
xCAT 2.0 Alpha Release Cookbook

11/15/2007

1.1 Release Description ...1

1.1.1 Function supported:..1

1.1.2 Function not supported ...2

1.1.3 Prerequisites:..2

1.1.4 Licensing ...2

1.2 Installing xCAT 2.0 Software..3

1.3 xCAT 2.0 Commands ..4

1.4 xCAT Tables ...6

1.5 Adding and Installing Nodes ..7

1.6 Using xCAT Notification ...9

1.7 xCAT Architecture..11
1.7.1 Client/Server ..12

1.7.2 Flow...12

1.1 Release Description

xCAT 2.0 is a complete rewrite of xCAT 1.2/1.3 implementing a new architecture (see

description at end of this document). All commands are client/server, authenticated,

logged and policy driven. The clients can be run on any OS with Perl, including

Windows. The code has been completely rewritten in Perl, and table data is now stored

in a relational database. For the alpha, we are including SQLite with the xCAT OSS

rpm.

The code is being released as RPMs and SRPMs . For the alpha release, there is support

for x86_64 hardware (IPMI and Blades only) . The OS must be RedHat 5 or CentOS5.

The alpha code should not be used for production work When the beta is released, it may

not be compatible with the alpha version.

1.1.1 Function supported:

• Tools to manipulate the database tables: tabdump,tabrestore,tabedit, chtab

(must be run on the server), nodech, nodeadd,noderm.

• Cluster setup commands: makehosts, makedhcp,makeconservercf are

available.

• Notification: infrastructure allowing users to register for xCAT database table

changes.

• xdsh/xdcp - Parallel remote and remote copy commands. See xCAT 2.0

Commands(xdsh) below.

• Node discovery and diskfull deployment of CentOS5 and RHELS5 on the

supported hardware (see Prerequisites).

• For a list of all 2.0 xCAT commands run rpm –ql xcat-client.

1.1.2 Function not supported

• Diskless/Stateless clusters

• No imaging

• No flash

• You might be able to get it to work, but not supported in the alpha:

• SLES 10

• Diskless/stateless support using Perceus

• pSeries hardware control using HMC, IVM, FSP for Power5 and Power6

hardware

• Web GUI interface

• Data abstraction commands to make creating node and other database

definitions easier

• xCAT monitoring plug-in infrastructure

1.1.3 Prerequisites:

• Hardware requirements:

• x3455, x3550, x3650, x3455, LS21, HS21, LS41, x336, x346

• no SOL for x386 or x486

• Must be IPMI based, rack mounted unit.

• Blades

• Ethernet switch must be SNMP enabled for node discovery.

• Software supported

• RedHat5 or CentOS5

1.1.4 Licensing

xCAT 2.0 is OSS with a EPL license. For license information visit

 http://www.opensource.org/licenses/eclipse-1.0.php

Comment: I thought I heard SOL only
with no conserver - Jarrod, Egan to verify

1.2 Installing xCAT 2.0 Software

Install your xCAT management node with RedHat5 or CentOS5, making sure to

install all packages available with the distribution to reduce the number of

dependency RPMs you need to track down.

1. You can easily use YUM to install xCAT 2.0 on your management node.

a. If your management node is connected to the internet, YUM can be

pointed directly to the download site. Down load the following two files

to the management node and place in the /etc/yum.repos.d directory.

 http://xcat.org/xcat/xCAT-core.repo

 http://xcat.org/xcat/xCAT-oss.repo

b. If your management node is not connected to the internet, download the

following tar files to a system that is and then copy them to your

management node:

http://xcat.sourceforge.net/yum/core-repo.tar.bz2

http://xcat.sourceforge.net/yum/oss-repo.tar.bz2

Un-tar the files. Each tar file has a mklocalrepo.sh script that you will

need to run to modify the included copy of the xCAT-*.repo file to point

to your local copies of the rpms.

2. Make sure that the management node hostname resolves to the ip address set in

/etc/hosts. The output of “hostname –d” should print the correct domain name.

If /etc/hosts is set with the long and short hostname, this should work.

For example: 7.113.47.250 rh5.clusters.com rh5 line in /etc/hosts results in

[root@rh5 ~]# hostname -d

clusters.com

3. If OpenIPMI-tools is installed on your system, remove it “rpm –e OpenIPMI-

tools”. The version shipped with Redhat 5/CentOS5 is back-level and has many

bugs. xCAT will be installing a newer version from the xCAT-oss.repo.

4. Now run “yum install xCAT” to install the xCAT and dependent OSS rpms.

Postscripts in the rpms will set up default xCAT configurations and start the xcatd

daemons.

