddr >= pmem[id].base &&
 | 
						|
		physaddr < (pmem[id].base + pmem[id].size)) ?
 | 
						|
		bit_from_paddr(id, physaddr) : -1;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_kapi_free_index_system(const int32_t physaddr, int id)
 | 
						|
{
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
int pmem_kfree(const int32_t physaddr)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for (i = 0; i < ARRAY_SIZE(kapi_memtypes); i++) {
 | 
						|
		int index;
 | 
						|
		int id = kapi_memtypes[i].info_id;
 | 
						|
 | 
						|
		if (id < 0)
 | 
						|
			continue;
 | 
						|
 | 
						|
		if (!pmem[id].allocate) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_alert("pmem: %s: "
 | 
						|
				"Attempt to free physical address %#x "
 | 
						|
				"from unregistered PMEM kernel region"
 | 
						|
				" %d. Driver/board setup is faulty!",
 | 
						|
				__func__, physaddr, id);
 | 
						|
#endif
 | 
						|
			return -EINVAL;
 | 
						|
		}
 | 
						|
 | 
						|
		index = pmem[id].kapi_free_index(physaddr, id);
 | 
						|
		if (index >= 0)
 | 
						|
			return pmem[id].free(id, index) ?  -EINVAL : 0;
 | 
						|
	}
 | 
						|
#if PMEM_DEBUG
 | 
						|
	pr_alert("pmem: %s: Failed to free physaddr %#x, does not "
 | 
						|
		"seem be value returned by pmem_kalloc()!",
 | 
						|
		__func__, physaddr);
 | 
						|
#endif
 | 
						|
	return -EINVAL;
 | 
						|
}
 | 
						|
EXPORT_SYMBOL(pmem_kfree);
 | 
						|
 | 
						|
static int pmem_connect(unsigned long connect, struct file *file)
 | 
						|
{
 | 
						|
	int ret = 0, put_needed;
 | 
						|
	struct file *src_file;
 | 
						|
 | 
						|
	if (!file) {
 | 
						|
		pr_err("pmem: %s: NULL file pointer passed in, "
 | 
						|
			"bailing out!\n", __func__);
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto leave;
 | 
						|
	}
 | 
						|
 | 
						|
	src_file = fget_light(connect, &put_needed);
 | 
						|
 | 
						|
	if (!src_file) {
 | 
						|
		pr_err("pmem: %s: src file not found!\n", __func__);
 | 
						|
		ret = -EBADF;
 | 
						|
		goto leave;
 | 
						|
	}
 | 
						|
 | 
						|
	if (src_file == file) { /* degenerative case, operator error */
 | 
						|
		pr_err("pmem: %s: src_file and passed in file are "
 | 
						|
			"the same; refusing to connect to self!\n", __func__);
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto put_src_file;
 | 
						|
	}
 | 
						|
 | 
						|
	if (unlikely(!is_pmem_file(src_file))) {
 | 
						|
		pr_err("pmem: %s: src file is not a pmem file!\n",
 | 
						|
			__func__);
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto put_src_file;
 | 
						|
	} else {
 | 
						|
		struct pmem_data *src_data = src_file->private_data;
 | 
						|
 | 
						|
		if (!src_data) {
 | 
						|
			pr_err("pmem: %s: src file pointer has no"
 | 
						|
				"private data, bailing out!\n", __func__);
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto put_src_file;
 | 
						|
		}
 | 
						|
 | 
						|
		down_read(&src_data->sem);
 | 
						|
 | 
						|
		if (unlikely(!has_allocation(src_file))) {
 | 
						|
			up_read(&src_data->sem);
 | 
						|
			pr_err("pmem: %s: src file has no allocation!\n",
 | 
						|
				__func__);
 | 
						|
			ret = -EINVAL;
 | 
						|
		} else {
 | 
						|
			struct pmem_data *data;
 | 
						|
			int src_index = src_data->index;
 | 
						|
 | 
						|
			up_read(&src_data->sem);
 | 
						|
 | 
						|
			data = file->private_data;
 | 
						|
			if (!data) {
 | 
						|
				pr_err("pmem: %s: passed in file "
 | 
						|
					"pointer has no private data, bailing"
 | 
						|
					" out!\n", __func__);
 | 
						|
				ret = -EINVAL;
 | 
						|
				goto put_src_file;
 | 
						|
			}
 | 
						|
 | 
						|
			down_write(&data->sem);
 | 
						|
			if (has_allocation(file) &&
 | 
						|
					(data->index != src_index)) {
 | 
						|
				up_write(&data->sem);
 | 
						|
 | 
						|
				pr_err("pmem: %s: file is already "
 | 
						|
					"mapped but doesn't match this "
 | 
						|
					"src_file!\n", __func__);
 | 
						|
				ret = -EINVAL;
 | 
						|
			} else {
 | 
						|
				data->index = src_index;
 | 
						|
				data->flags |= PMEM_FLAGS_CONNECTED;
 | 
						|
				data->master_fd = connect;
 | 
						|
				data->master_file = src_file;
 | 
						|
 | 
						|
				up_write(&data->sem);
 | 
						|
 | 
						|
				DLOG("connect %p to %p\n", file, src_file);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
put_src_file:
 | 
						|
	fput_light(src_file, put_needed);
 | 
						|
leave:
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_unlock_data_and_mm(struct pmem_data *data,
 | 
						|
				    struct mm_struct *mm)
 | 
						|
{
 | 
						|
	up_write(&data->sem);
 | 
						|
	if (mm != NULL) {
 | 
						|
		up_write(&mm->mmap_sem);
 | 
						|
		mmput(mm);
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_lock_data_and_mm(struct file *file, struct pmem_data *data,
 | 
						|
				 struct mm_struct **locked_mm)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
	struct mm_struct *mm = NULL;
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
	DLOG("pid %u(%s) file %p(%ld)\n",
