2
0
mirror of https://github.com/xcat2/xNBA.git synced 2024-12-16 00:01:34 +00:00
xNBA/src/drivers/net/eepro.c
2006-09-26 21:06:29 +00:00

627 lines
19 KiB
C

#ifdef ALLMULTI
#error multicast support is not yet implemented
#endif
/**************************************************************************
Etherboot - BOOTP/TFTP Bootstrap Program
Intel EEPRO/10 NIC driver for Etherboot
Adapted from Linux eepro.c from kernel 2.2.17
This board accepts a 32 pin EEPROM (29C256), however a test with a
27C010 shows that this EPROM also works in the socket, but it's not clear
how repeatably. The two top address pins appear to be held low, thus
the bottom 32kB of the 27C010 is visible in the CPU's address space.
To be sure you could put 4 copies of the code in the 27C010, then
it doesn't matter whether the extra lines are held low or high, just
hopefully not floating as CMOS chips don't like floating inputs.
Be careful with seating the EPROM as the socket on my board actually
has 34 pins, the top row of 2 are not used.
***************************************************************************/
/*
timlegge 2005-05-18 remove the relocation changes cards that
write directly to the hardware don't need it
*/
/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2, or (at
* your option) any later version.
*/
#include "etherboot.h"
#include "nic.h"
#include "isa.h"
#include "timer.h"
#include <gpxe/ethernet.h>
/* Different 82595 chips */
#define LAN595 0
#define LAN595TX 1
#define LAN595FX 2
#define LAN595FX_10ISA 3
#define SLOW_DOWN inb(0x80);
/* The station (ethernet) address prefix, used for IDing the board. */
#define SA_ADDR0 0x00 /* Etherexpress Pro/10 */
#define SA_ADDR1 0xaa
#define SA_ADDR2 0x00
#define GetBit(x,y) ((x & (1<<y))>>y)
/* EEPROM Word 0: */
#define ee_PnP 0 /* Plug 'n Play enable bit */
#define ee_Word1 1 /* Word 1? */
#define ee_BusWidth 2 /* 8/16 bit */
#define ee_FlashAddr 3 /* Flash Address */
#define ee_FlashMask 0x7 /* Mask */
#define ee_AutoIO 6 /* */
#define ee_reserved0 7 /* =0! */
#define ee_Flash 8 /* Flash there? */
#define ee_AutoNeg 9 /* Auto Negotiation enabled? */
#define ee_IO0 10 /* IO Address LSB */
#define ee_IO0Mask 0x /*...*/
#define ee_IO1 15 /* IO MSB */
/* EEPROM Word 1: */
#define ee_IntSel 0 /* Interrupt */
#define ee_IntMask 0x7
#define ee_LI 3 /* Link Integrity 0= enabled */
#define ee_PC 4 /* Polarity Correction 0= enabled */
#define ee_TPE_AUI 5 /* PortSelection 1=TPE */
#define ee_Jabber 6 /* Jabber prevention 0= enabled */
#define ee_AutoPort 7 /* Auto Port Selection 1= Disabled */
#define ee_SMOUT 8 /* SMout Pin Control 0= Input */
#define ee_PROM 9 /* Flash EPROM / PROM 0=Flash */
#define ee_reserved1 10 /* .. 12 =0! */
#define ee_AltReady 13 /* Alternate Ready, 0=normal */
#define ee_reserved2 14 /* =0! */
#define ee_Duplex 15
/* Word2,3,4: */
#define ee_IA5 0 /*bit start for individual Addr Byte 5 */
#define ee_IA4 8 /*bit start for individual Addr Byte 5 */
#define ee_IA3 0 /*bit start for individual Addr Byte 5 */
#define ee_IA2 8 /*bit start for individual Addr Byte 5 */
#define ee_IA1 0 /*bit start for individual Addr Byte 5 */
#define ee_IA0 8 /*bit start for individual Addr Byte 5 */