5. If you are reinstalling xCAT 2.0, run “yum update” to update the xCAT

packages.

6. Check to make sure the xcatd daemons started:

[root@rh5 xCAT-core]# ps -ef | grep -i xcat

root 3471 1 0 14:07 ? 00:00:00 xcatd: SSL listener

root 3472 3471 0 14:07 ? 00:00:00 xcatd: UDP listener

root 3473 3471 0 14:07 ? 00:00:00 xcatd: install monitor

If not, start it manually:

[root@rh5 xCAT-core]# service xcatd start

Starting xCATd

7. Edit /etc/xinetd.d/tftp and change “disable = yes” to “disable = no” and run

“service xinetd restart” to enable the TFTP server.

1.3 xCAT 2.0 Commands
Note: use ‘<xCAT command> -h’ for a usage message from each command. MAN pages are not available at this time.

XCAT

COMMAND

DESCRIPTION

chtab

(Note: will be

renamed to tabch

in beta)

To add or update rows in a table. Allows you to add nodes, create groups, add attributes to the xCAT tables.

chtab node=devnode01 nodelist.group=all,compute will add a new node devnode01 to the nodelist table and

assign to the all and compute groups.

chtab key=rsh site.value=/usr/bin/ssh will assign the site table rsh attribute to /usr/bin/ssh

chtab –d node=devnode01 will delete the previously create node from the nodelist table.

copycds Copies Linux distributions and service levels to install directories.

makeconservercf Make Conserver Configuration

makedhcp Sets up the DHCP server.

makehosts Creates entries in /etc/hosts for nodes. Node nodenames and ip addresses must be setup in the hosts table.

makenetworks Builds the networks table

nodeadd Add a node to the cluster

For example: nodeadd <noderange> [table.column=value] [table.column=value]….

 nodeadd blade1-blade7 nodelist.groups=all,compute

nodeadd also supports some short cut tags:

 groups is equivalent to table.column = nodelist.groups

• nodeadd blade1-blade8 groups=all,compute

 mgt is equivalent to table.column = nodehm.mgt

• nodeadd blade7 mgt=blade

 switch is equivalent to table.colum= switch.switch

• nodeadd blade8 switch=switch1

nodech Change node information

nodels Display information about a node or range of nodes or all nodes

noderm Remove Node

nodeset Installs, boots the nodes uses pxe.

psh Runs a command across a list of nodes or nodegroups in parallel

rbeacon Turns beacon on/off/blink or gives status of a node or a range of nodes.

rbootseq For boot of Bladecenter node range. Change each node boot order.

regnotif Register a Perl module or a command that will get called when changes occur in desired xCAT database tables.

See Using xCAT Notification

reventlog Retrieves or clears remote hardware event logs

rinv Retrieves hardware configuration information for a single or range of nodes

rpower Boots, resets, powers on and off and queries nodes

Note: “boot” option not implemented yet. Use either “on” or “reset” options as appropriate.

rsetboot rsetboot (IPMI) is a way to specify the singular device to try to boot only for the next power cycle

rspreset Used to reset service processors out-of-band

rvitals Retrieves hardware vital information from the on-board Service Processor for a range of nodes

tabdump Display Database table information for table requested. tabdump with no input will display a list of all valid

table names.

tabedit Edit a table . Must export EDITOR to define your editor.

tabrestore Restore a table from the table.csv template or from a tabdump output file.

unregnotif Unregistered a Perl module or a command that was watching for changes of desired xCAT database tables.

xdcp Concurrently copies files to/from multiple nodes. Requires dsh rpms installed. See xdsh.

xdsh Concurrently runs remote commands on multiple nodes. dsh rpms should be obtained from the following

website. http://www14.software.ibm.com/webapp/set2/sas/f/csm/download/home.html. Download the

“Cluster System Management for Linux Multiplatform” 1.6.0.13 tarball. You will only need to install

csm.dsh1.6.0.13* rpm from the tarball.

1.4 xCAT Tables
Note: The Database Table Schema can be viewed in the /usr/lib/perl5/site_perl/5.8.3/xCAT/Schema.pm file or by running the

tabdump command.