 | 
						|
		current->pid, get_task_comm(currtask_name, current),
 | 
						|
		file, file_count(file));
 | 
						|
 | 
						|
	*locked_mm = NULL;
 | 
						|
lock_mm:
 | 
						|
	down_read(&data->sem);
 | 
						|
	if (PMEM_IS_SUBMAP(data)) {
 | 
						|
		mm = get_task_mm(data->task);
 | 
						|
		if (!mm) {
 | 
						|
			up_read(&data->sem);
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_alert("pmem: can't remap - task is gone!\n");
 | 
						|
#endif
 | 
						|
			return -1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	up_read(&data->sem);
 | 
						|
 | 
						|
	if (mm)
 | 
						|
		down_write(&mm->mmap_sem);
 | 
						|
 | 
						|
	down_write(&data->sem);
 | 
						|
	/* check that the file didn't get mmaped before we could take the
 | 
						|
	 * data sem, this should be safe b/c you can only submap each file
 | 
						|
	 * once */
 | 
						|
	if (PMEM_IS_SUBMAP(data) && !mm) {
 | 
						|
		pmem_unlock_data_and_mm(data, mm);
 | 
						|
		DLOG("mapping contention, repeating mmap op\n");
 | 
						|
		goto lock_mm;
 | 
						|
	}
 | 
						|
	/* now check that vma.mm is still there, it could have been
 | 
						|
	 * deleted by vma_close before we could get the data->sem */
 | 
						|
	if ((data->flags & PMEM_FLAGS_UNSUBMAP) && (mm != NULL)) {
 | 
						|
		/* might as well release this */
 | 
						|
		if (data->flags & PMEM_FLAGS_SUBMAP) {
 | 
						|
			put_task_struct(data->task);
 | 
						|
			data->task = NULL;
 | 
						|
			/* lower the submap flag to show the mm is gone */
 | 
						|
			data->flags &= ~(PMEM_FLAGS_SUBMAP);
 | 
						|
		}
 | 
						|
		pmem_unlock_data_and_mm(data, mm);
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_alert("pmem: vma.mm went away!\n");
 | 
						|
#endif
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	*locked_mm = mm;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
int pmem_remap(struct pmem_region *region, struct file *file,
 | 
						|
		      unsigned operation)
 | 
						|
{
 | 
						|
	int ret;
 | 
						|
	struct pmem_region_node *region_node;
 | 
						|
	struct mm_struct *mm = NULL;
 | 
						|
	struct list_head *elt, *elt2;
 | 
						|
	int id = get_id(file);
 | 
						|
	struct pmem_data *data;
 | 
						|
 | 
						|
	DLOG("operation %#x, region offset %ld, region len %ld\n",
 | 
						|
		operation, region->offset, region->len);
 | 
						|
 | 
						|
	if (!is_pmem_file(file)) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: remap request for non-pmem file descriptor\n");
 | 
						|
#endif
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* is_pmem_file fails if !file */
 | 
						|
	data = file->private_data;
 | 
						|
 | 
						|
	/* pmem region must be aligned on a page boundry */
 | 
						|
	if (unlikely(!PMEM_IS_PAGE_ALIGNED(region->offset) ||
 | 
						|
		 !PMEM_IS_PAGE_ALIGNED(region->len))) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: request for unaligned pmem"
 | 
						|
			"suballocation %lx %lx\n",
 | 
						|
			region->offset, region->len);
 | 
						|
#endif
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
 | 
						|
	/* if userspace requests a region of len 0, there's nothing to do */
 | 
						|
	if (region->len == 0)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* lock the mm and data */
 | 
						|
	ret = pmem_lock_data_and_mm(file, data, &mm);
 | 
						|
	if (ret)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	/* only the owner of the master file can remap the client fds
 | 
						|
	 * that back in it */
 | 
						|
	if (!is_master_owner(file)) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: remap requested from non-master process\n");
 | 
						|
#endif
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	/* check that the requested range is within the src allocation */
 | 
						|
	if (unlikely((region->offset > pmem[id].len(id, data)) ||
 | 
						|
		     (region->len > pmem[id].len(id, data)) ||
 | 
						|
		     (region->offset + region->len > pmem[id].len(id, data)))) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
		pr_err("pmem: suballoc doesn't fit in src_file!\n");
 | 
						|
#endif
 | 
						|
		ret = -EINVAL;
 | 
						|
		goto err;
 | 
						|
	}
 | 
						|
 | 
						|
	if (operation == PMEM_MAP) {
 | 
						|
		region_node = kmalloc(sizeof(struct pmem_region_node),
 | 
						|
			      GFP_KERNEL);
 | 
						|
		if (!region_node) {
 | 
						|
			ret = -ENOMEM;
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_alert("pmem: No space to allocate remap metadata!");
 | 
						|
#endif
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
		region_node->region = *region;
 | 
						|
		list_add(®ion_node->list, &data->region_list);
 | 
						|
	} else if (operation == PMEM_UNMAP) {
 | 
						|
		int found = 0;
 | 
						|
		list_for_each_safe(elt, elt2, &data->region_list) {
 | 
						|
			region_node = list_entry(elt, struct pmem_region_node,
 | 
						|
				      list);
 | 
						|
			if (region->len == 0 ||
 | 
						|
			    (region_node->region.offset == region->offset &&
 | 
						|
			    region_node->region.len == region->len)) {
 | 
						|
				list_del(elt);
 | 
						|