/* Word 5: */
#define ee_BNC_TPE 0 /* 0=TPE */
#define ee_BootType 1 /* 00=None, 01=IPX, 10=ODI, 11=NDIS */
#define ee_BootTypeMask 0x3
#define ee_NumConn 3 /* Number of Connections 0= One or Two */
#define ee_FlashSock 4 /* Presence of Flash Socket 0= Present */
#define ee_PortTPE 5
#define ee_PortBNC 6
#define ee_PortAUI 7
#define ee_PowerMgt 10 /* 0= disabled */
#define ee_CP 13 /* Concurrent Processing */
#define ee_CPMask 0x7
/* Word 6: */
#define ee_Stepping 0 /* Stepping info */
#define ee_StepMask 0x0F
#define ee_BoardID 4 /* Manucaturer Board ID, reserved */
#define ee_BoardMask 0x0FFF
/* Word 7: */
#define ee_INT_TO_IRQ 0 /* int to IRQ Mapping = 0x1EB8 for Pro/10+ */
#define ee_FX_INT2IRQ 0x1EB8 /* the _only_ mapping allowed for FX chips */
/*..*/
#define ee_SIZE 0x40 /* total EEprom Size */
#define ee_Checksum 0xBABA /* initial and final value for adding checksum */
/* Card identification via EEprom: */
#define ee_addr_vendor 0x10 /* Word offset for EISA Vendor ID */
#define ee_addr_id 0x11 /* Word offset for Card ID */
#define ee_addr_SN 0x12 /* Serial Number */
#define ee_addr_CRC_8 0x14 /* CRC over last thee Bytes */
#define ee_vendor_intel0 0x25 /* Vendor ID Intel */
#define ee_vendor_intel1 0xD4
#define ee_id_eepro10p0 0x10 /* ID for eepro/10+ */
#define ee_id_eepro10p1 0x31
/* now this section could be used by both boards: the oldies and the ee10:
* ee10 uses tx buffer before of rx buffer and the oldies the inverse.
* (aris)
*/
#define RAM_SIZE 0x8000
#define RCV_HEADER 8
#define RCV_DEFAULT_RAM 0x6000
#define RCV_RAM rcv_ram
static unsigned rcv_ram = RCV_DEFAULT_RAM;
#define XMT_HEADER 8
#define XMT_RAM (RAM_SIZE - RCV_RAM)
#define XMT_START ((rcv_start + RCV_RAM) % RAM_SIZE)
#define RCV_LOWER_LIMIT (rcv_start >> 8)
#define RCV_UPPER_LIMIT (((rcv_start + RCV_RAM) - 2) >> 8)
#define XMT_LOWER_LIMIT (XMT_START >> 8)
#define XMT_UPPER_LIMIT (((XMT_START + XMT_RAM) - 2) >> 8)
#define RCV_START_PRO 0x00
#define RCV_START_10 XMT_RAM
/* by default the old driver */
static unsigned rcv_start = RCV_START_PRO;
#define RCV_DONE 0x0008
#define RX_OK 0x2000
#define RX_ERROR 0x0d81
#define TX_DONE_BIT 0x0080
#define CHAIN_BIT 0x8000
#define XMT_STATUS 0x02
#define XMT_CHAIN 0x04
#define XMT_COUNT 0x06
#define BANK0_SELECT 0x00
#define BANK1_SELECT 0x40
#define BANK2_SELECT 0x80
/* Bank 0 registers */
#define COMMAND_REG 0x00 /* Register 0 */
#define MC_SETUP 0x03
#define XMT_CMD 0x04
#define DIAGNOSE_CMD 0x07
#define RCV_ENABLE_CMD 0x08
#define RCV_DISABLE_CMD 0x0a
#define STOP_RCV_CMD 0x0b
#define RESET_CMD 0x0e
#define POWER_DOWN_CMD 0x18
#define RESUME_XMT_CMD 0x1c
#define SEL_RESET_CMD 0x1e
#define STATUS_REG 0x01 /* Register 1 */
#define RX_INT 0x02
#define TX_INT 0x04
#define EXEC_STATUS 0x30
#define ID_REG 0x02 /* Register 2 */
#define R_ROBIN_BITS 0xc0 /* round robin counter */
#define ID_REG_MASK 0x2c
#define ID_REG_SIG 0x24
#define AUTO_ENABLE 0x10
#define INT_MASK_REG 0x03 /* Register 3 */
#define RX_STOP_MASK 0x01
#define RX_MASK 0x02
#define TX_MASK 0x04
#define EXEC_MASK 0x08
#define ALL_MASK 0x0f
#define IO_32_BIT 0x10
#define RCV_BAR 0x04 /* The following are word (16-bit) registers */
