391 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			391 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2006 The Android Open Source Project
 | 
						|
 *
 | 
						|
 * Hash table.  The dominant calls are add and lookup, with removals
 | 
						|
 * happening very infrequently.  We use probing, and don't worry much
 | 
						|
 * about tombstone removal.
 | 
						|
 */
 | 
						|
#include <stdlib.h>
 | 
						|
#include <assert.h>
 | 
						|
 | 
						|
#define LOG_TAG "minzip"
 | 
						|
#include "Log.h"
 | 
						|
#include "Hash.h"
 | 
						|
 | 
						|
/* table load factor, i.e. how full can it get before we resize */
 | 
						|
//#define LOAD_NUMER  3       // 75%
 | 
						|
//#define LOAD_DENOM  4
 | 
						|
#define LOAD_NUMER  5       // 62.5%
 | 
						|
#define LOAD_DENOM  8
 | 
						|
//#define LOAD_NUMER  1       // 50%
 | 
						|
//#define LOAD_DENOM  2
 | 
						|
 | 
						|
/*
 | 
						|
 * Compute the capacity needed for a table to hold "size" elements.
 | 
						|
 */
 | 
						|
size_t mzHashSize(size_t size) {
 | 
						|
    return (size * LOAD_DENOM) / LOAD_NUMER +1;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Round up to the next highest power of 2.
 | 
						|
 *
 | 
						|
 * Found on http://graphics.stanford.edu/~seander/bithacks.html.
 | 
						|
 */
 | 
						|
unsigned int roundUpPower2(unsigned int val)
 | 
						|
{
 | 
						|
    val--;
 | 
						|
    val |= val >> 1;
 | 
						|
    val |= val >> 2;
 | 
						|
    val |= val >> 4;
 | 
						|
    val |= val >> 8;
 | 
						|
    val |= val >> 16;
 | 
						|
    val++;
 | 
						|
 | 
						|
    return val;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Create and initialize a hash table.
 | 
						|
 */
 | 
						|
HashTable* mzHashTableCreate(size_t initialSize, HashFreeFunc freeFunc)
 | 
						|
{
 | 
						|
    HashTable* pHashTable;
 | 
						|
 | 
						|
    assert(initialSize > 0);
 | 
						|
 | 
						|
    pHashTable = (HashTable*) malloc(sizeof(*pHashTable));
 | 
						|
    if (pHashTable == NULL)
 | 
						|
        return NULL;
 | 
						|
 | 
						|
    pHashTable->tableSize = roundUpPower2(initialSize);
 | 
						|
    pHashTable->numEntries = pHashTable->numDeadEntries = 0;
 | 
						|
    pHashTable->freeFunc = freeFunc;
 | 
						|
    pHashTable->pEntries =
 | 
						|
        (HashEntry*) calloc((size_t)pHashTable->tableSize, sizeof(HashTable));
 | 
						|
    if (pHashTable->pEntries == NULL) {
 | 
						|
        free(pHashTable);
 | 
						|
        return NULL;
 | 
						|
    }
 | 
						|
 | 
						|
    return pHashTable;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Clear out all entries.
 | 
						|
 */
 | 
						|
void mzHashTableClear(HashTable* pHashTable)
 | 
						|
{
 | 
						|
    HashEntry* pEnt;
 | 
						|
    int i;
 | 
						|
 | 
						|
    pEnt = pHashTable->pEntries;
 | 
						|
    for (i = 0; i < pHashTable->tableSize; i++, pEnt++) {
 | 
						|
        if (pEnt->data == HASH_TOMBSTONE) {
 | 
						|
            // nuke entry
 | 
						|
            pEnt->data = NULL;
 | 
						|
        } else if (pEnt->data != NULL) {
 | 
						|
            // call free func then nuke entry
 | 
						|
            if (pHashTable->freeFunc != NULL)
 | 
						|
                (*pHashTable->freeFunc)(pEnt->data);
 | 
						|
            pEnt->data = NULL;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    pHashTable->numEntries = 0;
 | 
						|
    pHashTable->numDeadEntries = 0;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Free the table.
