xCAT 2 InfiniBand Support Date: 04/07/2009 # **Contents** | Table of Contents | | | | | |---|----------|--|--|--| | 1. IB Interface Configuration. | 4 | | | | | 1.1. Get sample scripts | 4 | | | | | 1.2. Modify the /etc/hosts. | 4 | | | | | 1.3. Update networks table with IB sub-network. | 4 | | | | | 1.4. Use rsh on AIX systems. | | | | | | 1.5. Update /etc/resolv.conf. | 5 | | | | | 1.6. Setup name server on management node. | 5 | | | | | 1.7. Check the IB network | 5 | | | | | 1.8. Prepare for IB drivers/libraries. | 6 | | | | | 1.9. Modify the <profile>.otherpkgs.pkglist</profile> | <u>6</u> | | | | | 1.10. Update the xCAT postscripts table | 6 | | | | | 1.11. Start to install the nodes or update the nodes for IB configuration | 6 | | | | | 1.12. Check the result of IB configuration. | 7 | | | | | 2. xdsh support for IB switch. | 8 | | | | | 2.1. Create IB switch configuration file. | 8 | | | | | 2.2. Update /etc/hosts. | 9 | | | | | 2.3. Use rsh for AIX. | 9 | | | | | 2.4. Define IB switch as a node. | 9 | | | | | 2.5. Setup ssh connection. | 9 | | | | | 2.6. Run the test commands. | 9 | | | | | 3. Sample Scripts | 10 | | | | | 3.1. Annotatelog | 10 | | | | | 3.1.1. Description. | 10 | | | | | 3.1.2. Supported log file. | 10 | | | | | 3.1.3. Syntax | 10 | | | | | 3.1.4. Examples | 11 | | | | | 3.2. getGuids | 11 | | | | | 3.2.1. Description. | 11 | | | | | 3.2.2. Syntax | 11 | | | | | 3.2.3. Examples. | 12 | | | | | 3.3. configCEC. | 12 | | | | | 221 D : :: | | 12 | |--------------------|------|----| | 3.3.1. Description |
 | 12 | | 3.3.2. Syntax |
 | 13 | | 3.3.3. Examples |
 | 14 | | Appendix | | 15 | | | | | | | | | ## 1. IB Interface Configuration XCAT provides two sample postscripts configiba.1port and configiba.2ports to config IB secondary adapter. These two scripts can run on both AIX and Linux managed nodes. There are two ways to configure IB interfaces, either together with node installation or using the updatenode command to update the node if the node has install systems. Most of the configuration steps for the two ways are the same, user can follow them exactly as following: ## 1.1. Get sample scripts The two scripts are stored in /opt/xcat/share/xcat/ib/scripts. Since each IB adapter have two ports, if there is only one port is available per adapter, user need to manually copy configiba.1port to /install/postscript as /install/postscript/configiba. If two ports are both available per adapter, user needs to manually copy configiba.2ports to /install/postscript also, named as configiba. ``` cp /opt/xcat/share/xcat/ib/scripts/configiba.1port /install/postscript/configiba ``` ## 1.2. Modify the /etc/hosts The IP address entries for IB interfaces in /etc/hosts on xCAT managed nodes should have the node short hostname and the unique IB interface name in them. The format should be <ip address for this ib interface node short hostname-ib interfacename>. For example: ``` xcat01 is the node short hostname, xcat01-ib0, xcat01-ib1, xcat01- ib2, etc. are the IP names for the IB interfaces on xcat01. ``` For AIX, ml0 interface is also required to be setup together with IB interfaces. It follows the same name conversion with IB interfaces. Following is an example of /etc/hosts for AIX, ``` 192.168.0.10 xcat01-ib0 192.168.1.10 xcat01-ib1 192.168.2.10 xcat01-ib2 192.168.3.10 xcat01-ib3 192.168.4.10 xcat01-ml0 ``` ## 1.3. Update networks table with IB sub-network For example: ``` chtab net=192.168.1.0 networks.netname=ib0 networks.mask=255.255.255.0 networks.mgtifname=ib0 chtab net=192.168.2.0 networks.netname=ib1 networks.mask=255.255.255.0 networks.mgtifname=ib1 chtab net=192.168.3.0 networks.netname=ib2 networks.mask=255.255.255.0 networks.mgtifname=ib2 ``` ``` chtab net=192.168.4.0 networks.netname=ib3 