				kfree(region_node);
 | 
						|
				found = 1;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (!found) {
 | 
						|
#if PMEM_DEBUG
 | 
						|
			pr_err("pmem: Unmap region does not map any"
 | 
						|
				" mapped region!");
 | 
						|
#endif
 | 
						|
			ret = -EINVAL;
 | 
						|
			goto err;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (data->vma && PMEM_IS_SUBMAP(data)) {
 | 
						|
		if (operation == PMEM_MAP)
 | 
						|
			ret = pmem_remap_pfn_range(id, data->vma, data,
 | 
						|
				   region->offset, region->len);
 | 
						|
		else if (operation == PMEM_UNMAP)
 | 
						|
			ret = pmem_unmap_pfn_range(id, data->vma, data,
 | 
						|
				   region->offset, region->len);
 | 
						|
	}
 | 
						|
 | 
						|
err:
 | 
						|
	pmem_unlock_data_and_mm(data, mm);
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_revoke(struct file *file, struct pmem_data *data)
 | 
						|
{
 | 
						|
	struct pmem_region_node *region_node;
 | 
						|
	struct list_head *elt, *elt2;
 | 
						|
	struct mm_struct *mm = NULL;
 | 
						|
	int id = get_id(file);
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	data->master_file = NULL;
 | 
						|
	ret = pmem_lock_data_and_mm(file, data, &mm);
 | 
						|
	/* if lock_data_and_mm fails either the task that mapped the fd, or
 | 
						|
	 * the vma that mapped it have already gone away, nothing more
 | 
						|
	 * needs to be done */
 | 
						|
	if (ret)
 | 
						|
		return;
 | 
						|
	/* unmap everything */
 | 
						|
	/* delete the regions and region list nothing is mapped any more */
 | 
						|
	if (data->vma)
 | 
						|
		list_for_each_safe(elt, elt2, &data->region_list) {
 | 
						|
			region_node = list_entry(elt, struct pmem_region_node,
 | 
						|
						 list);
 | 
						|
			pmem_unmap_pfn_range(id, data->vma, data,
 | 
						|
					     region_node->region.offset,
 | 
						|
					     region_node->region.len);
 | 
						|
			list_del(elt);
 | 
						|
			kfree(region_node);
 | 
						|
	}
 | 
						|
	/* delete the master file */
 | 
						|
	pmem_unlock_data_and_mm(data, mm);
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_get_size(struct pmem_region *region, struct file *file)
 | 
						|
{
 | 
						|
	/* called via ioctl file op, so file guaranteed to be not NULL */
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
	int id = get_id(file);
 | 
						|
 | 
						|
	down_read(&data->sem);
 | 
						|
	if (!has_allocation(file)) {
 | 
						|
		region->offset = 0;
 | 
						|
		region->len = 0;
 | 
						|
	} else {
 | 
						|
		region->offset = pmem[id].start_addr(id, data);
 | 
						|
		region->len = pmem[id].len(id, data);
 | 
						|
	}
 | 
						|
	up_read(&data->sem);
 | 
						|
	DLOG("offset 0x%lx len 0x%lx\n", region->offset, region->len);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static long pmem_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 | 
						|
{
 | 
						|
	/* called from user space as file op, so file guaranteed to be not
 | 
						|
	 * NULL
 | 
						|
	 */
 | 
						|
	struct pmem_data *data = file->private_data;
 | 
						|
	int id = get_id(file);
 | 
						|
#if PMEM_DEBUG_MSGS
 | 
						|
	char currtask_name[
 | 
						|
		FIELD_SIZEOF(struct task_struct, comm) + 1];
 | 
						|
#endif
 | 
						|
 | 
						|
	DLOG("pid %u(%s) file %p(%ld) cmd %#x, dev %s(id: %d)\n",
 | 
						|
		current->pid, get_task_comm(currtask_name, current),
 | 
						|
		file, file_count(file), cmd, get_name(file), id);
 | 
						|
 | 
						|
	switch (cmd) {
 | 
						|
	case PMEM_GET_PHYS:
 | 
						|
		{
 | 
						|
			struct pmem_region region;
 | 
						|
 | 
						|
			DLOG("get_phys\n");
 | 
						|
			down_read(&data->sem);
 | 
						|
			if (!has_allocation(file)) {
 | 
						|
				region.offset = 0;
 | 
						|
				region.len = 0;
 | 
						|
			} else {
 | 
						|
				region.offset = pmem[id].start_addr(id, data);
 | 
						|
				region.len = pmem[id].len(id, data);
 | 
						|
			}
 | 
						|
			up_read(&data->sem);
 | 
						|
 | 
						|
			if (copy_to_user((void __user *)arg, ®ion,
 | 
						|
						sizeof(struct pmem_region)))
 | 
						|
				return -EFAULT;
 | 
						|
 | 
						|
			DLOG("pmem: successful request for "
 | 
						|
				"physical address of pmem region id %d, "
 | 
						|
				"offset 0x%lx, len 0x%lx\n",
 | 
						|
				id, region.offset, region.len);
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	case PMEM_MAP:
 | 
						|
		{
 | 
						|
			struct pmem_region region;
 | 
						|
			DLOG("map\n");
 | 
						|
			if (copy_from_user(®ion, (void __user *)arg,
 | 
						|
						sizeof(struct pmem_region)))
 | 
						|
				return -EFAULT;
 | 
						|
			return pmem_remap(®ion, file, PMEM_MAP);
 | 
						|
		}
 | 
						|
		break;
 | 
						|
	case PMEM_UNMAP:
 | 
						|
		{
 | 
						|
			struct pmem_region region;
 | 
						|
			DLOG("unmap\n");
 | 
						|
			if (copy_from_user(®ion, (void __user *)arg,
 | 
						|
						sizeof(struct pmem_region)))
 | 
						|
				return -EFAULT;
 | 
						|
			return pmem_remap(®ion, file, PMEM_UNMAP);
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	case PMEM_GET_SIZE:
 | 