 | 
						|
 */
 | 
						|
void mzHashTableFree(HashTable* pHashTable)
 | 
						|
{
 | 
						|
    if (pHashTable == NULL)
 | 
						|
        return;
 | 
						|
    mzHashTableClear(pHashTable);
 | 
						|
    free(pHashTable->pEntries);
 | 
						|
    free(pHashTable);
 | 
						|
}
 | 
						|
 | 
						|
#ifndef NDEBUG
 | 
						|
/*
 | 
						|
 * Count up the number of tombstone entries in the hash table.
 | 
						|
 */
 | 
						|
static int countTombStones(HashTable* pHashTable)
 | 
						|
{
 | 
						|
    int i, count;
 | 
						|
 | 
						|
    for (count = i = 0; i < pHashTable->tableSize; i++) {
 | 
						|
        if (pHashTable->pEntries[i].data == HASH_TOMBSTONE)
 | 
						|
            count++;
 | 
						|
    }
 | 
						|
    return count;
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
/*
 | 
						|
 * Resize a hash table.  We do this when adding an entry increased the
 | 
						|
 * size of the table beyond its comfy limit.
 | 
						|
 *
 | 
						|
 * This essentially requires re-inserting all elements into the new storage.
 | 
						|
 *
 | 
						|
 * If multiple threads can access the hash table, the table's lock should
 | 
						|
 * have been grabbed before issuing the "lookup+add" call that led to the
 | 
						|
 * resize, so we don't have a synchronization problem here.
 | 
						|
 */
 | 
						|
static bool resizeHash(HashTable* pHashTable, int newSize)
 | 
						|
{
 | 
						|
    HashEntry* pNewEntries;
 | 
						|
    int i;
 | 
						|
 | 
						|
    assert(countTombStones(pHashTable) == pHashTable->numDeadEntries);
 | 
						|
    //LOGI("before: dead=%d\n", pHashTable->numDeadEntries);
 | 
						|
 | 
						|
    pNewEntries = (HashEntry*) calloc(newSize, sizeof(HashTable));
 | 
						|
    if (pNewEntries == NULL)
 | 
						|
        return false;
 | 
						|
 | 
						|
    for (i = 0; i < pHashTable->tableSize; i++) {
 | 
						|
        void* data = pHashTable->pEntries[i].data;
 | 
						|
        if (data != NULL && data != HASH_TOMBSTONE) {
 | 
						|
            int hashValue = pHashTable->pEntries[i].hashValue;
 | 
						|
            int newIdx;
 | 
						|
 | 
						|
            /* probe for new spot, wrapping around */
 | 
						|
            newIdx = hashValue & (newSize-1);
 | 
						|
            while (pNewEntries[newIdx].data != NULL)
 | 
						|
                newIdx = (newIdx + 1) & (newSize-1);
 | 
						|
 | 
						|
            pNewEntries[newIdx].hashValue = hashValue;
 | 
						|
            pNewEntries[newIdx].data = data;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    free(pHashTable->pEntries);
 | 
						|
    pHashTable->pEntries = pNewEntries;
 | 
						|
    pHashTable->tableSize = newSize;
 | 
						|
    pHashTable->numDeadEntries = 0;
 | 
						|
 | 
						|
    assert(countTombStones(pHashTable) == 0);
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Look up an entry.
 | 
						|
 *
 | 
						|
 * We probe on collisions, wrapping around the table.
 | 
						|
 */
 | 
						|
void* mzHashTableLookup(HashTable* pHashTable, unsigned int itemHash, void* item,
 | 
						|
    HashCompareFunc cmpFunc, bool doAdd)
 | 
						|
{
 | 
						|
    HashEntry* pEntry;
 | 
						|
    HashEntry* pEnd;
 | 
						|
    void* result = NULL;
 | 
						|
 | 
						|
    assert(pHashTable->tableSize > 0);
 | 
						|
    assert(item != HASH_TOMBSTONE);
 | 
						|
    assert(item != NULL);
 | 
						|
 | 
						|
    /* jump to the first entry and probe for a match */
 | 
						|
    pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
 | 
						|
    pEnd = &pHashTable->pEntries[pHashTable->tableSize];
 | 
						|
    while (pEntry->data != NULL) {
 | 
						|
        if (pEntry->data != HASH_TOMBSTONE &&
 | 
						|
            pEntry->hashValue == itemHash &&
 | 
						|
            (*cmpFunc)(pEntry->data, item) == 0)
 | 
						|
        {
 | 
						|
            /* match */
 | 
						|
            //LOGD("+++ match on entry %d\n", pEntry - pHashTable->pEntries);
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        pEntry++;
 | 
						|
        if (pEntry == pEnd) {     /* wrap around to start */
 | 
						|
            if (pHashTable->tableSize == 1)
 | 
						|
                break;      /* edge case - single-entry table */
 | 
						|
            pEntry = pHashTable->pEntries;
 | 
						|
        }
 | 
						|
 | 
						|
        //LOGI("+++ look probing %d...\n", pEntry - pHashTable->pEntries);
 | 
						|
    }
 | 
						|
 | 
						|
    if (pEntry->data == NULL) {
 | 
						|
        if (doAdd) {
 | 
						|
            pEntry->hashValue = itemHash;
 | 
						|
            pEntry->data = item;
 | 
						|
            pHashTable->numEntries++;
 | 
						|
 | 
						|
            /*
 | 
						|
             * We've added an entry.  See if this brings us too close to full.