networks.mask=255.255.255.0 networks.mgtifname=ib3 chtab net=192.168.5.0 networks.netname=ib4 networks.mask=255.255.255.0 networks.mgtifname=ib4 ``` Note: Attributes gateway, dhcpserver, tftpserver, and nameservers in networks table are not necessary to assign, since the xCAT management work is still running on ethernet. ## 1.4. Use rsh on AIX systems On AIX, change the default connection between management nodes and compute nodes from ssh to rsh: ``` chtab key=useSSHonAIX site.key=no ``` ## 1.5. Update /etc/resolv.conf If the computer node have already been installed and are running, make sure /etc/resolv.conf is available on the compute node before running updatenode, since configiba script will connect to name server to resolve IP address for the IB interfaces. If not, define /etc/resolv.conf on compute node or use rcp to copy resolv.conf from management node to the compute node. Following is an example of /etc/resolv.conf: ``` nameserver 192.168.0.13 domain ppd.pok.ibm.com search ppd.pok.ibm.com ``` Note: 192.168.0.13 is the name server address which could provide the IP addresses for IB interfaces on compute nodes. ## 1.6. Setup name server on management node Put IB interface entries in /etc/hosts into DNS and restart the DNS: For Linux Management Nodes: ``` makedns service named restart ``` #### For AIX Management Nodes: ``` makedns stopsrc -s named startsrc -s named lssrc -s named ``` #### 1.7. Check the IB network Check if DNS resolving of the IB network has been setup successfully on managem node . If not, redo the steps in 1.5 ``` nslookup xcat01-ib0 nslookup xcat01-ib1 ``` ## 1.8. Prepare for IB drivers/libraries For AIX, the IB drivers/libraries have been installed in the system. So this step is only for RHEL and SLES. The required packages for RHEL and SLES have been listed in appendix. 1)For RHEL, the drivers/libraries are shipped in RHEL release CD/DVD. 2) For SLES10, the drivers/libraries are shipped in SLES10 SP2 AS. 3) For SLES11, the drivers/libraries are shipped in SLES11 release CD/DVD. After got the packages from CD/DVD, put them under /install/post/otherpkgs/<os>/<arch> directory where <os> and <arch> can be found in the nodetype table. ## 1.9. Modify the profile.otherpkgs.pkglist Add rpm names (without version number) into /install/custom/install/<ostype>/<profile>.otherpkgs.pkglist where <profile> is defined in the nodetype table. <ostype> is the operating system name without the version number. The following os types are recognized by xCAT. centos fedora rh sles windows ## 1.10. Update the xCAT postscripts table nodech xcat01 postscripts.postscripts,=otherpkgs,configiba Note: Please keep this order for these two scripts, since configiba depends on otherpkqs to install IB driver/library. ## 1.11. Start to install the nodes or update the nodes for IB configuration Now all the preparation work for IB configuration has been done, user can either use the updatenode command to update the nodes if systems on compute nodes have been installed ``` updatenode xcat01 otherpkgs,configiba ``` or if the nodes have not installed any system, continue with the installation process #### To diskless boot Linux nodes: ``` nodeset xcat01 netboot rnetboot xcat01 ``` #### To install diskful Linux nodes: ``` nodeset xcat01 install rnetboot xcat01 ``` #### To diskless boot AIX nodes: ``` nimnodeset xcat01 netboot rnetboot xcat01 ``` #### To install diskful AIX nodes: ``` nimnodeset xcat01 install rnetboot xcat01 ``` Note: In the sample postscript, the netmask is set to default value: 255.255.0.0 and gateway is set to "X.X.255.254". If the IB interface name is not a simple combination of short hostname and ibX or netmask and gateway does not meet the user's requirement, then modify the sample script, like in the