#define RCV_STOP 0x06
#define XMT_BAR_PRO 0x0a
#define XMT_BAR_10 0x0b
static unsigned xmt_bar = XMT_BAR_PRO;
#define HOST_ADDRESS_REG 0x0c
#define IO_PORT 0x0e
#define IO_PORT_32_BIT 0x0c
/* Bank 1 registers */
#define REG1 0x01
#define WORD_WIDTH 0x02
#define INT_ENABLE 0x80
#define INT_NO_REG 0x02
#define RCV_LOWER_LIMIT_REG 0x08
#define RCV_UPPER_LIMIT_REG 0x09
#define XMT_LOWER_LIMIT_REG_PRO 0x0a
#define XMT_UPPER_LIMIT_REG_PRO 0x0b
#define XMT_LOWER_LIMIT_REG_10 0x0b
#define XMT_UPPER_LIMIT_REG_10 0x0a
static unsigned xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_PRO;
static unsigned xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_PRO;
/* Bank 2 registers */
#define XMT_Chain_Int 0x20 /* Interrupt at the end of the transmit chain */
#define XMT_Chain_ErrStop 0x40 /* Interrupt at the end of the chain even if there are errors */
#define RCV_Discard_BadFrame 0x80 /* Throw bad frames away, and continue to receive others */
#define REG2 0x02
#define PRMSC_Mode 0x01
#define Multi_IA 0x20
#define REG3 0x03
#define TPE_BIT 0x04
#define BNC_BIT 0x20
#define REG13 0x0d
#define FDX 0x00
#define A_N_ENABLE 0x02
#define I_ADD_REG0 0x04
#define I_ADD_REG1 0x05
#define I_ADD_REG2 0x06
#define I_ADD_REG3 0x07
#define I_ADD_REG4 0x08
#define I_ADD_REG5 0x09
#define EEPROM_REG_PRO 0x0a
#define EEPROM_REG_10 0x0b
static unsigned eeprom_reg = EEPROM_REG_PRO;
#define EESK 0x01
#define EECS 0x02
#define EEDI 0x04
#define EEDO 0x08
/* The horrible routine to read a word from the serial EEPROM. */
/* IMPORTANT - the 82595 will be set to Bank 0 after the eeprom is read */
/* The delay between EEPROM clock transitions. */
#define eeprom_delay() { udelay(40); }
#define EE_READ_CMD (6 << 6)
/* do a full reset; data sheet asks for 250us delay */
#define eepro_full_reset(ioaddr) outb(RESET_CMD, ioaddr); udelay(255);
/* do a nice reset */
#define eepro_sel_reset(ioaddr) { \
outb(SEL_RESET_CMD, ioaddr); \
SLOW_DOWN; \
SLOW_DOWN; \
}
/* clear all interrupts */
#define eepro_clear_int(ioaddr) outb(ALL_MASK, ioaddr + STATUS_REG)
/* enable rx */
#define eepro_en_rx(ioaddr) outb(RCV_ENABLE_CMD, ioaddr)
/* disable rx */
#define eepro_dis_rx(ioaddr) outb(RCV_DISABLE_CMD, ioaddr)
/* switch bank */
#define eepro_sw2bank0(ioaddr) outb(BANK0_SELECT, ioaddr)
#define eepro_sw2bank1(ioaddr) outb(BANK1_SELECT, ioaddr)
#define eepro_sw2bank2(ioaddr) outb(BANK2_SELECT, ioaddr)
static unsigned int rx_start, tx_start;
static int tx_last;
static unsigned int tx_end;
static int eepro = 0;
static unsigned int mem_start, mem_end = RCV_DEFAULT_RAM / 1024;
/**************************************************************************
RESET - Reset adapter
***************************************************************************/
static void eepro_reset(struct nic *nic)
{
int temp_reg, i;
/* put the card in its initial state */
eepro_sw2bank2(nic->ioaddr); /* be careful, bank2 now */
temp_reg = inb(nic->ioaddr + eeprom_reg);
DBG("Stepping %d\n", temp_reg >> 5);
if (temp_reg & 0x10) /* check the TurnOff Enable bit */
outb(temp_reg & 0xEF, nic->ioaddr + eeprom_reg);
for (i = 0; i < ETH_ALEN; i++) /* fill the MAC address */