TABLE

NAME

DESCRIPTION

chain Lists action that occur during node install, node boot . Used by nodeset.

hosts List of hosts, alias hostname, ip addresses. Used to update /etc/hosts with makehosts

hmc List information about the hmc – hcp, username, password

ipmi Lists information on the nodes IPMI interface – bmc, username, password

ivm Lists information on the nodes IVM interface – hcp, username, password

mac Lists mac address for each node.

mp This is the management processor network. Whereas the mpa.tab lists the adapter, this table lists devices that are

networked off that adapter via daisy chained networks, or in the case of Blade Center, an internal network..

mpa Lists the MPA, username and password for the nodes.

networks Defines masks, gateways and DNS servers. Build my makenetworks command.

nodehm Defines the hardware management method for each node.

nodelist Defines all nodes and groups.

noderes Installation resources for the node.

nodepos Node physical location

nodetype Node install type (osversion, arch, type)

notification Lists the Perl modules and commands that will get called for changes in certain xCAT database tables.

passwd user names and passwords used by xCAT scripts

policy Table controls the policy for the execution of the xcat commands.

ppc Store Series p hardware components – HMC, IVM, BPA, FSP, LPAR

site Main xCat configuration file. Holds global information for the cluster.

switch Lists switch interface(s) for the node.

vpd Vital product data table. Holds machine serial number and model type.

1.5 Adding and Installing Nodes

1) Check the default required site table attributes:
[root@rh5 xCAT-core]# tabdump site
#key,value,comments,disable
"xcatdport","3001",,
"master","9.114.47.251",,
"domain","ppd.pok.ibm.com",,
"installdir","/install",,
"timezone","America/New_York",,
"nameservers","176.60.50.209",,

To change any of these values, use chtab or tabedit.

chtab:

a) chtab key=domain site.value=<your domain name>

For example: chtab key=domain site.value=clusters.com

b) chtab key=master site.value=<ip address on the cluster network of Master node>

For example: chtab key=master site.value=8.777.43.5

c) chtab key=dhcpinterfaces site.value=<comma delimited list of nics to run dhcp>

For example: chtab key=dhcpinterfaces site.value=eth1

tabedit:

a) export EDITOR=vim (or your favorite editor)

b) tabedit site

c) make your changes, and use the editor command to save the file and quit. Your

changes will automatically be imported into the xCAT database.

2) Check the 1350 default database template files in /usr/share/xcat/template/e1350

directory to see if they apply to your environment. These templates, or templates

you create from them, can be used to load the database xCAT tables using the

tabrestore <path to template> command. The README, in the directory, explains

how to use these files.

3) The tabdump <tablename> will dump current contents of the database table. This

can be used to dump the contents of a table and, if you redirect the output to a file,

you can later reload the data using tabrestore.

4) Use tabedit <tablename> to make any needed changes to the tables. Check the

previous released xCAT tables for definitions. The 2.0 tables contain a header with

the format of the fields in comments.

5) Define the nodes in your cluster by using the nodeadd command. Ensure that all

nodes, bmcs or management modules, and switches have hosts definitions, or the

dhcp configuration will not update, and the bmcsetup will not receive meaningful

data. (see nodeadd command in the xCAT Tables).

6) If you want makehosts to update the /etc/hosts file for the defined nodes, bmcs/mms,

and switches, use tabedit to update the hosts table with the hostnames and ip

addresses to be added to /etc/hosts. Then run makehosts .

7) makenetworks runs during the xCAT install and updates the networks table. You

should tabdump networks to ensure the setting are correct. If any need changing,

tabedit networks table. Ensure the networks to be managed have the “dynamicrange”

set to a hyphenated range of IP addresses to serve as staging for nodes being brought

up. If any new networks are added, the makenetworks should be run again.

8) Run makedhcp –n. Review the /etc/dhcp.conf file created to ensure all your network

definitions are correct. Note that the node host definitions will no longer appear here,

but rather will appear in the leases file (/var/lib/dhcpd/dhcpd.leases) after the initial

DHCP request from the node. xCAT 2.0 sets up dhcp to use the OMAPI command

shell to setup, query and change the dhcp configuration. See man omshell, and

http://linux.die.net/man/3/omapi for more information.

9) Run “service dhcpd start” to load the initial omapi dhcp configuration.

10) For blades, make sure your bladecenter management module is configured for the

SNMP protocol:

a) Telnet into you management module. Once in, do the following (assumes

“mm[1]” is the current active mm and “PASSW0RD” is your mm password).

b) env -T mm[1]

c) users -1 -ap sha -pp des -at set -ppw PASSW0RD

d) Log off the management module and test the connection with a query command

such as rpower <noderange> stat or rinv <noderange> all.

Note: This was only tested with the latest release level firmware BPET32D. Older

firmware may not properly support SNMP.