						|
		{
 | 
						|
			struct pmem_region region;
 | 
						|
			DLOG("get_size\n");
 | 
						|
			pmem_get_size(®ion, file);
 | 
						|
			if (copy_to_user((void __user *)arg, ®ion,
 | 
						|
						sizeof(struct pmem_region)))
 | 
						|
				return -EFAULT;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	case PMEM_GET_TOTAL_SIZE:
 | 
						|
		{
 | 
						|
			struct pmem_region region;
 | 
						|
			DLOG("get total size\n");
 | 
						|
			region.offset = 0;
 | 
						|
			get_id(file);
 | 
						|
			region.len = pmem[id].size;
 | 
						|
			if (copy_to_user((void __user *)arg, ®ion,
 | 
						|
						sizeof(struct pmem_region)))
 | 
						|
				return -EFAULT;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	case PMEM_GET_FREE_SPACE:
 | 
						|
		{
 | 
						|
			struct pmem_freespace fs;
 | 
						|
			DLOG("get freespace on %s(id: %d)\n",
 | 
						|
				get_name(file), id);
 | 
						|
 | 
						|
			mutex_lock(&pmem[id].arena_mutex);
 | 
						|
			pmem[id].free_space(id, &fs);
 | 
						|
			mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
 | 
						|
			DLOG("%s(id: %d) total free %lu, largest %lu\n",
 | 
						|
				get_name(file), id, fs.total, fs.largest);
 | 
						|
 | 
						|
			if (copy_to_user((void __user *)arg, &fs,
 | 
						|
				sizeof(struct pmem_freespace)))
 | 
						|
				return -EFAULT;
 | 
						|
			break;
 | 
						|
	}
 | 
						|
 | 
						|
	case PMEM_ALLOCATE:
 | 
						|
		{
 | 
						|
			int ret = 0;
 | 
						|
			DLOG("allocate, id %d\n", id);
 | 
						|
			down_write(&data->sem);
 | 
						|
			if (has_allocation(file)) {
 | 
						|
				pr_err("pmem: Existing allocation found on "
 | 
						|
					"this file descrpitor\n");
 | 
						|
				up_write(&data->sem);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			mutex_lock(&pmem[id].arena_mutex);
 | 
						|
			data->index = pmem[id].allocate(id,
 | 
						|
					arg,
 | 
						|
					SZ_4K);
 | 
						|
			mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
			ret = data->index == -1 ? -ENOMEM :
 | 
						|
				data->index;
 | 
						|
			up_write(&data->sem);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	case PMEM_ALLOCATE_ALIGNED:
 | 
						|
		{
 | 
						|
			struct pmem_allocation alloc;
 | 
						|
			int ret = 0;
 | 
						|
 | 
						|
			if (copy_from_user(&alloc, (void __user *)arg,
 | 
						|
						sizeof(struct pmem_allocation)))
 | 
						|
				return -EFAULT;
 | 
						|
			DLOG("allocate id align %d %u\n", id, alloc.align);
 | 
						|
			down_write(&data->sem);
 | 
						|
			if (has_allocation(file)) {
 | 
						|
				pr_err("pmem: Existing allocation found on "
 | 
						|
					"this file descrpitor\n");
 | 
						|
				up_write(&data->sem);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			if (alloc.align & (alloc.align - 1)) {
 | 
						|
				pr_err("pmem: Alignment is not a power of 2\n");
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			if (alloc.align != SZ_4K &&
 | 
						|
					(pmem[id].allocator_type !=
 | 
						|
						PMEM_ALLOCATORTYPE_BITMAP)) {
 | 
						|
				pr_err("pmem: Non 4k alignment requires bitmap"
 | 
						|
					" allocator on %s\n", pmem[id].name);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			if (alloc.align > SZ_1M ||
 | 
						|
				alloc.align < SZ_4K) {
 | 
						|
				pr_err("pmem: Invalid Alignment (%u) "
 | 
						|
					"specified\n", alloc.align);
 | 
						|
				return -EINVAL;
 | 
						|
			}
 | 
						|
 | 
						|
			mutex_lock(&pmem[id].arena_mutex);
 | 
						|
			data->index = pmem[id].allocate(id,
 | 
						|
					alloc.size,
 | 
						|
					alloc.align);
 | 
						|
			mutex_unlock(&pmem[id].arena_mutex);
 | 
						|
			ret = data->index == -1 ? -ENOMEM :
 | 
						|
				data->index;
 | 
						|
			up_write(&data->sem);
 | 
						|
			return ret;
 | 
						|
		}
 | 
						|
	case PMEM_CONNECT:
 | 
						|
		DLOG("connect\n");
 | 
						|
		return pmem_connect(arg, file);
 | 
						|
	case PMEM_CLEAN_INV_CACHES:
 | 
						|
	case PMEM_CLEAN_CACHES:
 | 
						|
	case PMEM_INV_CACHES:
 | 
						|
		{
 | 
						|
			struct pmem_addr pmem_addr;
 | 
						|
 | 
						|
			if (copy_from_user(&pmem_addr, (void __user *)arg,
 | 
						|
						sizeof(struct pmem_addr)))
 | 
						|
				return -EFAULT;
 | 
						|
 | 
						|
			return pmem_cache_maint(file, cmd, &pmem_addr);
 | 
						|
		}
 | 
						|
	case PMEM_CACHE_FLUSH:
 | 
						|
	{
 | 
						|
		struct pmem_region region;
 | 
						|
 | 
						|
		if (copy_from_user(®ion, (void __user *)arg,
 | 
						|
		    sizeof(struct pmem_region)))
 | 
						|
			return -EFAULT;
 | 
						|
 | 
						|
		flush_pmem_file(file, region.offset, region.len);
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	default:
 | 
						|
		if (pmem[id].ioctl)
 | 
						|
			return pmem[id].ioctl(file, cmd, arg);
 | 
						|
 | 
						|
		DLOG("ioctl invalid (%#x)\n", cmd);
 | 
						|
		return -EINVAL;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void ioremap_pmem(int id)
 | 
						|
{
 | 
						|
	if (pmem[id].cached)
 | 
						|
		pmem[id].vbase = ioremap_cached(pmem[id].base, pmem[id].size);
 | 
						|
#ifdef ioremap_ext_buffered
