msm: Add rmnet compatibility for qsd8250 devices with WinCE AMSS. Experimental: Severe problems with package loss are present.

This commit is contained in:
K. Cotulla Ivan 2010-07-10 16:28:34 +02:00 committed by Markinus
parent 8a30b4290f
commit f2ad6c0dfb
2 changed files with 1499 additions and 0 deletions

View File

@ -0,0 +1,957 @@
/* arch/arm/mach-msm/smd_qmi_wm.c
*
* QMI Control Driver for CE AMSS -- Manages network data connections.
*
* Copyright (C) 2010 Cotulla
* Copyright (C) 2007 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/fs.h>
#include <linux/cdev.h>
#include <linux/device.h>
#include <linux/sched.h>
#include <linux/wait.h>
#include <linux/miscdevice.h>
#include <linux/workqueue.h>
#include <linux/wakelock.h>
#include <asm/uaccess.h>
#include <mach/msm_smd.h>
//#define KERN_INFO ""
#if 0
#define DBG(x...) pr_info("QMI: "x)
#else
#define DBG(x...) do{}while(0)
#endif
#define QMI_CTL 0x00
#define QMI_WDS 0x01
#define QMI_DMS 0x02
#define QMI_NAS 0x03
#define QMI_RESULT_SUCCESS 0x0000
#define QMI_RESULT_FAILURE 0x0001
struct qmi_msg {
unsigned char service;
unsigned char client_id;
unsigned short txn_id;
unsigned short type;
unsigned short size;
unsigned char *tlv;
};
#define qmi_ctl_client_id 0
#define STATE_OFFLINE 0
#define STATE_QUERYING 1
#define STATE_ONLINE 2
static smd_channel_t *ctrl_ch;
static struct work_struct open_work;
static struct work_struct read_work;
static struct wake_lock wakelock;
static struct qmi_ctxt qmi_device0;
static struct qmi_ctxt qmi_device1;
static struct qmi_ctxt qmi_device2;
struct qmi_ctxt
{
struct miscdevice misc;
struct mutex lock;
unsigned char ctl_txn_id;
unsigned char wds_client_id;
unsigned short wds_txn_id;
unsigned wds_busy;
unsigned wds_handle;
unsigned state_dirty;
unsigned state;
unsigned char addr[4];
unsigned char mask[4];
unsigned char gateway[4];
unsigned char dns1[4];
unsigned char dns2[4];
const char *ch_name;
int ch_num;
};
static struct qmi_ctxt *qmi_minor_to_ctxt(unsigned n);
static void qmi_read_work(struct work_struct *ws);
static void qmi_open_work(struct work_struct *work);
void qmi_ctxt_init(struct qmi_ctxt *ctxt, unsigned n)
{
mutex_init(&ctxt->lock);
ctxt->ctl_txn_id = 1;
ctxt->wds_txn_id = 1;
ctxt->wds_busy = 1;
ctxt->state = STATE_OFFLINE;
}
static struct workqueue_struct *qmi_wq;
static int verbose = 0;
/* anyone waiting for a state change waits here */
static DECLARE_WAIT_QUEUE_HEAD(qmi_wait_queue);
static void qmi_dump_msg(struct qmi_msg *msg, const char *prefix)
{
unsigned sz, n;
unsigned char *x;
//if (!verbose)
// return;
printk(KERN_INFO
"qmi: %s: svc=%02x cid=%02x tid=%04x type=%04x size=%04x\n",
prefix, msg->service, msg->client_id,
msg->txn_id, msg->type, msg->size);
x = msg->tlv;
sz = msg->size;
while (sz >= 3) {
sz -= 3;
n = x[1] | (x[2] << 8);
if (n > sz)
break;
printk(KERN_INFO "qmi: %s: tlv: %02x %04x { ",
prefix, x[0], n);
x += 3;
sz -= n;
while (n-- > 0)
printk("%02x ", *x++);
printk("}\n");
}
}
int qmi_add_tlv(struct qmi_msg *msg,
unsigned type, unsigned size, const void *data)
{
unsigned char *x = msg->tlv + msg->size;
x[0] = type;
x[1] = size;
x[2] = size >> 8;
memcpy(x + 3, data, size);
msg->size += (size + 3);
return 0;