outb(nic->node_addr[i], nic->ioaddr + I_ADD_REG0 + i);
temp_reg = inb(nic->ioaddr + REG1);
/* setup Transmit Chaining and discard bad RCV frames */
outb(temp_reg | XMT_Chain_Int | XMT_Chain_ErrStop
| RCV_Discard_BadFrame, nic->ioaddr + REG1);
temp_reg = inb(nic->ioaddr + REG2); /* match broadcast */
outb(temp_reg | 0x14, nic->ioaddr + REG2);
temp_reg = inb(nic->ioaddr + REG3);
outb(temp_reg & 0x3F, nic->ioaddr + REG3); /* clear test mode */
/* set the receiving mode */
eepro_sw2bank1(nic->ioaddr); /* be careful, bank1 now */
/* initialise the RCV and XMT upper and lower limits */
outb(RCV_LOWER_LIMIT, nic->ioaddr + RCV_LOWER_LIMIT_REG);
outb(RCV_UPPER_LIMIT, nic->ioaddr + RCV_UPPER_LIMIT_REG);
outb(XMT_LOWER_LIMIT, nic->ioaddr + xmt_lower_limit_reg);
outb(XMT_UPPER_LIMIT, nic->ioaddr + xmt_upper_limit_reg);
eepro_sw2bank0(nic->ioaddr); /* Switch back to bank 0 */
eepro_clear_int(nic->ioaddr);
/* Initialise RCV */
outw(rx_start = (RCV_LOWER_LIMIT << 8), nic->ioaddr + RCV_BAR);
outw(((RCV_UPPER_LIMIT << 8) | 0xFE), nic->ioaddr + RCV_STOP);
/* Make sure 1st poll won't find a valid packet header */
outw((RCV_LOWER_LIMIT << 8), nic->ioaddr + HOST_ADDRESS_REG);
outw(0, nic->ioaddr + IO_PORT);
/* Intialise XMT */
outw((XMT_LOWER_LIMIT << 8), nic->ioaddr + xmt_bar);
eepro_sel_reset(nic->ioaddr);
tx_start = tx_end = (XMT_LOWER_LIMIT << 8);
tx_last = 0;
eepro_en_rx(nic->ioaddr);
}
/**************************************************************************
POLL - Wait for a frame
***************************************************************************/
static int eepro_poll(struct nic *nic, int retrieve)
{
unsigned int rcv_car = rx_start;
unsigned int rcv_event, rcv_status, rcv_next_frame, rcv_size;
/* return true if there's an ethernet packet ready to read */
/* nic->packet should contain data on return */
/* nic->packetlen should contain length of data */
#if 0
if ((inb(nic->ioaddr + STATUS_REG) & 0x40) == 0)
return (0);
outb(0x40, nic->ioaddr + STATUS_REG);
#endif
outw(rcv_car, nic->ioaddr + HOST_ADDRESS_REG);
rcv_event = inw(nic->ioaddr + IO_PORT);
if (rcv_event != RCV_DONE)
return (0);
/* FIXME: I'm guessing this might not work with this card, since
it looks like once a rcv_event is started it must be completed.
maybe there's another way. */
if ( ! retrieve ) return 1;
rcv_status = inw(nic->ioaddr + IO_PORT);
rcv_next_frame = inw(nic->ioaddr + IO_PORT);
rcv_size = inw(nic->ioaddr + IO_PORT);
#if 0
printf("%hX %hX %d %hhX\n", rcv_status, rcv_next_frame, rcv_size,
inb(nic->ioaddr + STATUS_REG));
#endif
if ((rcv_status & (RX_OK|RX_ERROR)) != RX_OK) {
printf("Receive error %hX\n", rcv_status);
return (0);
}
rcv_size &= 0x3FFF;
insw(nic->ioaddr + IO_PORT, nic->packet, ((rcv_size + 3) >> 1));
#if 0
{
int i;
for (i = 0; i < 48; i++) {
printf("%hhX", nic->packet[i]);
putchar(i % 16 == 15 ? '\n' : ' ');
}
}
#endif
nic->packetlen = rcv_size;
rcv_car = (rx_start + RCV_HEADER + rcv_size);
rx_start = rcv_next_frame;
/*
hex_dump(rcv_car, nic->packetlen);
*/
if (rcv_car == 0)
rcv_car = ((RCV_UPPER_LIMIT << 8) | 0xff);
outw(rcv_car - 1, nic->ioaddr + RCV_STOP);
return (1);
}
/**************************************************************************