 | 
						|
	else if (pmem[id].buffered)
 | 
						|
		pmem[id].vbase = ioremap_ext_buffered(pmem[id].base,
 | 
						|
					pmem[id].size);
 | 
						|
#endif
 | 
						|
	else
 | 
						|
		pmem[id].vbase = ioremap(pmem[id].base, pmem[id].size);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
static int pmem_mapped_regions(int id)
 | 
						|
{
 | 
						|
	struct list_head *elt;
 | 
						|
 | 
						|
	mutex_lock(&pmem[id].data_list_mutex);
 | 
						|
	list_for_each(elt, &pmem[id].data_list) {
 | 
						|
		struct pmem_data *data =
 | 
						|
			list_entry(elt, struct pmem_data, list);
 | 
						|
 | 
						|
		if (data) {
 | 
						|
			mutex_unlock(&pmem[id].data_list_mutex);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	mutex_unlock(&pmem[id].data_list_mutex);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int active_unstable_pmem(void)
 | 
						|
{
 | 
						|
	int id;
 | 
						|
 | 
						|
	for (id = 0; id < id_count; id++) {
 | 
						|
		if (pmem[id].memory_state == MEMORY_STABLE)
 | 
						|
			continue;
 | 
						|
		if (pmem_mapped_regions(id))
 | 
						|
			return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static void reserve_unstable_pmem(unsigned long unstable_pmem_start,
 | 
						|
	unsigned long unstable_pmem_size)
 | 
						|
{
 | 
						|
	reserve_hotplug_pages(unstable_pmem_start >> PAGE_SHIFT,
 | 
						|
		unstable_pmem_size >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static void unreserve_unstable_pmem(unsigned long unstable_pmem_start,
 | 
						|
	unsigned long unstable_pmem_size)
 | 
						|
{
 | 
						|
	unreserve_hotplug_pages(unstable_pmem_start >> PAGE_SHIFT,
 | 
						|
		unstable_pmem_size >> PAGE_SHIFT);
 | 
						|
}
 | 
						|
 | 
						|
static void pmem_setup_unstable_devices(unsigned long start_pfn,
 | 
						|
	unsigned long nr_pages)
 | 
						|
{
 | 
						|
	int id;
 | 
						|
	unsigned long tmp;
 | 
						|
 | 
						|
	unstable_pmem_start = start_pfn << PAGE_SHIFT;
 | 
						|
	tmp = unstable_pmem_start;
 | 
						|
 | 
						|
	for (id = 0; id < id_count; id++) {
 | 
						|
		if (pmem[id].memory_state == MEMORY_STABLE)
 | 
						|
			continue;
 | 
						|
 | 
						|
		pmem[id].base = tmp;
 | 
						|
		pr_info("reserving %lx bytes unstable memory at %lx \
 | 
						|
			for %s\n", pmem[id].size, pmem[id].base, pmem[id].name);
 | 
						|
		tmp += pmem[id].size;
 | 
						|
	}
 | 
						|
	unstable_pmem_size = tmp - unstable_pmem_start;
 | 
						|
 | 
						|
	for (id = 0; id < id_count; id++) {
 | 
						|
		if (pmem[id].memory_state ==
 | 
						|
			MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED) {
 | 
						|
			ioremap_pmem(id);
 | 
						|
			pmem[id].garbage_pfn =
 | 
						|
				page_to_pfn(alloc_page(GFP_KERNEL));
 | 
						|
 | 
						|
			if (pmem[id].vbase == 0)
 | 
						|
				continue;
 | 
						|
			pmem[id].memory_state =
 | 
						|
				MEMORY_UNSTABLE_MEMORY_ALLOCATED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_mem_going_offline_callback(void *arg)
 | 
						|
{
 | 
						|
	struct memory_notify *marg = arg;
 | 
						|
	int id;
 | 
						|
 | 
						|
	if ((marg->start_pfn << PAGE_SHIFT) != unstable_pmem_start)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if (active_unstable_pmem()) {
 | 
						|
		pr_alert("unstable PMEM memory device in use \
 | 
						|
			prevents memory hotremove!\n");
 | 
						|
		return -EAGAIN;
 | 
						|
	}
 | 
						|
 | 
						|
	unreserve_unstable_pmem(unstable_pmem_start, unstable_pmem_size);
 | 
						|
 | 
						|
	for (id = 0; id < id_count; id++) {
 | 
						|
		if (pmem[id].memory_state == MEMORY_UNSTABLE_MEMORY_ALLOCATED)
 | 
						|
			pmem[id].memory_state =
 | 
						|
				MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED;
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_mem_online_callback(void *arg)
 | 
						|
{
 | 
						|
	struct memory_notify *marg = arg;
 | 
						|
	int id;
 | 
						|
 | 
						|
 | 
						|
	if (unstable_pmem_present == UNSTABLE_UNINITIALIZED) {
 | 
						|
		pmem_setup_unstable_devices(marg->start_pfn, marg->nr_pages);
 | 
						|
		pr_alert("unstable pmem start %lx size %lx\n",
 | 
						|
			unstable_pmem_start, unstable_pmem_size);
 | 
						|
		unstable_pmem_present = UNSTABLE_INITIALIZED;
 | 
						|
	}
 | 
						|
 | 
						|
	if ((marg->start_pfn << PAGE_SHIFT) != unstable_pmem_start)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	reserve_unstable_pmem(unstable_pmem_start, unstable_pmem_size);
 | 
						|
 | 
						|
	for (id = 0; id < id_count; id++) {
 | 
						|
		if (pmem[id].memory_state ==
 | 
						|
			MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED) {
 | 
						|
			if (pmem[id].vbase == 0)
 | 
						|
				ioremap_pmem(id);
 | 
						|
			if (pmem[id].vbase == 0)
 | 
						|
				continue;
 | 
						|
			pmem[id].memory_state =
 | 
						|
				MEMORY_UNSTABLE_MEMORY_ALLOCATED;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_memory_callback(struct notifier_block *self,
 | 
						|
				unsigned long action, void *arg)
 | 
						|
{
 | 
						|
	int ret = 0;
 | 
						|
 | 
						|