 | 
						|
             */
 | 
						|
            if ((pHashTable->numEntries+pHashTable->numDeadEntries) * LOAD_DENOM
 | 
						|
                > pHashTable->tableSize * LOAD_NUMER)
 | 
						|
            {
 | 
						|
                if (!resizeHash(pHashTable, pHashTable->tableSize * 2)) {
 | 
						|
                    /* don't really have a way to indicate failure */
 | 
						|
                    LOGE("Dalvik hash resize failure\n");
 | 
						|
                    abort();
 | 
						|
                }
 | 
						|
                /* note "pEntry" is now invalid */
 | 
						|
            } else {
 | 
						|
                //LOGW("okay %d/%d/%d\n",
 | 
						|
                //    pHashTable->numEntries, pHashTable->tableSize,
 | 
						|
                //    (pHashTable->tableSize * LOAD_NUMER) / LOAD_DENOM);
 | 
						|
            }
 | 
						|
 | 
						|
            /* full table is bad -- search for nonexistent never halts */
 | 
						|
            assert(pHashTable->numEntries < pHashTable->tableSize);
 | 
						|
            result = item;
 | 
						|
        } else {
 | 
						|
            assert(result == NULL);
 | 
						|
        }
 | 
						|
    } else {
 | 
						|
        result = pEntry->data;
 | 
						|
    }
 | 
						|
 | 
						|
    return result;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Remove an entry from the table.
 | 
						|
 *
 | 
						|
 * Does NOT invoke the "free" function on the item.
 | 
						|
 */
 | 
						|
bool mzHashTableRemove(HashTable* pHashTable, unsigned int itemHash, void* item)
 | 
						|
{
 | 
						|
    HashEntry* pEntry;
 | 
						|
    HashEntry* pEnd;
 | 
						|
 | 
						|
    assert(pHashTable->tableSize > 0);
 | 
						|
 | 
						|
    /* jump to the first entry and probe for a match */
 | 
						|
    pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
 | 
						|
    pEnd = &pHashTable->pEntries[pHashTable->tableSize];
 | 
						|
    while (pEntry->data != NULL) {
 | 
						|
        if (pEntry->data == item) {
 | 
						|
            //LOGI("+++ stepping on entry %d\n", pEntry - pHashTable->pEntries);
 | 
						|
            pEntry->data = HASH_TOMBSTONE;
 | 
						|
            pHashTable->numEntries--;
 | 
						|
            pHashTable->numDeadEntries++;
 | 
						|
            return true;
 | 
						|
        }
 | 
						|
 | 
						|
        pEntry++;
 | 
						|
        if (pEntry == pEnd) {     /* wrap around to start */
 | 
						|
            if (pHashTable->tableSize == 1)
 | 
						|
                break;      /* edge case - single-entry table */
 | 
						|
            pEntry = pHashTable->pEntries;
 | 
						|
        }
 | 
						|
 | 
						|
        //LOGI("+++ del probing %d...\n", pEntry - pHashTable->pEntries);
 | 
						|
    }
 | 
						|
 | 
						|
    return false;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Execute a function on every entry in the hash table.
 | 
						|
 *
 | 
						|
 * If "func" returns a nonzero value, terminate early and return the value.