}
/* Extract a tagged item from a qmi message buffer,
** taking care not to overrun the buffer.
*/
static int qmi_get_tlv(struct qmi_msg *msg,
unsigned type, unsigned size, void *data)
{
unsigned char *x = msg->tlv;
unsigned len = msg->size;
unsigned n;
while (len >= 3) {
len -= 3;
/* size of this item */
n = x[1] | (x[2] << 8);
if (n > len)
break;
if (x[0] == type) {
if (n != size)
return -1;
memcpy(data, x + 3, size);
return 0;
}
x += (n + 3);
len -= n;
}
return -1;
}
static unsigned qmi_get_status(struct qmi_msg *msg, unsigned *error)
{
unsigned short status[2];
if (qmi_get_tlv(msg, 0x02, sizeof(status), status)) {
*error = 0;
return QMI_RESULT_FAILURE;
} else {
*error = status[1];
return status[0];
}
}
/* 0x01 <qmux-header> <payload> */
#define QMUX_HEADER 13
/* should be >= HEADER + FOOTER */
#define QMUX_OVERHEAD 16
static int qmi_send(struct qmi_ctxt *ctxt, struct qmi_msg *msg)
{
unsigned char *data;
unsigned hlen;
unsigned len;
int r;
qmi_dump_msg(msg, "send");
if (msg->service == QMI_CTL) {
hlen = QMUX_HEADER - 1;
} else {
hlen = QMUX_HEADER;
}
/* QMUX length is total header + total payload - IFC selector */
len = hlen + msg->size - 1;
if (len > 0xffff)
return -1;
data = msg->tlv - hlen;
/* prepend encap and qmux header */
*data++ = 0x01; /* ifc selector */
/* qmux header */
*data++ = len;
*data++ = len >> 8;
*data++ = 0x00; /* flags: client */
*data++ = msg->service;
*data++ = msg->client_id;
/* qmi header */
*data++ = 0x00; /* flags: send */
*data++ = msg->txn_id;
if (msg->service != QMI_CTL)
*data++ = msg->txn_id >> 8;
*data++ = msg->type;
*data++ = msg->type >> 8;
*data++ = msg->size;
*data++ = msg->size >> 8;
// add channel number here
*(uint32_t*)(msg->tlv + msg->size) = ctxt->ch_num;
DBG("send %d %d\n", len + 1 + 4, ctxt->ch_num);
// print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, msg->tlv - hlen, len + 1 + 4);
/* len + 1 takes the interface selector into account */
// and add ch_num_size
r = smd_write(ctrl_ch, msg->tlv - hlen, len + 1 + 4);
if (r != len) {
return -1;
} else {
return 0;
}
}
static void qmi_process_ctl_msg(struct qmi_ctxt *ctxt, struct qmi_msg *msg)
{
unsigned err;
if (msg->type == 0x0022) {
unsigned char n[2];
if (qmi_get_status(msg, &err))
return;
if (qmi_get_tlv(msg, 0x01, sizeof(n), n))
return;
if (n[0] == QMI_WDS) {
printk(KERN_INFO
"qmi: ctl: wds use client_id 0x%02x\n", n[1]);
ctxt->wds_client_id = n[1];
ctxt->wds_busy = 0;
}
}
}
static int qmi_network_get_profile(struct qmi_ctxt *ctxt);
static void swapaddr(unsigned char *src, unsigned char *dst)
{
dst[0] = src[3];
dst[1] = src[2];
dst[2] = src[1];
dst[3] = src[0];
}
static unsigned char zero[4];
static void qmi_read_runtime_profile(struct qmi_ctxt *ctxt, struct qmi_msg *msg)
{
unsigned char tmp[4];
unsigned r;
r = qmi_get_tlv(msg, 0x1e, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->addr);
r = qmi_get_tlv(msg, 0x21, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->mask);
r = qmi_get_tlv(msg, 0x20, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->gateway);
r = qmi_get_tlv(msg, 0x15, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->dns1);
r = qmi_get_tlv(msg, 0x16, 4, tmp);
swapaddr(r ? zero : tmp, ctxt->dns2);
}
static void qmi_process_unicast_wds_msg(struct qmi_ctxt *ctxt,
struct qmi_msg *msg)
{
unsigned err;
switch (msg->type) {
case 0x0021:
if (qmi_get_status(msg, &err)) {
printk(KERN_ERR
"qmi: wds: network stop failed (%04x)\n", err);
} else {
printk(KERN_INFO
"qmi: wds: network stopped\n");
ctxt->state = STATE_OFFLINE;
ctxt->state_dirty = 1;
}
break;
case 0x0020:
if (qmi_get_status(msg, &err)) {
printk(KERN_ERR
"qmi: wds: network start failed (%04x)\n", err);
} else if (qmi_get_tlv(msg, 0x01, sizeof(ctxt->wds_handle), &ctxt->wds_handle)) {
printk(KERN_INFO
"qmi: wds no handle?\n");
} else {
printk(KERN_INFO
"qmi: wds: got handle 0x%08x\n",
ctxt->wds_handle);
}
break;
case 0x002D:
printk("qmi: got network profile\n");
if (ctxt->state == STATE_QUERYING) {
qmi_read_runtime_profile(ctxt, msg);
ctxt->state = STATE_ONLINE;
ctxt->state_dirty = 1;
}
break;
default:
printk(KERN_ERR "qmi: unknown msg type 0x%04x\n", msg->type);
}
ctxt->wds_busy = 0;
}
static void qmi_process_broadcast_wds_msg(struct qmi_ctxt *ctxt,
struct qmi_msg *msg)
{
if (msg->type == 0x0022) {
unsigned char n[2];
if (qmi_get_tlv(msg, 0x01, sizeof(n), n))
return;
switch (n[0]) {
case 1:
printk(KERN_INFO "qmi: wds: DISCONNECTED\n");
ctxt->state = STATE_OFFLINE;
ctxt->state_dirty = 1;
break;
case 2:
printk(KERN_INFO "qmi: wds: CONNECTED\n");
ctxt->state = STATE_QUERYING;
ctxt->state_dirty = 1;
qmi_network_get_profile(ctxt);
break;
case 3:
printk(KERN_INFO "qmi: wds: SUSPENDED\n");
ctxt->state = STATE_OFFLINE;
ctxt->state_dirty = 1;
}
} else {
printk(KERN_ERR "qmi: unknown bcast msg type 0x%04x\n", msg->type);
}
}
static void qmi_process_wds_msg(struct qmi_ctxt *ctxt,
struct qmi_msg *msg)
{
printk("wds: %04x @ %02x\n", msg->type, msg->client_id);
if (msg->client_id == ctxt->wds_client_id) {
qmi_process_unicast_wds_msg(ctxt, msg);
} else if (msg->client_id == 0xff) {
qmi_process_broadcast_wds_msg(ctxt, msg);
} else {
printk(KERN_ERR
"qmi_process_wds_msg client id 0x%02x unknown\n",
msg->client_id);
}
}
static void qmi_process_qmux(struct qmi_ctxt *ctxt,
unsigned char *buf, unsigned sz)
{
struct qmi_msg msg;
/* require a full header */
if (sz < 5)
return;
/* require a size that matches the buffer size */
if (sz != (buf[0] | (buf[1] << 8)))
return;
/* only messages from a service (bit7=1) are allowed */
if (buf[2] != 0x80)
return;
msg.service = buf[3];
msg.client_id = buf[4];
/* annoyingly, CTL messages have a shorter TID */
if (buf[3] == 0) {
if (sz < 7)
return;
msg.txn_id = buf[6];
buf += 7;
sz -= 7;
} else {
if (sz < 8)
return;
msg.txn_id = buf[6] | (buf[7] << 8);
buf += 8;
sz -= 8;
}
/* no type and size!? */
if (sz < 4)
return;
sz -= 4;
msg.type = buf[0] | (buf[1] << 8);
msg.size = buf[2] | (buf[3] << 8);
msg.tlv = buf + 4;
if (sz != msg.size)
return;
qmi_dump_msg(&msg, "recv");
mutex_lock(&ctxt->lock);
switch (msg.service) {
case QMI_CTL:
qmi_process_ctl_msg(ctxt, &msg);
break;
case QMI_WDS:
qmi_process_wds_msg(ctxt, &msg);
break;
default:
printk(KERN_ERR "qmi: msg from unknown svc 0x%02x\n",
msg.service);
break;
}
mutex_unlock(&ctxt->lock);
wake_up(&qmi_wait_queue);
}
#define QMI_MAX_PACKET (256 + QMUX_OVERHEAD)
static void qmi_read_work(struct work_struct *ws)
{
//struct qmi_ctxt *ctxt = container_of(ws, struct qmi_ctxt, read_work);
//struct smd_channel *ch = ctxt->ch;
unsigned char buf[QMI_MAX_PACKET];
struct qmi_ctxt *ctxt;
int sz;
uint32_t chnum;
for (;;)
{
sz = smd_cur_packet_size(ctrl_ch);
if (sz == 0)
break;
if (sz < smd_read_avail(ctrl_ch))
break;
if (sz > QMI_MAX_PACKET)
{
smd_read(ctrl_ch, 0, sz);
continue;
}
if (smd_read(ctrl_ch, buf, sz) != sz)
{
printk(KERN_ERR "qmi: not enough data?!\n");
continue;
}
DBG("packet: %d\n", sz);
// print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, buf, sz);
if (sz <= 4)
{
DBG("packet size less 4\n");
continue;
}
chnum = *(uint32_t*)&buf[sz - 4];
DBG("chnum = %d\n", chnum);
/* interface selector must be 1 */
if (buf[0] != 0x01)
continue;
if (qmi_device0.ch_num == chnum)
ctxt = &qmi_device0;
else if (qmi_device1.ch_num == chnum)
ctxt = &qmi_device1;
else if (qmi_device2.ch_num == chnum)
ctxt = &qmi_device2;
else
{
DBG("bad chnum %d\n", chnum);
continue;
}
qmi_process_qmux(ctxt, buf + 1, sz - 1 - 4);
}
}
static int qmi_request_wds_cid(struct qmi_ctxt *ctxt);
static void qmi_open_work(struct work_struct *ws)
{
struct qmi_ctxt *ctxt; //= container_of(ws, struct qmi_ctxt, open_work);
ctxt = &qmi_device0;
mutex_lock(&ctxt->lock);
qmi_request_wds_cid(ctxt);
mutex_unlock(&ctxt->lock);
ctxt = &qmi_device1;
mutex_lock(&ctxt->lock);
qmi_request_wds_cid(ctxt);
mutex_unlock(&ctxt->lock);
ctxt = &qmi_device2;