	if (unstable_pmem_present == NO_UNSTABLE_MEMORY)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	switch (action) {
 | 
						|
	case MEM_ONLINE:
 | 
						|
		ret = pmem_mem_online_callback(arg);
 | 
						|
		break;
 | 
						|
	case MEM_GOING_OFFLINE:
 | 
						|
		ret = pmem_mem_going_offline_callback(arg);
 | 
						|
		break;
 | 
						|
	case MEM_OFFLINE:
 | 
						|
	case MEM_GOING_ONLINE:
 | 
						|
	case MEM_CANCEL_ONLINE:
 | 
						|
	case MEM_CANCEL_OFFLINE:
 | 
						|
		break;
 | 
						|
	}
 | 
						|
	if (ret)
 | 
						|
		ret = notifier_from_errno(ret);
 | 
						|
	else
 | 
						|
		ret = NOTIFY_OK;
 | 
						|
	return ret;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
int pmem_setup(struct android_pmem_platform_data *pdata,
 | 
						|
	       long (*ioctl)(struct file *, unsigned int, unsigned long),
 | 
						|
	       int (*release)(struct inode *, struct file *))
 | 
						|
{
 | 
						|
	int i, index = 0, kapi_memtype_idx = -1, id, is_kernel_memtype = 0;
 | 
						|
 | 
						|
	if (id_count >= PMEM_MAX_DEVICES) {
 | 
						|
		pr_alert("pmem: %s: unable to register driver(%s) - no more "
 | 
						|
			"devices available!\n", __func__, pdata->name);
 | 
						|
		goto err_no_mem;
 | 
						|
	}
 | 
						|
 | 
						|
	if (!pdata->size) {
 | 
						|
		pr_alert("pmem: %s: unable to register pmem driver(%s) - zero "
 | 
						|
			"size passed in!\n", __func__, pdata->name);
 | 
						|
		goto err_no_mem;
 | 
						|
	}
 | 
						|
 | 
						|
	id = id_count++;
 | 
						|
 | 
						|
	pmem[id].id = id;
 | 
						|
 | 
						|
	if (pmem[id].allocate) {
 | 
						|
		pr_alert("pmem: %s: unable to register pmem driver - "
 | 
						|
			"duplicate registration of %s!\n",
 | 
						|
			__func__, pdata->name);
 | 
						|
		goto err_no_mem;
 | 
						|
	}
 | 
						|
 | 
						|
	pmem[id].allocator_type = pdata->allocator_type;
 | 
						|
 | 
						|
	for (i = 0; i < ARRAY_SIZE(kapi_memtypes); i++) {
 | 
						|
		if (!strcmp(kapi_memtypes[i].name, pdata->name)) {
 | 
						|
			if (kapi_memtypes[i].info_id >= 0) {
 | 
						|
				pr_alert("Unable to register kernel pmem "
 | 
						|
					"driver - duplicate registration of "
 | 
						|
					"%s!\n", pdata->name);
 | 
						|
				goto err_no_mem;
 | 
						|
			}
 | 
						|
			if (pdata->cached) {
 | 
						|
				pr_alert("kernel arena memory must "
 | 
						|
					"NOT be configured as 'cached'. Check "
 | 
						|
					"and fix your board file. Failing "
 | 
						|
					"pmem driver %s registration!",
 | 
						|
					pdata->name);
 | 
						|
				goto err_no_mem;
 | 
						|
			}
 | 
						|
 | 
						|
			is_kernel_memtype = 1;
 | 
						|
			kapi_memtypes[i].info_id = id;
 | 
						|
			kapi_memtype_idx = i;
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* 'quantum' is a "hidden" variable that defaults to 0 in the board
 | 
						|
	 * files */
 | 
						|
	pmem[id].quantum = pdata->quantum ?: PMEM_MIN_ALLOC;
 | 
						|
	if (pmem[id].quantum < PMEM_MIN_ALLOC ||
 | 
						|
		!is_power_of_2(pmem[id].quantum)) {
 | 
						|
		pr_alert("pmem: %s: unable to register pmem driver %s - "
 | 
						|
			"invalid quantum value (%#x)!\n",
 | 
						|
			__func__, pdata->name, pmem[id].quantum);
 | 
						|
		goto err_reset_pmem_info;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pdata->start % pmem[id].quantum) {
 | 
						|
		/* bad alignment for start! */
 | 
						|
		pr_alert("pmem: %s: Unable to register driver %s - "
 | 
						|
			"improperly aligned memory region start address "
 | 
						|
			"(%#lx) as checked against quantum value of %#x!\n",
 | 
						|
			__func__, pdata->name, pdata->start,
 | 
						|
			pmem[id].quantum);
 | 
						|
		goto err_reset_pmem_info;
 | 
						|
	}
 | 
						|
 | 
						|
	if (pdata->size % pmem[id].quantum) {
 | 
						|
		/* bad alignment for size! */
 | 
						|
		pr_alert("pmem: %s: Unable to register driver %s - "
 | 
						|
			"memory region size (%#lx) is not a multiple of "
 | 
						|
			"quantum size(%#x)!\n", __func__, pdata->name,
 | 
						|
			pdata->size, pmem[id].quantum);
 | 
						|
		goto err_reset_pmem_info;
 | 
						|
	}
 | 
						|
 | 
						|
	pmem[id].cached = pdata->cached;
 | 
						|
	pmem[id].buffered = pdata->buffered;
 | 
						|
	pmem[id].base = pdata->start;
 | 
						|
	pmem[id].size = pdata->size;
 | 
						|
	strlcpy(pmem[id].name, pdata->name, PMEM_NAME_SIZE);
 | 
						|
 | 
						|
	if (pdata->unstable) {
 | 
						|
		pmem[id].memory_state = MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED;
 | 
						|
		unstable_pmem_present = UNSTABLE_UNINITIALIZED;
 | 
						|
	}
 | 
						|
 | 
						|
	pmem[id].num_entries = pmem[id].size / pmem[id].quantum;
 | 
						|
 | 
						|
	memset(&pmem[id].kobj, 0, sizeof(pmem[0].kobj));
 | 
						|
	pmem[id].kobj.kset = pmem_kset;
 | 
						|
 | 
						|
	switch (pmem[id].allocator_type) {
 | 
						|
	case PMEM_ALLOCATORTYPE_ALLORNOTHING:
 | 
						|
		pmem[id].allocate = pmem_allocator_all_or_nothing;
 | 
						|
		pmem[id].free = pmem_free_all_or_nothing;
 | 
						|
		pmem[id].free_space = pmem_free_space_all_or_nothing;
 | 
						|
		pmem[id].kapi_free_index = pmem_kapi_free_index_allornothing;