TRANSMIT - Transmit a frame
***************************************************************************/
static void eepro_transmit(
struct nic *nic,
const char *d, /* Destination */
unsigned int t, /* Type */
unsigned int s, /* size */
const char *p) /* Packet */
{
unsigned int status, tx_available, last, end, length;
unsigned short type;
int boguscount = 20;
length = s + ETH_HLEN;
if (tx_end > tx_start)
tx_available = XMT_RAM - (tx_end - tx_start);
else if (tx_end < tx_start)
tx_available = tx_start - tx_end;
else
tx_available = XMT_RAM;
last = tx_end;
end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
if (end >= (XMT_UPPER_LIMIT << 8)) {
last = (XMT_LOWER_LIMIT << 8);
end = last + (((length + 3) >> 1) << 1) + XMT_HEADER;
}
outw(last, nic->ioaddr + HOST_ADDRESS_REG);
outw(XMT_CMD, nic->ioaddr + IO_PORT);
outw(0, nic->ioaddr + IO_PORT);
outw(end, nic->ioaddr + IO_PORT);
outw(length, nic->ioaddr + IO_PORT);
outsw(nic->ioaddr + IO_PORT, d, ETH_ALEN / 2);
outsw(nic->ioaddr + IO_PORT, nic->node_addr, ETH_ALEN / 2);
type = htons(t);
outsw(nic->ioaddr + IO_PORT, &type, sizeof(type) / 2);
outsw(nic->ioaddr + IO_PORT, p, (s + 3) >> 1);
/* A dummy read to flush the DRAM write pipeline */
status = inw(nic->ioaddr + IO_PORT);
outw(last, nic->ioaddr + xmt_bar);
outb(XMT_CMD, nic->ioaddr);
tx_start = last;
tx_last = last;
tx_end = end;
#if 0
printf("%d %d\n", tx_start, tx_end);
#endif
while (boguscount > 0) {
if (((status = inw(nic->ioaddr + IO_PORT)) & TX_DONE_BIT) == 0) {
udelay(40);
boguscount--;
continue;
}
if ((status & 0x2000) == 0) {
DBG("Transmit status %hX\n", status);
}
}
}
/**************************************************************************
DISABLE - Turn off ethernet interface
***************************************************************************/
static void eepro_disable ( struct nic *nic, struct isa_device *isa __unused ) {
eepro_sw2bank0(nic->ioaddr); /* Switch to bank 0 */
/* Flush the Tx and disable Rx */
outb(STOP_RCV_CMD, nic->ioaddr);
tx_start = tx_end = (XMT_LOWER_LIMIT << 8);
tx_last = 0;
/* Reset the 82595 */
eepro_full_reset(nic->ioaddr);
}
/**************************************************************************
DISABLE - Enable, Disable, or Force interrupts
***************************************************************************/
static void eepro_irq(struct nic *nic __unused, irq_action_t action __unused)
{
switch ( action ) {
case DISABLE :
break;
case ENABLE :
break;
case FORCE :
break;
}
}
static int read_eeprom(uint16_t ioaddr, int location)
{
int i;
unsigned short retval = 0;
int ee_addr = ioaddr + eeprom_reg;
int read_cmd = location | EE_READ_CMD;
int ctrl_val = EECS;
if (eepro == LAN595FX_10ISA) {
eepro_sw2bank1(ioaddr);
outb(0x00, ioaddr + STATUS_REG);
}
eepro_sw2bank2(ioaddr);
outb(ctrl_val, ee_addr);
/* shift the read command bits out */
for (i = 8; i >= 0; i--) {
short outval = (read_cmd & (1 << i)) ? ctrl_val | EEDI : ctrl_val;
outb(outval, ee_addr);
outb(outval | EESK, ee_addr); /* EEPROM clock tick */
eeprom_delay();
outb(outval, ee_addr); /* finish EEPROM clock tick */
eeprom_delay();
}
outb(ctrl_val, ee_addr);
for (i = 16; i > 0; i--) {
outb(ctrl_val | EESK, ee_addr);