mutex_lock(&ctxt->lock);
qmi_request_wds_cid(ctxt);
mutex_unlock(&ctxt->lock);
}
static void qmi_notify(void *priv, unsigned event)
{
//struct qmi_ctxt *ctxt = priv;
switch (event)
{
case SMD_EVENT_DATA:
{
int sz;
sz = smd_cur_packet_size(ctrl_ch);
if ((sz > 0) && (sz <= smd_read_avail(ctrl_ch)))
{
wake_lock_timeout(&wakelock, HZ / 2);
queue_work(qmi_wq, &read_work);
}
break;
}
case SMD_EVENT_OPEN:
printk(KERN_INFO "qmi: smd opened\n");
queue_work(qmi_wq, &open_work);
break;
case SMD_EVENT_CLOSE:
printk(KERN_INFO "qmi: smd closed\n");
break;
}
}
static int qmi_request_wds_cid(struct qmi_ctxt *ctxt)
{
unsigned char data[64 + QMUX_OVERHEAD];
struct qmi_msg msg;
unsigned char n;
msg.service = QMI_CTL;
msg.client_id = qmi_ctl_client_id;
msg.txn_id = ctxt->ctl_txn_id;
msg.type = 0x0022;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->ctl_txn_id += 2;
n = QMI_WDS;
qmi_add_tlv(&msg, 0x01, 0x01, &n);
return qmi_send(ctxt, &msg);
}
static int qmi_network_get_profile(struct qmi_ctxt *ctxt)
{
unsigned char data[96 + QMUX_OVERHEAD];
struct qmi_msg msg;
msg.service = QMI_WDS;
msg.client_id = ctxt->wds_client_id;
msg.txn_id = ctxt->wds_txn_id;
msg.type = 0x002D;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->wds_txn_id += 2;
return qmi_send(ctxt, &msg);
}
static int qmi_network_up(struct qmi_ctxt *ctxt, char *apn)
{
unsigned char data[96 + QMUX_OVERHEAD];
struct qmi_msg msg;
char *auth_type;
char *user;
char *pass;
for (user = apn; *user; user++) {
if (*user == ' ') {
*user++ = 0;
break;
}
}
for (pass = user; *pass; pass++) {
if (*pass == ' ') {
*pass++ = 0;
break;
}
}
for (auth_type = pass; *auth_type; auth_type++) {
if (*auth_type == ' ') {
*auth_type++ = 0;
break;
}
}
msg.service = QMI_WDS;
msg.client_id = ctxt->wds_client_id;
msg.txn_id = ctxt->wds_txn_id;
msg.type = 0x0020;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->wds_txn_id += 2;
qmi_add_tlv(&msg, 0x14, strlen(apn), apn);
if (*auth_type)
qmi_add_tlv(&msg, 0x16, strlen(auth_type), auth_type);
if (*user) {
if (!*auth_type) {
unsigned char x;
x = 3;
qmi_add_tlv(&msg, 0x16, 1, &x);
}
qmi_add_tlv(&msg, 0x17, strlen(user), user);
if (*pass)
qmi_add_tlv(&msg, 0x18, strlen(pass), pass);
}
return qmi_send(ctxt, &msg);
}
static int qmi_network_down(struct qmi_ctxt *ctxt)
{
unsigned char data[16 + QMUX_OVERHEAD];
struct qmi_msg msg;
msg.service = QMI_WDS;
msg.client_id = ctxt->wds_client_id;
msg.txn_id = ctxt->wds_txn_id;
msg.type = 0x0021;
msg.size = 0;
msg.tlv = data + QMUX_HEADER;
ctxt->wds_txn_id += 2;
qmi_add_tlv(&msg, 0x01, sizeof(ctxt->wds_handle), &ctxt->wds_handle);
return qmi_send(ctxt, &msg);
}
static int qmi_print_state(struct qmi_ctxt *ctxt, char *buf, int max)
{
int i;
char *statename;
if (ctxt->state == STATE_ONLINE) {
statename = "up";
} else if (ctxt->state == STATE_OFFLINE) {
statename = "down";
} else {
statename = "busy";
}
i = scnprintf(buf, max, "STATE=%s\n", statename);
i += scnprintf(buf + i, max - i, "CID=%d\n",ctxt->wds_client_id);
if (ctxt->state != STATE_ONLINE){
return i;
}
i += scnprintf(buf + i, max - i, "ADDR=%d.%d.%d.%d\n",
ctxt->addr[0], ctxt->addr[1], ctxt->addr[2], ctxt->addr[3]);
i += scnprintf(buf + i, max - i, "MASK=%d.%d.%d.%d\n",
ctxt->mask[0], ctxt->mask[1], ctxt->mask[2], ctxt->mask[3]);
i += scnprintf(buf + i, max - i, "GATEWAY=%d.%d.%d.%d\n",
ctxt->gateway[0], ctxt->gateway[1], ctxt->gateway[2],
ctxt->gateway[3]);
i += scnprintf(buf + i, max - i, "DNS1=%d.%d.%d.%d\n",
ctxt->dns1[0], ctxt->dns1[1], ctxt->dns1[2], ctxt->dns1[3]);
i += scnprintf(buf + i, max - i, "DNS2=%d.%d.%d.%d\n",
ctxt->dns2[0], ctxt->dns2[1], ctxt->dns2[2], ctxt->dns2[3]);
return i;
}
static ssize_t qmi_read(struct file *fp, char __user *buf,
size_t count, loff_t *pos)
{
struct qmi_ctxt *ctxt = fp->private_data;
char msg[256];
int len;
int r;
printk("+qmi_read %d\n", count);
mutex_lock(&ctxt->lock);
for (;;) {
if (ctxt->state_dirty) {
