2
0
mirror of https://github.com/xcat2/xNBA.git synced 2025-04-15 17:49:26 +00:00
xNBA/src/drivers/net/phantom/phantom.c

1942 lines
56 KiB
C

/*
* Copyright (C) 2008 Michael Brown <mbrown@fensystems.co.uk>.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of the
* License, or any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <errno.h>
#include <assert.h>
#include <byteswap.h>
#include <gpxe/pci.h>
#include <gpxe/malloc.h>
#include <gpxe/iobuf.h>
#include <gpxe/netdevice.h>
#include <gpxe/if_ether.h>
#include <gpxe/ethernet.h>
#include <gpxe/spi.h>
#include "phantom.h"
/**
* @file
*
* NetXen Phantom NICs
*
*/
/** Maximum time to wait for SPI lock */
#define PHN_SPI_LOCK_TIMEOUT_MS 100
/** Maximum time to wait for SPI command to be issued */
#define PHN_SPI_CMD_TIMEOUT_MS 100
/** Maximum time to wait for command PEG to initialise
*
* BUGxxxx
*
* The command PEG will currently report initialisation complete only
* when at least one PHY has detected a link (so that the global PHY
* clock can be set to 10G/1G as appropriate). This can take a very,
* very long time.
*
* A future firmware revision should decouple PHY initialisation from
* firmware initialisation, at which point the command PEG will report
* initialisation complete much earlier, and this timeout can be
* reduced.
*/
#define PHN_CMDPEG_INIT_TIMEOUT_SEC 50
/** Maximum time to wait for receive PEG to initialise */
#define PHN_RCVPEG_INIT_TIMEOUT_SEC 2
/** Maximum time to wait for firmware to accept a command */
#define PHN_ISSUE_CMD_TIMEOUT_MS 2000
/** Maximum time to wait for test memory */
#define PHN_TEST_MEM_TIMEOUT_MS 100
/** Link state poll frequency
*
* The link state will be checked once in every N calls to poll().
*/
#define PHN_LINK_POLL_FREQUENCY 4096
/** Number of RX descriptors */
#define PHN_NUM_RDS 32
/** RX maximum fill level. Must be strictly less than PHN_NUM_RDS. */
#define PHN_RDS_MAX_FILL 16
/** RX buffer size */
#define PHN_RX_BUFSIZE ( 32 /* max LL padding added by card */ + \
ETH_FRAME_LEN )
/** Number of RX status descriptors */
#define PHN_NUM_SDS 32
/** Number of TX descriptors */
#define PHN_NUM_CDS 8
/** A Phantom descriptor ring set */
struct phantom_descriptor_rings {
/** RX descriptors */
struct phantom_rds rds[PHN_NUM_RDS];
/** RX status descriptors */
struct phantom_sds sds[PHN_NUM_SDS];
/** TX descriptors */
union phantom_cds cds[PHN_NUM_CDS];
/** TX consumer index */
volatile uint32_t cmd_cons;
};
/** A Phantom NIC port */
struct phantom_nic_port {
/** Phantom NIC containing this port */
struct phantom_nic *phantom;
/** Port number */
unsigned int port;
/** RX context ID */
uint16_t rx_context_id;
/** RX descriptor producer CRB offset */
unsigned long rds_producer_crb;
/** RX status descriptor consumer CRB offset */
unsigned long sds_consumer_crb;
/** RX producer index */
unsigned int rds_producer_idx;
/** RX consumer index */
unsigned int rds_consumer_idx;
/** RX status consumer index */
unsigned int sds_consumer_idx;
/** RX I/O buffers */
struct io_buffer *rds_iobuf[PHN_RDS_MAX_FILL];
/** TX context ID */
uint16_t tx_context_id;
/** TX descriptor producer CRB offset */
unsigned long cds_producer_crb;
/** TX producer index */
unsigned int cds_producer_idx;
/** TX consumer index */
unsigned int cds_consumer_idx;
/** TX I/O buffers */
struct io_buffer *cds_iobuf[PHN_NUM_CDS];
/** Link state poll timer */
unsigned long link_poll_timer;
/** Descriptor rings */
struct phantom_descriptor_rings *desc;
};
/** RX context creation request and response buffers */
struct phantom_create_rx_ctx_rqrsp {
struct {
struct nx_hostrq_rx_ctx_s rx_ctx;
struct nx_hostrq_rds_ring_s rds;
struct nx_hostrq_sds_ring_s sds;
} __unm_dma_aligned hostrq;
struct {
struct nx_cardrsp_rx_ctx_s rx_ctx;
struct nx_cardrsp_rds_ring_s rds;
struct nx_cardrsp_sds_ring_s sds;
} __unm_dma_aligned cardrsp;
};
/** TX context creation request and response buffers */
struct phantom_create_tx_ctx_rqrsp {
struct {
struct nx_hostrq_tx_ctx_s tx_ctx;
} __unm_dma_aligned hostrq;
struct {
struct nx_cardrsp_tx_ctx_s tx_ctx;
} __unm_dma_aligned cardrsp;
};
/** A Phantom DMA buffer area */
union phantom_dma_buffer {
/** Dummy area required for (read-only) self-tests */
uint8_t dummy_dma[UNM_DUMMY_DMA_SIZE];
/** RX context creation request and response buffers */