example below: The short hostname of the compute node is xcat01-en, and the IB interface name is xcat01-ib0, xcat01-ib1, etc. The user should modify the /install/postscript/configiba as follows: ``` my $hostname = "$ENV{NODE}-$nic"; to my $fullname = `echo $ENV{NODE} | cut -c 1-11`; chomp($fullname); my $hostname = "$fullname-$nic"; ``` It is assumed every node has two IB adapters, if only one adapter is available on each node, modify the /install/postscript/configiba as following: ``` my @nums = (0..3); to my @nums = (0..1); ``` ## 1.12. Check the result of IB configuration Use ping test from management node to the IB interfaces on compute nodes to see if IB adapter works or not. ``` ping xcat01-ib0 ``` ## 2. xdsh support for IB switch ## 2.1. Create IB switch configuration file A new switch configuration file on management node is introduced to allow the xdsh command to setup ssh, that is transfer the ssh keys to the IB device. The device configuration file is located in /var/opt/xcat/<DevicePath>/config. The <DevicePath> is parsed by xdsh from the attribute value of the "--devicetype" flag or the environment variable "DEVICETYPE" which is input to the xdsh call. #### For example: If the devicetype for Qlogic switch is "IBSwitch::Qlogic" then the device configuration file must be be found in the following directory: /var/opt/xcat/IBSwitch/Qlogic/config The following is an example of a device configuration file: # Qlogic switch device configuration [main] ssh-setup-command=sshKey add [xdsh] pre-command=NULL post-command=showLastRetcode -brief Below is the explanation of the file attributes: ssh-setup-comand Specify the ssh key appending command supported by device specified. If this entry is not provided, xCAT uses default ways for HMC and IVM-managed devices to write ssh keys of Management Nodes. #### pre-command Specify the pre-execution commands before remote command. For example, users might want to export some environment variables before executing real commands. If the value of this entry is assigned "NULL", it means no pre-execution commands are needed. For example, the Qlogic Switch does not support environment variable, the 'precommand' is assigned with "NULL" to disable environment variables usage. If no entry is provided, the default behavior is to export the environment variables that are normally exported by xdsh when running remote commands. #### post-command Specify the built-in command provided by device specified to show the last command execution result. For example, the Qlogic Switch provides "showLastRetcode -brief" to display a numeric return code of last command execution. If the value of this entry is assigned "NULL", it means no post-command is used. If no entry is provided, the default behavior to run "echo \$?" used to dump return code of last command execution. ## 2.2. Update /etc/hosts In the /etc/hosts, ``` 9.114.47.172 ibswitch ``` ### 2.3. Use rsh for AIX The default remote shell on the AIX management node is rsh. Changing the site useSSHonAIX attribute=yes will change the default to ssh for xdsh. ``` chtab key=useSSHonAIX site.value=yes ``` #### 2.4. Define IB switch as a node Define IB switch as a node, this is required by xdsh which only support the input as a node. ``` mkdef -t node -o ibswitch groups=all nodetype=switch ``` ## 2.5. Setup ssh connection You can use xdsh to configure ssh login to the IB device by running the following. Note you must use the correct userid for your device. After this configuration is complete, you will be able to login to the device without a password. ``` xdsh ibswitch -K -l admin --devicetype IBSwitch::Qlogic Enter the password for the userid on the node where the ssh keys will be updated. /usr/bin/ssh setup is complete. return code = 0 ``` #### 