ctxt->state_dirty = 0;
len = qmi_print_state(ctxt, msg, 256);
break;
}
mutex_unlock(&ctxt->lock);
r = wait_event_interruptible(qmi_wait_queue, ctxt->state_dirty);
if (r < 0)
return r;
mutex_lock(&ctxt->lock);
}
mutex_unlock(&ctxt->lock);
if (len > count)
len = count;
if (copy_to_user(buf, msg, len))
return -EFAULT;
printk("-qmi_read %d\n", len);
return len;
}
static ssize_t qmi_write(struct file *fp, const char __user *buf,
size_t count, loff_t *pos)
{
struct qmi_ctxt *ctxt = fp->private_data;
unsigned char cmd[64];
int len;
int r;
if (count < 1)
return 0;
len = count > 63 ? 63 : count;
if (copy_from_user(cmd, buf, len))
return -EFAULT;
DBG("+write %s %d\n", cmd, count);
cmd[len] = 0;
/* lazy */
if (cmd[len-1] == '\n')
{
cmd[len-1] = 0;
len--;
}
if (!strncmp(cmd, "verbose", 7)) {
verbose = 1;
} else if (!strncmp(cmd, "terse", 5)) {
verbose = 0;
} else if (!strncmp(cmd, "poll", 4)) {
ctxt->state_dirty = 1;
wake_up(&qmi_wait_queue);
} else if (!strncmp(cmd, "down", 4)) {
retry_down:
mutex_lock(&ctxt->lock);
if (ctxt->wds_busy) {
mutex_unlock(&ctxt->lock);
r = wait_event_interruptible(qmi_wait_queue, !ctxt->wds_busy);
if (r < 0)
return r;
goto retry_down;
}
ctxt->wds_busy = 1;
qmi_network_down(ctxt);
mutex_unlock(&ctxt->lock);
} else if (!strncmp(cmd, "up:", 3)) {
retry_up:
mutex_lock(&ctxt->lock);
if (ctxt->wds_busy) {
mutex_unlock(&ctxt->lock);
r = wait_event_interruptible(qmi_wait_queue, !ctxt->wds_busy);
if (r < 0)
return r;
goto retry_up;
}
ctxt->wds_busy = 1;
qmi_network_up(ctxt, cmd+3);
mutex_unlock(&ctxt->lock);
} else {
DBG(" bad command\n");
return -EINVAL;
}
DBG("-write %d\n", count);
return count;
}
static int qmi_open(struct inode *ip, struct file *fp)
{
struct qmi_ctxt *ctxt = qmi_minor_to_ctxt(MINOR(ip->i_rdev));
int r = 0;
// TEST - disable GPRS
// return -1;
if (!ctxt)
{
printk(KERN_ERR "unknown qmi misc %d\n", MINOR(ip->i_rdev));
return -ENODEV;
}
DBG("open %s %d\n", ctxt->ch_name, ctxt->ch_num);
fp->private_data = ctxt;
mutex_lock(&ctxt->lock);
if (ctrl_ch == 0)
{
DBG("first open\n");
r = smd_open("SMD_CONTROL", &ctrl_ch, ctxt, qmi_notify);
}
else
{
DBG("already opened\n");
r = 0;
}
if (r == 0)
wake_up(&qmi_wait_queue);
mutex_unlock(&ctxt->lock);
printk("-qmi_open %d\n", r);
return r;
}
static int qmi_release(struct inode *ip, struct file *fp)
{
return 0;
}
static struct file_operations qmi_fops = {
.owner = THIS_MODULE,
.read = qmi_read,
.write = qmi_write,
.open = qmi_open,
.release = qmi_release,
};
static struct qmi_ctxt qmi_device0 = {
.ch_name = "SMD_DATA5",
.ch_num = 11,
.misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qmi0",
.fops = &qmi_fops,
}
};
static struct qmi_ctxt qmi_device1 = {
.ch_name = "SMD_DATA6",
.ch_num = 12,
.misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qmi1",
.fops = &qmi_fops,
}
};
static struct qmi_ctxt qmi_device2 = {
.ch_name = "SMD_DATA7",
.ch_num = 13,
.misc = {
.minor = MISC_DYNAMIC_MINOR,
.name = "qmi2",
.fops = &qmi_fops,
}
};
static struct qmi_ctxt *qmi_minor_to_ctxt(unsigned n)
{
if (n == qmi_device0.misc.minor)
return &qmi_device0;
if (n == qmi_device1.misc.minor)
return &qmi_device1;
if (n == qmi_device2.misc.minor)
return &qmi_device2;
return 0;
}
static int __init qmi_init(void)
{
int ret;
qmi_wq = create_singlethread_workqueue("qmi");
if (qmi_wq == 0)
return -ENOMEM;
wake_lock_init(&wakelock, WAKE_LOCK_SUSPEND, "qmi");
INIT_WORK(&read_work, qmi_read_work);
INIT_WORK(&open_work, qmi_open_work);
qmi_ctxt_init(&qmi_device0, 0);
qmi_ctxt_init(&qmi_device1, 1);
qmi_ctxt_init(&qmi_device2, 2);
ret = misc_register(&qmi_device0.misc);
if (ret == 0)
ret = misc_register(&qmi_device1.misc);
if (ret == 0)
ret = misc_register(&qmi_device2.misc);
return ret;
}
module_init(qmi_init);

View File

@ -0,0 +1,542 @@
/* linux/drivers/net/msm_rmnet_wm.c
*
* Virtual Ethernet Interface for Networking
*
* Copyright (C) 2010 Cotulla
* Copyright (C) 2007 Google, Inc.