 | 
						|
 */
 | 
						|
int mzHashForeach(HashTable* pHashTable, HashForeachFunc func, void* arg)
 | 
						|
{
 | 
						|
    int i, val;
 | 
						|
 | 
						|
    for (i = 0; i < pHashTable->tableSize; i++) {
 | 
						|
        HashEntry* pEnt = &pHashTable->pEntries[i];
 | 
						|
 | 
						|
        if (pEnt->data != NULL && pEnt->data != HASH_TOMBSTONE) {
 | 
						|
            val = (*func)(pEnt->data, arg);
 | 
						|
            if (val != 0)
 | 
						|
                return val;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 * Look up an entry, counting the number of times we have to probe.
 | 
						|
 *
 | 
						|
 * Returns -1 if the entry wasn't found.
 | 
						|
 */
 | 
						|
int countProbes(HashTable* pHashTable, unsigned int itemHash, const void* item,
 | 
						|
    HashCompareFunc cmpFunc)
 | 
						|
{
 | 
						|
    HashEntry* pEntry;
 | 
						|
    HashEntry* pEnd;
 | 
						|
    int count = 0;
 | 
						|
 | 
						|
    assert(pHashTable->tableSize > 0);
 | 
						|
    assert(item != HASH_TOMBSTONE);
 | 
						|
    assert(item != NULL);
 | 
						|
 | 
						|
    /* jump to the first entry and probe for a match */
 | 
						|
    pEntry = &pHashTable->pEntries[itemHash & (pHashTable->tableSize-1)];
 | 
						|
    pEnd = &pHashTable->pEntries[pHashTable->tableSize];
 | 
						|
    while (pEntry->data != NULL) {
 | 
						|
        if (pEntry->data != HASH_TOMBSTONE &&
 | 
						|
            pEntry->hashValue == itemHash &&
 | 
						|
            (*cmpFunc)(pEntry->data, item) == 0)
 | 
						|
        {
 | 
						|
            /* match */
 | 
						|
            break;
 | 
						|
        }
 | 
						|
 | 
						|
        pEntry++;
 | 
						|
        if (pEntry == pEnd) {     /* wrap around to start */
 | 
						|
            if (pHashTable->tableSize == 1)
 | 
						|
                break;      /* edge case - single-entry table */
 | 
						|
            pEntry = pHashTable->pEntries;
 | 
						|
        }
 | 
						|
 | 
						|
        count++;
 | 
						|
    }
 | 
						|
    if (pEntry->data == NULL)
 | 
						|
        return -1;
 | 
						|
 | 
						|
    return count;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
 * Evaluate the amount of probing required for the specified hash table.
 | 
						|
 *
 | 
						|
 * We do this by running through all entries in the hash table, computing
 | 
						|
 * the hash value and then doing a lookup.
 | 
						|
 *
 | 
						|
 * The caller should lock the table before calling here.
 | 
						|
 */
 | 
						|
void mzHashTableProbeCount(HashTable* pHashTable, HashCalcFunc calcFunc,
 | 
						|
    HashCompareFunc cmpFunc)
 | 
						|
{
 | 
						|
    int numEntries, minProbe, maxProbe, totalProbe;
 | 
						|
    HashIter iter;
 | 
						|
 | 
						|
    numEntries = maxProbe = totalProbe = 0;
 | 
						|
    minProbe = 65536*32767;
 | 
						|
 | 
						|
    for (mzHashIterBegin(pHashTable, &iter); !mzHashIterDone(&iter);
 | 
						|
        mzHashIterNext(&iter))
 | 
						|
    {
 | 
						|
        const void* data = (const void*)mzHashIterData(&iter);
 | 
						|
        int count;
 | 
						|
            
 | 
						|
        count = countProbes(pHashTable, (*calcFunc)(data), data, cmpFunc);
 | 
						|
 | 
						|
        numEntries++;
 | 
						|
 | 
						|
        if (count < minProbe)
 | 
						|
            minProbe = count;
 | 
						|
        if (count > maxProbe)
 | 
						|
            maxProbe = count;
 | 
						|
        totalProbe += count;
 | 
						|
    }
 | 
						|
 | 
						|
    LOGI("Probe: min=%d max=%d, total=%d in %d (%d), avg=%.3f\n",
 | 
						|
        minProbe, maxProbe, totalProbe, numEntries, pHashTable->tableSize,
 | 
						|
        (float) totalProbe / (float) numEntries);
 | 
						|
}
 |