2.6. Run the test commands After setup of the ssh keys for the login, the admin can run the commands on IB switches from the management node using xdsh. Interactive commands like List on IB switch are not supported by xdsh. An error message will print out if user inputs an interactive command. Below is an example of using xdsh to list the valid commands on the device. ``` /opt/xcat/bin/xdsh ibswitch -l admin --devicetype IBSwitch::Qlogic fwVersion ``` Or: ``` export DEVICETYPE=IBSwitch::Qlogic && /opt/xcat/bin/xdsh ibswitch -l admin fwVersion ``` ## 3. Sample Scripts ## 3.1. Annotatelog ## 3.1.1. Description annotatelog is a sample script to parse the QLogic log entries in log files on the xCAT Management Node output by subnet manager, IB node, chassis, FRU(Field-Replaceable Unit) or a particular node. This script is supported on AIX and Linux management nodes. ## 3.1.2. Supported log file TODO: Since IB monitoring is in development, /var/log/messages is supported to be analyzed by annotatelog. But from xCAT's view, the log to analyze must be xCAT consolidated log, which means this log file must come from xCAT syslog/errorlog monitoring mechanism, such as /var/log/xCAT/errorlog/[xCAT Management Nodes] file. This document will keep update with IB monitoring development. ## **3.1.3.** Syntax The syntax of the annotatelog command will be: ``` annotatelog -f log_file [-s start_time] [-e end_time] { [-i -g guid_file -l link_file] [-S] [-c] [-u]| [-A -g guid_file -l link_file]} {[-n node_list -g guid_file] [-E]} [-h] ``` ### -f log file Specifies a log file fullpath name to analyze; must be xCAT consolidated log got from Qlogic HSM or ESM. #### -s start time Specifies the start time for analysis, where the **start_time** variable has the format ddmmyyhh:mm:ss (day, month, year, hour, minute, and second), if it is not specified, annotatelog will parse the log file from the beginning. #### -e end_time Specifies the end time for analysis, where the **end_time** variable has the format ddmmyyhh:mm:ss (day, month, year, hour, minute, and second), if it is not specified, annotatelog will parse the log file to the end. #### -l link file Specifies a link file fullpath name, which concatenates all '/var/opt/iba/analysis/baseline/fabric*links' files from all fabric management nodes. #### -g guid file Specifies a guid file fullpath name, which has a list of GUIDs as obtained from the "getGuids" script. -E Annotate with node ERRLOG_ON and ERRLOG_OFF information. This can help determine if a disappearance was caused by a node disappearing. It is for AIX nodes only and should be used with -n or -i flag -S Sort the log entries by subnet manager only. -i Sort the log entries by IB node only. -c Sort the log entries by chassis only. -u Sort the log entries by FRU only. -A Output the combination of -i, -S, -c and -u. It should be used with -g and -l flags. #### -n node list Specifies a comma-separated list of xCAT Managed Node host names, IP addresses to look up in log entries, it should be used with -g flag. -h Display usage information. ### 3.1.4. Examples 1). Sort the log entries by subnet manager only. ``` ./annotatelog -f /var/log/messages -S ``` 2). Sort the log entries by chassis only. ``` ./annotatelog -f /var/log/messages -c ``` ## 3.2. getGuids ## 3.2.1. Description getGuids is a sample script to get GUIDs for Infiniband Galaxy HCAs (Host Channel Adapter) and their ports from xCAT Management Nodes. It needs to be run on the xCAT Management Node. It will use a xdsh call to all the xCAT Managed Nodes to get the information about the IB devices. It uses the ibstat command on AIX system or ibv_devinfo command on Linux system to get the information about the IB devices. ### **3.2.2.