* Author: Brian Swetland <swetland@google.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/string.h>
#include <linux/delay.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/init.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/wakelock.h>
#include <linux/ip.h>
#include <linux/if_arp.h>
#ifdef CONFIG_HAS_EARLYSUSPEND
#include <linux/earlysuspend.h>
#endif
//#define ENABLE_LOGGING 1
// enabled for test
//#define CONFIG_MSM_RMNET_DEBUG 1
#define READ_BUF_SIZE 32768
#if 0
#define DBG(x...) pr_info("RMNET: "x)
#else
#define DBG(x...) do{}while(0)
#endif
#include <mach/msm_smd.h>
/* XXX should come from smd headers */
#define SMD_PORT_ETHER0 11
#define POLL_DELAY 1000000 /* 1 second delay interval */
struct rmnet_private
{
smd_channel_t *ch;
struct net_device_stats stats;
const char *chname;
struct wake_lock wake_lock;
uint8_t *buf;
#ifdef CONFIG_MSM_RMNET_DEBUG
ktime_t last_packet;
short active_countdown; /* Number of times left to check */
short restart_count; /* Number of polls seems so far */
unsigned long wakeups_xmit;
unsigned long wakeups_rcv;
unsigned long timeout_us;
unsigned long awake_time_ms;
struct delayed_work work;
#endif
};
static int count_this_packet(void *_hdr, int len)
{
struct ethhdr *hdr = _hdr;
if (len >= ETH_HLEN && hdr->h_proto == htons(ETH_P_ARP))
return 0;
return 1;
}
#ifdef CONFIG_MSM_RMNET_DEBUG
static int in_suspend;
static unsigned long timeout_us;
static struct workqueue_struct *rmnet_wq;
static void do_check_active(struct work_struct *work)
{
struct rmnet_private *p =
container_of(work, struct rmnet_private, work.work);
/*
* Soft timers do not wake the cpu from suspend.
* If we are in suspend, do_check_active is only called once at the
* timeout time instead of polling at POLL_DELAY interval. Otherwise the
* cpu will sleeps and the timer can fire much much later than POLL_DELAY
* casuing a skew in time calculations.
*/
if (in_suspend) {
/*
* Assume for N packets sent durring this session, they are
* uniformly distributed durring the timeout window.
*/
int tmp = p->timeout_us * 2 -
(p->timeout_us / (p->active_countdown + 1));
tmp /= 1000;
p->awake_time_ms += tmp;
p->active_countdown = p->restart_count = 0;
return;
}
/*
* Poll if not in suspend, since this gives more accurate tracking of
* rmnet sessions.
*/
p->restart_count++;
if (--p->active_countdown == 0) {
p->awake_time_ms += p->restart_count * POLL_DELAY / 1000;
p->restart_count = 0;
} else {
queue_delayed_work(rmnet_wq, &p->work,
usecs_to_jiffies(POLL_DELAY));
}
}
#ifdef CONFIG_HAS_EARLYSUSPEND
/*
* If early suspend is enabled then we specify two timeout values,
* screen on (default), and screen is off.