eeprom_delay();
retval = (retval << 1) | ((inb(ee_addr) & EEDO) ? 1 : 0);
outb(ctrl_val, ee_addr);
eeprom_delay();
}
/* terminate the EEPROM access */
ctrl_val &= ~EECS;
outb(ctrl_val | EESK, ee_addr);
eeprom_delay();
outb(ctrl_val, ee_addr);
eeprom_delay();
eepro_sw2bank0(ioaddr);
return (retval);
}
static int eepro_probe1 ( isa_probe_addr_t ioaddr ) {
int id, counter;
id = inb(ioaddr + ID_REG);
if ((id & ID_REG_MASK) != ID_REG_SIG)
return (0);
counter = id & R_ROBIN_BITS;
if (((id = inb(ioaddr + ID_REG)) & R_ROBIN_BITS) != (counter + 0x40))
return (0);
/* yes the 82595 has been found */
return (1);
}
static struct nic_operations eepro_operations = {
.connect = dummy_connect,
.poll = eepro_poll,
.transmit = eepro_transmit,
.irq = eepro_irq,
};
/**************************************************************************
PROBE - Look for an adapter, this routine's visible to the outside
***************************************************************************/
static int eepro_probe ( struct nic *nic, struct isa_device *isa ) {
int i, l_eepro = 0;
union {
unsigned char caddr[ETH_ALEN];
unsigned short saddr[ETH_ALEN/2];
} station_addr;
nic->irqno = 0;
isa_fill_nic ( nic, isa );
nic->ioaddr = isa->ioaddr;
station_addr.saddr[2] = read_eeprom(nic->ioaddr,2);
if ( ( station_addr.saddr[2] == 0x0000 ) ||
( station_addr.saddr[2] == 0xFFFF ) ) {
l_eepro = 3;
eepro = LAN595FX_10ISA;
eeprom_reg= EEPROM_REG_10;
rcv_start = RCV_START_10;
xmt_lower_limit_reg = XMT_LOWER_LIMIT_REG_10;
xmt_upper_limit_reg = XMT_UPPER_LIMIT_REG_10;
station_addr.saddr[2] = read_eeprom(nic->ioaddr,2);
}
station_addr.saddr[1] = read_eeprom(nic->ioaddr,3);
station_addr.saddr[0] = read_eeprom(nic->ioaddr,4);
if (l_eepro)
isa->name = "Intel EtherExpress 10 ISA";
else if (read_eeprom(nic->ioaddr,7) == ee_FX_INT2IRQ) {
isa->name = "Intel EtherExpress Pro/10+ ISA";
l_eepro = 2;
} else if (station_addr.saddr[0] == SA_ADDR1) {
isa->name = "Intel EtherExpress Pro/10 ISA";
l_eepro = 1;
} else {
l_eepro = 0;
isa->name = "Intel 82595-based LAN card";
}
station_addr.saddr[0] = swap16(station_addr.saddr[0]);
station_addr.saddr[1] = swap16(station_addr.saddr[1]);
station_addr.saddr[2] = swap16(station_addr.saddr[2]);
for (i = 0; i < ETH_ALEN; i++) {
nic->node_addr[i] = station_addr.caddr[i];
}
DBG ( "%s ioaddr %#hX, addr %s", isa->name, nic->ioaddr, eth_ntoa ( nic->node_addr ) );
mem_start = RCV_LOWER_LIMIT << 8;
if ((mem_end & 0x3F) < 3 || (mem_end & 0x3F) > 29)
mem_end = RCV_UPPER_LIMIT << 8;
else {
mem_end = mem_end * 1024 + (RCV_LOWER_LIMIT << 8);
rcv_ram = mem_end - (RCV_LOWER_LIMIT << 8);
}
printf(", Rx mem %dK, if %s\n", (mem_end - mem_start) >> 10,
GetBit(read_eeprom(nic->ioaddr,5), ee_BNC_TPE) ? "BNC" : "TP");
eepro_reset(nic);
/* point to NIC specific routines */
nic->nic_op = &eepro_operations;
return 1;
}
static isa_probe_addr_t eepro_probe_addrs[] = {
0x300, 0x210, 0x240, 0x280, 0x2C0, 0x200, 0x320, 0x340, 0x360,
};
ISA_DRIVER ( eepro_driver, eepro_probe_addrs, eepro_probe1,
GENERIC_ISAPNP_VENDOR, 0x828a );
DRIVER ( "eepro", nic_driver, isa_driver, eepro_driver,
eepro_probe, eepro_disable );
ISA_ROM ( "eepro", "Intel Etherexpress Pro/10" );