** Syntax The syntax of the getGuids command will be: ``` getGuids [-h] [-f output_file] ``` ### -f output file Specifies a file full path name that is used to save the GUIDs output. -h Display usage information. ## 3.2.3. Examples 1). xcat05 is an AIX compute node defined in xCAT management node, run getGuid to get guid of xcat05 ``` ./getGuids -f guid file ``` ## 3.3. configCEC ### 3.3.1. Description The configCECs script is written in ksh, and used to create a full system partition for each CECs Managed by the HMC. It will use ssh to login the HMC with the hscroot userid in order to rename the CECs based on a certain pattern specified through command line and create full partition for all the CECs. Since for the large HPC environment the user usually does not use many nodes that are not IH nodes, so we only support Power6 IH servers in this script. If the user wants to do LPAR setup for HV or HE servers, he needs to modify this sample script manually. To specify the name format to be used for the CEC/LPAR/Profile, this script uses the same logic that the 'date' command uses for specifying how to output the date. There are 4 field descriptors that the script will recognize: %F = the frame number of the frame that the CEC is in %N = the relative node number of the CEC in the frame %C = the cage number of the CEC in the frame %S =the serial number of the CEC For example if you want the CEC name to be 'airbus_f<frame#>n<node#>_SN<serial#>', then the format to use would be 'airbus_f%Fn%N_SN%S' The way the script finds the CECs on the HMC is to issue the 'lssyscfg -r frame' command to find all the frames and then issues the 'lssyscfg -r cage' command for each frame to list the contents of each cage position in a given frame. It then starts looking for CECs starting at cage 1 and going through to the last cage. The first CEC found in a frame is assumed to be node 1, the second node found is node two and so on. The script then will assign each CEC a frame number, a node number, a cage number and the Serial number of the CEC which can be used in naming the CEC/LPAR/Profile. If no frames/cages/CECs are found on this HMC, an error message will be displayed. xCAT command rspconfig could be used to setup ssh remote shell from the xCAT Management Node to the HMCs without prompting for the hscroot password; otherwise the user has to type in the password manually for many times. And if the user wants to use the frame number in the name of the CEC or LPAR then the frame number must be set on the frames through HMC Web GUI or HMC command line before issuing this script. This script supports three resource allocate_types to create the full system partition; they are always_all, always_list and conditional. The default method is always_all. always_all indicates to always use the 'all resources' LPAR flag; always_list indicates to always explicitly list the devices in the LPAR; and conditional indicates to use the 'all resources' LPAR flag if not --exclude_hw is found, otherwise use an explicit list for the hardware. As default, this script will assign all the resources to the full system partition, but if the allocate_type is always_list or conditional, then the user could use --exclude_hw flag to exclude those devices that can not be assigned or not supported by the operating system from assignment. The supported hardware names or 'device_id's to exclude are RIO and 10G, RIO indicates Galaxy 1 HCA used for RIO connection in IH nodes; 10G indicates 2-port 10G integrated adapter in IH nodes. Actually, this script will not change the CECs/LPARs directly but creates one or two scripts (Rename_cecs, Build_lpars) in /tmp directory on xCAT MN that will do the changes once the user executes them. The /tmp/Rename_cecs should be run first and then the /tmp/Build_lpars. The reason why we do it this way is to have the user see exactly what HMC commands would be executed and also have a better chance to fine tune the commands if it is needed. Warning: this script will configure all the CECs that managed by this hmc passed in. Please do check the contents in Build_lpars before run it. Remove the commands in Build_lpars that related to the CECs you dodn't want to do any change. ### **3.3.2.