*/
static unsigned long timeout_suspend_us;
static struct device *rmnet0;
/* Set timeout in us when the screen is off. */
static ssize_t timeout_suspend_store(struct device *d, struct device_attribute *attr, const char *buf, size_t n)
{
timeout_suspend_us = simple_strtoul(buf, NULL, 10);
return n;
}
static ssize_t timeout_suspend_show(struct device *d,
struct device_attribute *attr,
char *buf)
{
return sprintf(buf, "%lu\n", (unsigned long) timeout_suspend_us);
}
static DEVICE_ATTR(timeout_suspend, 0664, timeout_suspend_show, timeout_suspend_store);
static void rmnet_early_suspend(struct early_suspend *handler) {
if (rmnet0) {
struct rmnet_private *p = netdev_priv(to_net_dev(rmnet0));
p->timeout_us = timeout_suspend_us;
}
in_suspend = 1;
}
static void rmnet_late_resume(struct early_suspend *handler) {
if (rmnet0) {
struct rmnet_private *p = netdev_priv(to_net_dev(rmnet0));
p->timeout_us = timeout_us;
}
in_suspend = 0;
}
static struct early_suspend rmnet_power_suspend = {
.suspend = rmnet_early_suspend,
.resume = rmnet_late_resume,
};
static int __init rmnet_late_init(void)
{
register_early_suspend(&rmnet_power_suspend);
return 0;
}
late_initcall(rmnet_late_init);
#endif
/* Returns 1 if packet caused rmnet to wakeup, 0 otherwise. */
static int rmnet_cause_wakeup(struct rmnet_private *p) {
int ret = 0;
ktime_t now;
if (p->timeout_us == 0) /* Check if disabled */
return 0;
/* Start timer on a wakeup packet */
if (p->active_countdown == 0) {
ret = 1;
now = ktime_get_real();
p->last_packet = now;
if (in_suspend)
queue_delayed_work(rmnet_wq, &p->work,
usecs_to_jiffies(p->timeout_us));
else
queue_delayed_work(rmnet_wq, &p->work,
usecs_to_jiffies(POLL_DELAY));
}
if (in_suspend)
p->active_countdown++;
else
p->active_countdown = p->timeout_us / POLL_DELAY;
return ret;
}
static ssize_t wakeups_xmit_show(struct device *d,
struct device_attribute *attr,
char *buf)
{
struct rmnet_private *p = netdev_priv(to_net_dev(d));
return sprintf(buf, "%lu\n", p->wakeups_xmit);
}
DEVICE_ATTR(wakeups_xmit, 0444, wakeups_xmit_show, NULL);
static ssize_t wakeups_rcv_show(struct device *d, struct device_attribute *attr,
char *buf)
{
struct rmnet_private *p = netdev_priv(to_net_dev(d));
return sprintf(buf, "%lu\n", p->wakeups_rcv);
}
DEVICE_ATTR(wakeups_rcv, 0444, wakeups_rcv_show, NULL);
/* Set timeout in us. */
static ssize_t timeout_store(struct device *d, struct device_attribute *attr,
const char *buf, size_t n)
{
#ifndef CONFIG_HAS_EARLYSUSPEND
struct rmnet_private *p = netdev_priv(to_net_dev(d));
p->timeout_us = timeout_us = simple_strtoul(buf, NULL, 10);
#else
/* If using early suspend/resume hooks do not write the value on store. */
timeout_us = simple_strtoul(buf, NULL, 10);
#endif
return n;
}
static ssize_t timeout_show(struct device *d, struct device_attribute *attr,
char *buf)
{
struct rmnet_private *p = netdev_priv(to_net_dev(d));
p = netdev_priv(to_net_dev(d));
return sprintf(buf, "%lu\n", timeout_us);
}
DEVICE_ATTR(timeout, 0664, timeout_show, timeout_store);
/* Show total radio awake time in ms */
static ssize_t awake_time_show(struct device *d, struct device_attribute *attr,
char *buf)
{
struct rmnet_private *p = netdev_priv(to_net_dev(d));
return sprintf(buf, "%lu\n", p->awake_time_ms);
}
DEVICE_ATTR(awake_time_ms, 0444, awake_time_show, NULL);
#endif
/* Called in soft-irq context */
static void smd_net_data_handler(unsigned long arg)
{
struct net_device *dev = (struct net_device *) arg;
struct rmnet_private *p = netdev_priv(dev);
struct sk_buff *skb;
void *ptr = 0;
uint8_t *curbuf = 0;
uint32_t offset;
uint32_t l, pksz;
int sz;
struct ethhdr *hdr;
// DBG("+rx data\n");
for (;;)
{
sz = smd_read_avail(p->ch);
DBG("RX: size %d\n", sz);
if (sz == 0)
break;
if (sz > READ_BUF_SIZE)
{
pr_err("rmnet_recv() size too big %d?!\n", sz);
BUG();
}
wake_lock_timeout(&p->wake_lock, HZ / 2);
if (smd_read(p->ch, p->buf, sz) != sz)
{
pr_err("rmnet_recv() smd lied about avail?!\n");
continue;
}
offset = 0;
while (offset < sz)
{
curbuf = p->buf + offset;
hdr = (struct ethhdr *)curbuf;
if (curbuf[12] == 8 && curbuf[13] == 6)
{
struct arphdr *ah = (struct arphdr*)(curbuf + 14);
l = sizeof(struct arphdr) + (ah->ar_hln + ah->ar_pln) * 2;
pksz = l + 14;
}
else if (curbuf[12] == 8 && curbuf[13] == 0)
{
struct iphdr *ih = (struct iphdr *)(curbuf + 14);
l = ntohs(ih->tot_len);