 | 
						|
		pmem[id].len = pmem_len_all_or_nothing;
 | 
						|
		pmem[id].start_addr = pmem_start_addr_all_or_nothing;
 | 
						|
		pmem[id].num_entries = 1;
 | 
						|
		pmem[id].quantum = pmem[id].size;
 | 
						|
		pmem[id].allocator.all_or_nothing.allocated = 0;
 | 
						|
 | 
						|
		if (kobject_init_and_add(&pmem[id].kobj,
 | 
						|
				&pmem_allornothing_ktype, NULL,
 | 
						|
				"%s", pdata->name))
 | 
						|
			goto out_put_kobj;
 | 
						|
 | 
						|
		break;
 | 
						|
 | 
						|
	case PMEM_ALLOCATORTYPE_BUDDYBESTFIT:
 | 
						|
		pmem[id].allocator.buddy_bestfit.buddy_bitmap = kmalloc(
 | 
						|
			pmem[id].num_entries * sizeof(struct pmem_bits),
 | 
						|
			GFP_KERNEL);
 | 
						|
		if (!pmem[id].allocator.buddy_bestfit.buddy_bitmap)
 | 
						|
			goto err_reset_pmem_info;
 | 
						|
 | 
						|
		memset(pmem[id].allocator.buddy_bestfit.buddy_bitmap, 0,
 | 
						|
			sizeof(struct pmem_bits) * pmem[id].num_entries);
 | 
						|
 | 
						|
		for (i = sizeof(pmem[id].num_entries) * 8 - 1; i >= 0; i--)
 | 
						|
			if ((pmem[id].num_entries) &  1<<i) {
 | 
						|
				PMEM_BUDDY_ORDER(id, index) = i;
 | 
						|
				index = PMEM_BUDDY_NEXT_INDEX(id, index);
 | 
						|
			}
 | 
						|
		pmem[id].allocate = pmem_allocator_buddy_bestfit;
 | 
						|
		pmem[id].free = pmem_free_buddy_bestfit;
 | 
						|
		pmem[id].free_space = pmem_free_space_buddy_bestfit;
 | 
						|
		pmem[id].kapi_free_index = pmem_kapi_free_index_buddybestfit;
 | 
						|
		pmem[id].len = pmem_len_buddy_bestfit;
 | 
						|
		pmem[id].start_addr = pmem_start_addr_buddy_bestfit;
 | 
						|
		if (kobject_init_and_add(&pmem[id].kobj,
 | 
						|
				&pmem_buddy_bestfit_ktype, NULL,
 | 
						|
				"%s", pdata->name))
 | 
						|
			goto out_put_kobj;
 | 
						|
 | 
						|
		break;
 | 
						|
 | 
						|
	case PMEM_ALLOCATORTYPE_BITMAP: /* 0, default if not explicit */
 | 
						|
		pmem[id].allocator.bitmap.bitm_alloc = kmalloc(
 | 
						|
			PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS *
 | 
						|
				sizeof(*pmem[id].allocator.bitmap.bitm_alloc),
 | 
						|
			GFP_KERNEL);
 | 
						|
		if (!pmem[id].allocator.bitmap.bitm_alloc) {
 | 
						|
			pr_alert("pmem: %s: Unable to register pmem "
 | 
						|
					"driver %s - can't allocate "
 | 
						|
					"bitm_alloc!\n",
 | 
						|
					__func__, pdata->name);
 | 
						|
			goto err_reset_pmem_info;
 | 
						|
		}
 | 
						|
 | 
						|
		if (kobject_init_and_add(&pmem[id].kobj,
 | 
						|
				&pmem_bitmap_ktype, NULL,
 | 
						|
				"%s", pdata->name))
 | 
						|
			goto out_put_kobj;
 | 
						|
 | 
						|
		for (i = 0; i < PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS; i++) {
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].bit = -1;
 | 
						|
			pmem[id].allocator.bitmap.bitm_alloc[i].quanta = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		pmem[id].allocator.bitmap.bitmap_allocs =
 | 
						|
			PMEM_INITIAL_NUM_BITMAP_ALLOCATIONS;
 | 
						|
 | 
						|
		pmem[id].allocator.bitmap.bitmap =
 | 
						|
			kcalloc((pmem[id].num_entries + 31) / 32,
 | 
						|
				sizeof(unsigned int), GFP_KERNEL);
 | 
						|
		if (!pmem[id].allocator.bitmap.bitmap) {
 | 
						|
			pr_alert("pmem: %s: Unable to register pmem "
 | 
						|
				"driver - can't allocate bitmap!\n",
 | 
						|
				__func__);
 | 
						|
			goto err_cant_register_device;
 | 
						|
		}
 | 
						|
		pmem[id].allocator.bitmap.bitmap_free = pmem[id].num_entries;
 | 
						|
 | 
						|
		pmem[id].allocate = pmem_allocator_bitmap;
 | 
						|
		pmem[id].free = pmem_free_bitmap;
 | 
						|
		pmem[id].free_space = pmem_free_space_bitmap;
 | 
						|
		pmem[id].kapi_free_index = pmem_kapi_free_index_bitmap;
 | 
						|
		pmem[id].len = pmem_len_bitmap;
 | 
						|
		pmem[id].start_addr = pmem_start_addr_bitmap;
 | 
						|
 | 
						|
		DLOG("bitmap allocator id %d (%s), num_entries %u, raw size "
 | 
						|
			"%lu, quanta size %u\n",
 | 
						|
			id, pdata->name, pmem[id].allocator.bitmap.bitmap_free,
 | 
						|
			pmem[id].size, pmem[id].quantum);
 | 
						|
		break;
 | 
						|
 | 
						|
	case PMEM_ALLOCATORTYPE_SYSTEM:
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
		goto err_no_mem;
 | 
						|
#endif
 | 
						|
 | 
						|
		INIT_LIST_HEAD(&pmem[id].allocator.system_mem.alist);
 | 
						|
 | 
						|
		pmem[id].allocator.system_mem.used = 0;
 | 
						|
		pmem[id].vbase = NULL;
 | 
						|
 | 
						|
		if (kobject_init_and_add(&pmem[id].kobj,
 | 
						|
				&pmem_system_ktype, NULL,
 | 
						|
				"%s", pdata->name))
 | 
						|
			goto out_put_kobj;
 | 
						|
 | 
						|
		pmem[id].allocate = pmem_allocator_system;
 | 
						|
		pmem[id].free = pmem_free_system;
 | 
						|
		pmem[id].free_space = pmem_free_space_system;
 | 
						|
		pmem[id].kapi_free_index = pmem_kapi_free_index_system;
 | 
						|
		pmem[id].len = pmem_len_system;
 | 
						|
		pmem[id].start_addr = pmem_start_addr_system;
 | 
						|
		pmem[id].num_entries = 0;
 | 
						|
		pmem[id].quantum = PAGE_SIZE;
 | 
						|
 | 
						|
		DLOG("system allocator id %d (%s), raw size %lu\n",
 | 
						|