11) Set up conserver. Note, rcons is not yet supported for xCAT 2.0. You will need to

manually start the conserver daemon and open consoles.

a) Update the nodehm table (tabedit nodehm) to set fields for cons, termport, and

termserver for your nodes. Currently, supported values for cons are “blade” and

“ipmi”.

b) Run makeconservercf to generate a conserver 8 configuration file. Review

/etc/conserver.cf. Make sure you have valid “trusted” entries in the “access{}”

stanza for any host starting a console (most likely your management node).

c) Start the conserver daemon: service conserver start

d) Try opening a console: console -M <management node> <node>

12) xCAT 2.0 will discover your hardware:

a) Create the initrd:

(1) rm /tftpboot/pxelinux.cfg/default

(2) mknb x86_64 (creates the netboot image and writes out the master

parameter to the /tftpboot/pxelinux.cfg/default file).

b) Make sure your boot sequence is set to boot from network before harddrive:

rbootseq <noderange> list
If not, change it: rbootseq <noderange> f,c,n,h

c) Power up the system using rpower <noderange> on.

d) Within a few seconds of booting to the network, any BMCs should be configured

and be setup to allow ssh. All nodes will be network booted (you can watch

/var/log/messages for DHCP and TFTP traffic).

e) nodels <noderange> vpd.serial vpd.mtm mac.mac should show interesting data

after discovery.

13) Run copycds with full path to the ISO images

14) Run nodech (or tabedit) to change nodetype OS and setup node profile :

nodech <noderange> nodetype.os=<os> nodetype.profile=compute
(for now only, the compute template file has been provided. See

/usr/share/xcat/install/). Current possible values for os: rhels5, rhelc5,centos5

If using 64 bit distro, the nodetype.arch should have been populated with

“x86_64” at discovery time. If not, set this value, too. This is the only

architecture supported for now.

15) Run nodech (or tabedit) to set noderes nfsserver :

nodech <noderange> noderes.nfsserver=<server>

(Note: may need to use your management server IP address instead of the hostname

for the nfsserver for now)

16) Also check the following fields to make sure they are set correctly and update as

necessary:

noderes.installnic -- the Ethernet adapter on the node used for installation

noderes.serialport -- standard SOL for Blades “1”, for IPMI nodes “0”

nodehm.serialspeed -- standard SOL for Blades “19200”

nodehm.serialflow -- standard SOL for Blades “hard”

17) Postscripts that will be run during node install are identified in

/etc/xcat/postscripts.rules and located in /install/postscripts. Not all of the

postscripts have been ported to xCAT 2.0 yet, so you may get some “script not

found” messages during the postscript processing. Also, the postage and postrules

commands have not been ported yet, so debug may take a little more effort.

18) Run nodeset <noderange> install, to setup for installing the OS.

19) Run rpower <noderange> on or rpower <noderange> reset, to boot the systems and

start the network install process.

 (note, rpower <noderange> boot is not working yet)

� The kexec to installers doesn't have the client scripts written yet, necessitating

the reboot, if wanting to try kexec for now, you have to manually transfer the

kernel, initrd, and run kexec -f with the right arguments to the xCAT nbfs

environment)

1.6 Using xCAT Notification

With xCAT 2.0, you can monitor xCAT database for changes such as nodes entering/leaving the
cluster, hardware updates, node liveness (to be added later) etc. In fact anything stored in the
xCAT database tables can be monitored through the xCAT notification infrastructure. To start
getting notified for changes, simply register your Perl module or command as the following:

regnotif filename tablename -o actions
where
filename is the full path name of your Perl module or command.
 tablenames is a comma separated list of table names that you are interested in.
 actions is a comma separated list of data table actions. 'a' for row addition, 'd' for row deletion
and 'u' for row update.

Example:
 regnotif /usr/lib/xcat/monitoring/mycode.pm nodelist,nodehm -o a,d
 regnotif /usr/bin/mycmd switch,noderes -o u
Use the following command to view all the modules and commands registered.
 tabdump notification

To un-register, just do the following:
 unregnotif filename
Example:
 unregnotif /usr/lib/xcat/monitoring/mycode.pm
 unregnotif /usr/bin/mycmd

If the filename specifies a Perl module, like /usr/lib/mypath/xxx.pm, the package name must be
xCAT_monitoring::xxx. It must implement the following subroutine which will get called when
database table change occurs:
 processTableChanges(tableop, table_name, old_data, new_data)
 where:

 tableop Table operation. It can be 'a' for row addition, 'd' for row deletion and 'u' for row
update.
 tablename The name of the database table whose data has been changed.
old_data An array reference of the old row data that has been changed.