pksz = l + 14;
}
else
{
pr_err("rmnet_recv() wrong header!\n");
l = 0;
pksz = 0;
break;
}
skb = dev_alloc_skb(pksz + NET_IP_ALIGN);
if (skb == NULL)
{
pr_err("rmnet_recv() cannot allocate skb\n");
}
else
{
skb->dev = dev;
skb_reserve(skb, NET_IP_ALIGN);
ptr = skb_put(skb, pksz);
memcpy(ptr, curbuf, pksz);
skb->protocol = eth_type_trans(skb, dev);
#ifdef ENABLE_LOGGING
printk("RX: packetdata: %d %x recv: %d\n", pksz, offset, skb->protocol);
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, ptr, pksz);
#endif
if (count_this_packet(ptr, skb->len))
{
#ifdef CONFIG_MSM_RMNET_DEBUG
p->wakeups_rcv += rmnet_cause_wakeup(p);
#endif
p->stats.rx_packets++;
p->stats.rx_bytes += skb->len;
}
netif_rx(skb);
}
offset += pksz;
}
}
// DBG("-rx data\n");
}
static DECLARE_TASKLET(smd_net_data_tasklet, smd_net_data_handler, 0);
static void smd_net_notify(void *_dev, unsigned event)
{
if (event != SMD_EVENT_DATA)
return;
smd_net_data_tasklet.data = (unsigned long) _dev;
tasklet_schedule(&smd_net_data_tasklet);
}
static int rmnet_open(struct net_device *dev)
{
int r;
struct rmnet_private *p = netdev_priv(dev);
pr_info("rmnet_open()\n");
if (!p->ch)
{
r = smd_open(p->chname, &p->ch, dev, smd_net_notify);
if (r < 0)
return -ENODEV;
}
p->buf = kmalloc(READ_BUF_SIZE, GFP_KERNEL);
netif_start_queue(dev);
return 0;
}
static int rmnet_stop(struct net_device *dev)
{
struct rmnet_private *p = netdev_priv(dev);
pr_info("rmnet_stop()\n");
netif_stop_queue(dev);
kfree(p->buf);
return 0;
}
static int rmnet_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct rmnet_private *p = netdev_priv(dev);
smd_channel_t *ch = p->ch;
#ifdef ENABLE_LOGGING
printk("TX: packetdata: %d\n", skb->len);
print_hex_dump_bytes("", DUMP_PREFIX_OFFSET, skb->data, skb->len);
#endif
if (smd_write_atomic(ch, skb->data, skb->len) != skb->len) {
pr_err("rmnet fifo full, dropping packet\n");
} else {
if (count_this_packet(skb->data, skb->len)) {
p->stats.tx_packets++;
p->stats.tx_bytes += skb->len;
#ifdef CONFIG_MSM_RMNET_DEBUG
p->wakeups_xmit += rmnet_cause_wakeup(p);
#endif
}
}
dev_kfree_skb_irq(skb);
return 0;
}
static struct net_device_stats *rmnet_get_stats(struct net_device *dev)
{
struct rmnet_private *p = netdev_priv(dev);
return &p->stats;
}
static void rmnet_set_multicast_list(struct net_device *dev)
{
}
static void rmnet_tx_timeout(struct net_device *dev)
{
pr_info("rmnet_tx_timeout()\n");
}
static struct net_device_ops rmnet_ops = {
.ndo_open = rmnet_open,
.ndo_stop = rmnet_stop,
.ndo_start_xmit = rmnet_xmit,
.ndo_get_stats = rmnet_get_stats,
.ndo_set_multicast_list = rmnet_set_multicast_list,
.ndo_tx_timeout = rmnet_tx_timeout,
};
static void __init rmnet_setup(struct net_device *dev)
{
dev->netdev_ops = &rmnet_ops;
DBG("setup\n");
dev->watchdog_timeo = 20; /* ??? */
ether_setup(dev);
//dev->change_mtu = 0; /* ??? */
random_ether_addr(dev->dev_addr);
}
static const char *ch_name[3] = {
"SMD_DATA5",
"SMD_DATA6",
"SMD_DATA7",
};
static int __init rmnet_init(void)
{
int ret;
struct device *d;
struct net_device *dev;
struct rmnet_private *p;
unsigned n;
#ifdef CONFIG_MSM_RMNET_DEBUG
timeout_us = 0;
#ifdef CONFIG_HAS_EARLYSUSPEND
timeout_suspend_us = 0;
#endif
#endif
#ifdef CONFIG_MSM_RMNET_DEBUG
rmnet_wq = create_workqueue("rmnet");
#endif
for (n = 0; n < 3; n++)
{
dev = alloc_netdev(sizeof(struct rmnet_private),
"rmnet%d", rmnet_setup);
if (!dev)
return -ENOMEM;
d = &(dev->dev);
p = netdev_priv(dev);
p->chname = ch_name[n];
wake_lock_init(&p->wake_lock, WAKE_LOCK_SUSPEND, ch_name[n]);
#ifdef CONFIG_MSM_RMNET_DEBUG
p->timeout_us = timeout_us;
p->awake_time_ms = p->wakeups_xmit = p->wakeups_rcv = 0;
p->active_countdown = p->restart_count = 0;
INIT_DELAYED_WORK_DEFERRABLE(&p->work, do_check_active);
#endif
ret = register_netdev(dev);
if (ret) {
free_netdev(dev);
return ret;
}
#ifdef CONFIG_MSM_RMNET_DEBUG
if (device_create_file(d, &dev_attr_timeout))
continue;
if (device_create_file(d, &dev_attr_wakeups_xmit))
continue;
if (device_create_file(d, &dev_attr_wakeups_rcv))
continue;
if (device_create_file(d, &dev_attr_awake_time_ms))
continue;
#ifdef CONFIG_HAS_EARLYSUSPEND
if (device_create_file(d, &dev_attr_timeout_suspend))
continue;
/* Only care about rmnet0 for suspend/resume tiemout hooks. */
if (n == 0)
rmnet0 = d;
#endif
#endif
}
return 0;
}
module_init(rmnet_init);