** Syntax ``` configCECs -H hmc_list [-c cec_format] [-l lpar_format] [-p profile_format] [--frame_pad_len len_number] [--node_pad_len len_number] [--cage_pad_len len_number] [--allocate_type always_all | always_list | conditional] [--exclude_hw] [-h] -H hmc_list Specifies a comma-separated list of HMC host names, IP addresses to configure CECs on. -c cec_format ``` Specifies the naming format for CEC, the default format is f%Fn%N_SN%S. #### -l lpar format Specifies the naming format for LPAR, the default format is f%Fn%N. ### -p profile_format Specifies the naming format for profile, the default format is the same with lpar format. #### --frame pad len len number Specifies the number of digits used for the frame numbers, it will be zero filled if needed. The default value is no padding. #### --node pad len len number Specifies the number of digits used for the node numbers, it will be zero filled if needed. The default value is no padding. ### --cage_pad_len len_number Specifies the number of digits used for the cage numbers, it will be zero filled if needed. The default value is no padding. #### --allocate_type Specifies the allocation method that is used to allocate resources to full system partition. The supported allocation methods are always all, always list and conditional. The default method is always_all. always_all indicates to always use the 'all resources' LPAR flag; always_list indicates to always explicitly list the devices in the LPAR; and conditional indicates to use the 'all resources' LPAR flag if not --exclude_hw is found, otherwise use an explicit list for the hardware. #### --exclude hw Specifies a comma-separated list of hardware names or 'device id's that do not need to assign. The supported hardware names are RIO and 10G, RIO indicates Galaxy 1 HCA used for RIO connection in IH nodes; 10G indicates 2-port 10G integrated adapter in IH nodes. It can only be used with --allocate type is always_list or conditional. -h Display usage information. ### 3.3.3. Examples 1). If c98m6hmc01 manage one CEC, config the CEC with name Server_fln1_SN0262672 as a single node fln1: ``` ./configCECs -H c98m6hmc01 -c Server_f%Fn%N_SN%S/tmp/Build_lpars \label{eq:configCECs} ``` # **Appendix** | Driver/Libra
ry | Correspo | onding rpms in RHEL5.3 | | |--------------------|--------------------------|------------------------------------|--| | openib | openib-*. el5.noarch.rpm | | | | libib | 32bit | libibcm-*.el5.ppc.rpm | | | | | libibcm-devel-*.el5.ppc.rpm | | | | | libibcm-static-*.el5.ppc.rpm | | | | | libibcommon-*.el5.ppc.rpm | | | | | libibcommon-devel-*.el5.ppc.rpm | | | | | libibcommon-static-*.el5.ppc.rpm | | | | | libibmad-*.el5.ppc.rpm | | | | | libibmad-devel-*.el5.ppc.rpm | | | | | libibmad-static-*.el5.ppc.rpm | | | | | libibumad-*.el5.ppc.rpm | | | | | libibumad-devel-*.el5.ppc.rpm | | | | | libibumad-static-*.el5.ppc.rpm | | | | | libibverbs-*.el5.ppc.rpm | | | | | libibverbs-devel-*.el5.ppc.rpm | | | | | libibverbs-static-*.el5.ppc.rpm | | | | | libibverbs-utils-*.el5.ppc.rpm | | | | 64bit | libibcm-*.el5.ppc64.rpm | | | | | libibcm-devel-*.el5.ppc64.rpm | | | | | libibcm-static-*.el5.ppc64.rpm | | | | | libibcommon-*.el5.ppc64.rpm | | | | | libibcommon-devel-*.el5.ppc64.rpm | | | | | libibcommon-static-*.el5.ppc64.rpm | | | | | libibmad-*.el5.ppc64.rpm | | | | | libibmad-devel-*.el5.ppc64.rpm | | | | | libibmad-static-*.el5.ppc64.rpm | | | | | libibumad-*.el5.ppc64.rpm | | | | | libibumad-devel-*.el5.ppc64.rpm | | | | | libibumad-static-*.el5.ppc64.rpm | | | | | libibverbs-*.el5.ppc64.rpm | |-----------------------------|-------|--| | | | libibverbs-devel-*.el5.ppc64.rpm | | | | libibverbs-static-*.el5.ppc64.rpm | | | | libibverbs-utils(it is used to ship ibv_* commands and depends on 32bit IB libraries) 64bit rpm is not available in RedHatEL5.3. Please install 32bit IB libraries also if user needs both ibv_* commands and the 64bit libraries. | | libehca | 32bit | libehca-*.el5.ppc.rpm | | (for Galaxy1/
Galaxy2 | | libehca-static-*.el5.ppc.rpm | | support) | 64bit | libehca-*.el5.ppc64.rpm | | | | libehca-static-*.el5.ppc64.rpm | | libmthca | 32bit | libmthca-*.el5.ppc.rpm | | (for Mellanox
InfiniHost | | libmthca-static-*.el5.ppc.rpm | | support) | 64bit | libmthca-*.el5.ppc64.rpm | | | | libmthca-static-*.el5.ppc64.rpm | | | 32bit | libmlx4-*.el5.ppc.rpm | | libmlx4 | | libmlx4-static-*.el5.ppc.rpm | | (for Mellanox | 64bit | libmlx4-*.el5.ppc64.rpm | | ConnectX support) | | libmlx4-static-*.el5.ppc64.rpm | RedHatEL5.3 only ships 32bit libibverbs-utils(it is used to ship ibv_* commands) package in CDs/DVD, which depends on 32bit IB libraries, so it will fail to be installed if only 64bit libraries exist on the system. For the user who needs both these IB commands and the 64bit libraries, please install both 32bit and 64bit library packages. | Platforms | Driver/Library | |-----------|------------------------------| | SLES11 | ofed-*.ppc64.rpm | | | ofed-kmp-default-*.ppc64.rpm | | | ofed-kmp-ppc64-*.ppc64.rpm | | | opensm-*.ppc64.rpm | | | libcxgb3-rdmav2-*.ppc64.rpm | | | libehca-rdmav2-*.ppc64.rpm | | | libibcm-*.ppc64.rpm | | | libibcommon1-*.ppc64.rpm | | | libibmad-*.ppc64.rpm | libibumad-*.ppc64.rpm libibverbs-*.ppc64.rpm libipathverbs-*.ppc64.rpm libmlx4-rdmav2-*.ppc64.rpm libmthca-rdmav2-*.ppc64.rpm librdmacm-*.ppc64.rpm libsdp-*.ppc64.rpm mpi-selector-*.ppc64.rpm mstflint-*.ppc64.rpm libcxgb3-64bit-*.ppc.rpm SLES₁₀ libcxgb3-devel-*.ppc.rpm libcxgb3-devel-64bit-*.ppc.rpm libehca-*.ppc.rpm libehca-64bit-*.ppc.rpm libehca-devel-*.ppc.rpm libehca-devel-64bit-*.ppc.rpm libibcm-*.ppc.rpm libibcm-64bit-*.ppc.rpm libibcm-devel-*.ppc.rpm libibcm-devel-64bit-*.ppc.rpm libibcommon-*.ppc.rpm libibcommon-64bit-*.ppc.rpm libibcommon-devel-*.ppc.rpm libibcommon-devel-64bit-*.ppc.rpm libibmad-*.ppc.rpm libibmad-64bit-*.ppc.rpm libibmad-devel-*.ppc.rpm libibmad-devel-64bit-*.ppc.rpm libibumad-*.ppc.rpm libibumad-64bit-*.ppc.rpm libibumad-devel-*.ppc.rpm libibumad-devel-64bit-*.ppc.rpm libibverbs-*.ppc.rpm libibverbs-64bit-*.ppc.rpm libibverbs-devel-*.ppc.rpm libibverbs-devel-64bit-*.ppc.rpm libipathverbs-*.ppc.rpm libipathverbs-64bit-*.ppc.rpm libipathverbs-devel-*.ppc.rpm libipathverbs-devel-64bit-*.ppc.rpm libmlx4-*.ppc.rpm libmlx4-64bit-*.ppc.rpm libmlx4-devel-*.ppc.rpm libmlx4-devel-64bit-*.ppc.rpm libmthca-*.ppc.rpm libmthca-64bit-*.ppc.rpm libmthca-devel-*.ppc.rpm libmthca-devel-64bit-*.ppc.rpm librdmacm-1.0.6-*.ppc.rpm librdmacm-64bit-*.ppc.rpm librdmacm-devel-*.ppc.rpm librdmacm-devel-64bit-*.ppc.rpm libsdp-*.ppc.rpm libsdp-64bit-*.ppc.rpm libsdp-devel-*.ppc.rpm libsdp-devel-64bit-*.ppc.rpm mpi-selector-*.ppc.rpm mstflint-*.ppc.rpm mvapich2-*.ppc.rpm mvapich2-64bit-*.ppc.rpm mvapich2-devel-*.ppc.rpm mvapich2-devel-64bit-*.ppc.rpm ofed-1.3-*.ppc.rpm ofed-cxgb3-NIC-kmp-ppc64-*.ppc.rpm ofed-doc-*.ppc.rpm ofed-kmp-ppc64-*.ppc.rpm open-iscsi-*.ppc.rpm opensm-*.ppc.rpm opensm-64bit-*.ppc.rpm opensm-devel-*.ppc.rpm opensm-devel-64bit-*.ppc.rpm perftest-*.ppc.rpm qlvnictools-*.ppc.rpm rds-tools-*.ppc.rpm release-notes-as-*.ppc.rpm ruby-*.ppc.rpm sdpnetstat-*.ppc.rpm srptools-*.ppc.rpm tvflash-*.ppc.rpm