The first element is an array reference that contains the column names. The rest
of the elements are array references each contains attribute values of a row. It is
set when the action is u or d.

new_data A hash reference of the new row data; only changed values are in the hash.
It is keyed by column names. It is set when the action is u or a.

If the file name specifies a command (written by any programming languages or scripts), when
the interested database table changes, the info will be fed to the command through the standard
input. The format of the data in the STDIN is as following:

action(a, u or d)
tablename
[old value]
col1_name,col2_name...
col1_val,col2_val,...
col1_val,col2_val,....
...
[new value]
col1_name,col2_name,...
col1_value,col2_value,...
...

Sample code:
File name: /usr/lib/xcat/monitoring/mycode.pm.
Use command
 regnotif /usr/lib/xcat/monitoring/mycode.pm nodelist -o a,d
 to register for nodes adding or removing in the nodelist table.

package xCAT_monitoring::mycode;
1;

This subroutine get called when new nodes are added into the cluster
or nodes are removed from the cluster.

sub processTableChanges {
 my $action=shift;
 if ($action =~ /xCAT_monitoring::mycode/){
 $action=shift;
 }
 my $tablename=shift;
 my $old_data=shift;
 my $new_data=shift;

 my @nodenames=();
 if ($action eq "a") { #nodes added in the cluster
 if ($new_data) {
 push(@nodenames, $new_data->{node});
 $noderange=join(',', @nodenames);
 #log the node names that have entered the cluster
 open(FILE, ">>/var/log/mycode.log") or dir ("cannot open the file\n");
 print (FILE "new nodes in the cluster are: $noderange\n");
 close(FILE);
 }
 }
 elsif ($action eq "d") { #nodes removed from the cluster
 #find out the index of "node" column
 if ($old_data->[0]) {
 $colnames=$old_data->[0];
 my $i;
 for ($i=0; $i<@$colnames; ++$i) {
 if ($colnames->[$i] eq "node") {last;}
 }

 for (my $j=1; $j<@$old_data; ++$j) {
 push(@nodenames, $old_data->[$j]->[$i]);
 }

 if (@nodenames > 0) {
 $noderange=join(',', @nodenames);
 #log the node names that are leaving the cluster
 open(FILE, ">>/var/log/mycode.log") or dir ("cannot open the file\n");
 print (FILE "nodes leaving the cluster are: $noderange\n");
 close(FILE);
 }
 }
 }
 return 0;
}

1.7 xCAT Architecture

General/Overall Concepts

The heart of the xCAT 2.0 architecture is the xCAT daemon (xcatd) on the management

node. This receives requests from the client, validates the requests, and then invokes the

operation. The xcatd daemon also receives status and inventory information from the

nodes

1.7.1 Client/Server

1.7.2 Flow

• User invokes an xcat cmd on the client

• The cmds can either be a sym link to xcatclient or a thin wrapper that calls

xcatclient.

• Some cmds will implement their own xcatclient function, if they have more

processing than the generic xcatclient function supports. (e.g. xdsh/xdcp).

• The xcatclient function packages the info into xml and passes it to xcatd

• xcatd receives the request and forks to process the request

• The ACL/Role Policy Engine determines whether this person is allowed to

execute this request. It evaluates the following info:

o The cmd name and args

o Who executed the cmd on the client machine

o The hostname/IP address of the client machine

o The node range passed to the cmd

• If the ACL check is approved, the cmd is passed to the Queue:

Client Command

xCATd

Access Control

Queue

Command plugin

o The queue can run the action in either of 2 modes. The client cmd wrapper

decides which mode to use (although it can give the user a flag to specify):

� Keep the socket connection with the client open for the life of the

action and continue to send back the output of the action as it is

produced.

� Initiate the action, pass the action ID back to the client, and close

the connection. At any subsequent time, the client can use the

action ID to request the status and output of the action. This is

intended long running cmds.

o The Queue logs every action performed, including date/time, cmd name,

arguments, who, etc.

o In phase 2, the Queue will support locking (semaphores) to serialize

actions that should not be run simultaneously.

• To invoke the action, the xml is passed to the process_request() function of the

appropriate plugin pm which contains the code for the function being run.

o With the request examined per policy table, and noderange expanded to

nodes, the request is passed in its entirety (including tags otherwise

ignored) to a plugin's process_request function, which will receive two

arguments, the first the aforementioned hash reference, the second a

reference to a callback function to call per response message to send back.

o The appropriate pm is chosen by loading all of the plugins from

/usr/lib/xcat/plugins and invoking handled_commands to see which cmds

each pm handles.

o Data is returned from the command plugin back to the client command

handle_response routine.