			id, pdata->name, pmem[id].size);
 | 
						|
		break;
 | 
						|
 | 
						|
	default:
 | 
						|
		pr_alert("Invalid allocator type (%d) for pmem driver\n",
 | 
						|
			pdata->allocator_type);
 | 
						|
		goto err_reset_pmem_info;
 | 
						|
	}
 | 
						|
 | 
						|
	pmem[id].ioctl = ioctl;
 | 
						|
	pmem[id].release = release;
 | 
						|
	mutex_init(&pmem[id].arena_mutex);
 | 
						|
	mutex_init(&pmem[id].data_list_mutex);
 | 
						|
	INIT_LIST_HEAD(&pmem[id].data_list);
 | 
						|
 | 
						|
	pmem[id].dev.name = pdata->name;
 | 
						|
	if (!is_kernel_memtype) {
 | 
						|
		pmem[id].dev.minor = id;
 | 
						|
		pmem[id].dev.fops = &pmem_fops;
 | 
						|
		pr_info("pmem: Initializing %s (user-space) as %s\n",
 | 
						|
			pdata->name, pdata->cached ? "cached" : "non-cached");
 | 
						|
 | 
						|
		if (misc_register(&pmem[id].dev)) {
 | 
						|
			pr_alert("Unable to register pmem driver!\n");
 | 
						|
			goto err_cant_register_device;
 | 
						|
		}
 | 
						|
	} else { /* kernel region, no user accessible device */
 | 
						|
		pmem[id].dev.minor = -1;
 | 
						|
		pr_info("pmem: Initializing %s (in-kernel)\n", pdata->name);
 | 
						|
	}
 | 
						|
 | 
						|
	/* do not set up unstable pmem now, wait until first memory hotplug */
 | 
						|
	if (pmem[id].memory_state == MEMORY_UNSTABLE_NO_MEMORY_ALLOCATED)
 | 
						|
		return 0;
 | 
						|
 | 
						|
	if ((!is_kernel_memtype) &&
 | 
						|
		(pmem[id].allocator_type != PMEM_ALLOCATORTYPE_SYSTEM)) {
 | 
						|
		ioremap_pmem(id);
 | 
						|
		if (pmem[id].vbase == 0) {
 | 
						|
			pr_err("pmem: ioremap failed for device %s\n",
 | 
						|
				pmem[id].name);
 | 
						|
			goto error_cant_remap;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pmem[id].garbage_pfn = page_to_pfn(alloc_page(GFP_KERNEL));
 | 
						|
 | 
						|
	return 0;
 | 
						|
 | 
						|
error_cant_remap:
 | 
						|
	if (!is_kernel_memtype)
 | 
						|
		misc_deregister(&pmem[id].dev);
 | 
						|
err_cant_register_device:
 | 
						|
out_put_kobj:
 | 
						|
	kobject_put(&pmem[id].kobj);
 | 
						|
	if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BUDDYBESTFIT)
 | 
						|
		kfree(pmem[id].allocator.buddy_bestfit.buddy_bitmap);
 | 
						|
	else if (pmem[id].allocator_type == PMEM_ALLOCATORTYPE_BITMAP) {
 | 
						|
		kfree(pmem[id].allocator.bitmap.bitmap);
 | 
						|
		kfree(pmem[id].allocator.bitmap.bitm_alloc);
 | 
						|
	}
 | 
						|
err_reset_pmem_info:
 | 
						|
	pmem[id].allocate = 0;
 | 
						|
	pmem[id].dev.minor = -1;
 | 
						|
	if (kapi_memtype_idx >= 0)
 | 
						|
		kapi_memtypes[i].info_id = -1;
 | 
						|
err_no_mem:
 | 
						|
	return -1;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_probe(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	struct android_pmem_platform_data *pdata;
 | 
						|
 | 
						|
	if (!pdev || !pdev->dev.platform_data) {
 | 
						|
		pr_alert("Unable to probe pmem!\n");
 | 
						|
		return -1;
 | 
						|
	}
 | 
						|
	pdata = pdev->dev.platform_data;
 | 
						|
 | 
						|
	pm_runtime_set_active(&pdev->dev);
 | 
						|
	pm_runtime_enable(&pdev->dev);
 | 
						|
 | 
						|
	return pmem_setup(pdata, NULL, NULL);
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_remove(struct platform_device *pdev)
 | 
						|
{
 | 
						|
	int id = pdev->id;
 | 
						|
	__free_page(pfn_to_page(pmem[id].garbage_pfn));
 | 
						|
	pm_runtime_disable(&pdev->dev);
 | 
						|
	misc_deregister(&pmem[id].dev);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_runtime_suspend(struct device *dev)
 | 
						|
{
 | 
						|
	dev_dbg(dev, "pm_runtime: suspending...\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int pmem_runtime_resume(struct device *dev)
 | 
						|
{
 | 
						|
	dev_dbg(dev, "pm_runtime: resuming...\n");
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static const struct dev_pm_ops pmem_dev_pm_ops = {
 | 
						|
	.runtime_suspend = pmem_runtime_suspend,
 | 
						|
	.runtime_resume = pmem_runtime_resume,
 | 
						|
};
 | 
						|
 | 
						|
static struct platform_driver pmem_driver = {
 | 
						|
	.probe = pmem_probe,
 | 
						|
	.remove = pmem_remove,
 | 
						|
	.driver = { .name = "android_pmem",
 | 
						|
		    .pm = &pmem_dev_pm_ops,
 | 
						|
  }
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
static int __init pmem_init(void)
 | 
						|
{
 | 
						|
	/* create /sys/kernel/<PMEM_SYSFS_DIR_NAME> directory */
 | 
						|
	pmem_kset = kset_create_and_add(PMEM_SYSFS_DIR_NAME,
 | 
						|
		NULL, kernel_kobj);
 | 
						|
	if (!pmem_kset) {
 | 
						|
		pr_err("pmem(%s):kset_create_and_add fail\n", __func__);
 | 
						|
		return -ENOMEM;
 | 
						|
	}
 | 
						|
 | 
						|
#ifdef CONFIG_MEMORY_HOTPLUG
 | 
						|
	hotplug_memory_notifier(pmem_memory_callback, 0);
 | 
						|
#endif
 | 
						|
	return platform_driver_register(&pmem_driver);
 | 
						|
}
 | 
						|
 | 
						|
static void __exit pmem_exit(void)
 | 
						|
{
 | 
						|
	platform_driver_unregister(&pmem_driver);
 | 
						|
}
 | 
						|
 | 
						|
module_init(pmem_init);
 | 
						|
module_exit(pmem_exit);
 | 
						|
 |