struct phantom_create_rx_ctx_rqrsp create_rx_ctx;
/** TX context creation request and response buffers */
struct phantom_create_tx_ctx_rqrsp create_tx_ctx;
};
/** A Phantom NIC */
struct phantom_nic {
/** BAR 0 */
void *bar0;
/** Current CRB window */
unsigned long crb_window;
/** CRB window access method */
unsigned long ( *crb_access ) ( struct phantom_nic *phantom,
unsigned long reg );
/** Number of ports */
int num_ports;
/** Per-port network devices */
struct net_device *netdev[UNM_FLASH_NUM_PORTS];
/** DMA buffers */
union phantom_dma_buffer *dma_buf;
/** Flash memory SPI bus */
struct spi_bus spi_bus;
/** Flash memory SPI device */
struct spi_device flash;
/** Last known link state */
uint32_t link_state;
};
/***************************************************************************
*
* CRB register access
*
*/
/**
* Prepare for access to CRB register via 128MB BAR
*
* @v phantom Phantom NIC
* @v reg Register offset within abstract address space
* @ret offset Register offset within PCI BAR0
*/
static unsigned long phantom_crb_access_128m ( struct phantom_nic *phantom,
unsigned long reg ) {
static const uint32_t reg_window[] = {
[UNM_CRB_BLK_PCIE] = 0x0000000,
[UNM_CRB_BLK_CAM] = 0x2000000,
[UNM_CRB_BLK_ROMUSB] = 0x2000000,
[UNM_CRB_BLK_TEST] = 0x0000000,
};
static const uint32_t reg_bases[] = {
[UNM_CRB_BLK_PCIE] = 0x6100000,
[UNM_CRB_BLK_CAM] = 0x6200000,
[UNM_CRB_BLK_ROMUSB] = 0x7300000,
[UNM_CRB_BLK_TEST] = 0x6200000,
};
unsigned int block = UNM_CRB_BLK ( reg );
unsigned long offset = UNM_CRB_OFFSET ( reg );
uint32_t window = reg_window[block];
uint32_t verify_window;
if ( phantom->crb_window != window ) {
/* Write to the CRB window register */
writel ( window, phantom->bar0 + UNM_128M_CRB_WINDOW );
/* Ensure that the write has reached the card */
verify_window = readl ( phantom->bar0 + UNM_128M_CRB_WINDOW );
assert ( verify_window == window );
/* Record new window */
phantom->crb_window = window;
}
return ( reg_bases[block] + offset );
}
/**
* Prepare for access to CRB register via 32MB BAR
*
* @v phantom Phantom NIC
* @v reg Register offset within abstract address space
* @ret offset Register offset within PCI BAR0
*/
static unsigned long phantom_crb_access_32m ( struct phantom_nic *phantom,
unsigned long reg ) {
static const uint32_t reg_window[] = {
[UNM_CRB_BLK_PCIE] = 0x0000000,
[UNM_CRB_BLK_CAM] = 0x2000000,
[UNM_CRB_BLK_ROMUSB] = 0x2000000,
[UNM_CRB_BLK_TEST] = 0x0000000,
};
static const uint32_t reg_bases[] = {
[UNM_CRB_BLK_PCIE] = 0x0100000,
[UNM_CRB_BLK_CAM] = 0x0200000,
[UNM_CRB_BLK_ROMUSB] = 0x1300000,
[UNM_CRB_BLK_TEST] = 0x0200000,
};
unsigned int block = UNM_CRB_BLK ( reg );
unsigned long offset = UNM_CRB_OFFSET ( reg );
uint32_t window = reg_window[block];
uint32_t verify_window;
if ( phantom->crb_window != window ) {
/* Write to the CRB window register */
writel ( window, phantom->bar0 + UNM_32M_CRB_WINDOW );
/* Ensure that the write has reached the card */
verify_window = readl ( phantom->bar0 + UNM_32M_CRB_WINDOW );
assert ( verify_window == window );
/* Record new window */
phantom->crb_window = window;
}
return ( reg_bases[block] + offset );
}
/**
* Prepare for access to CRB register via 2MB BAR
*
* @v phantom Phantom NIC
* @v reg Register offset within abstract address space
* @ret offset Register offset within PCI BAR0
*/
static unsigned long phantom_crb_access_2m ( struct phantom_nic *phantom,
unsigned long reg ) {
static const uint32_t reg_window_hi[] = {
[UNM_CRB_BLK_PCIE] = 0x77300000,
[UNM_CRB_BLK_CAM] = 0x41600000,
[UNM_CRB_BLK_ROMUSB] = 0x42100000,
[UNM_CRB_BLK_TEST] = 0x29500000,
};
unsigned int block = UNM_CRB_BLK ( reg );
unsigned long offset = UNM_CRB_OFFSET ( reg );
uint32_t window = ( reg_window_hi[block] | ( offset & 0x000f0000 ) );
uint32_t verify_window;
if ( phantom->crb_window != window ) {
/* Write to the CRB window register */
writel ( window, phantom->bar0 + UNM_2M_CRB_WINDOW );
/* Ensure that the write has reached the card */
verify_window = readl ( phantom->bar0 + UNM_2M_CRB_WINDOW );
assert ( verify_window == window );
/* Record new window */
phantom->crb_window = window;
}
return ( 0x1e0000 + ( offset & 0xffff ) );
}
/**
* Read from Phantom CRB register
*
* @v phantom Phantom NIC
* @v reg Register offset within abstract address space
* @ret value Register value
*/
static uint32_t phantom_readl ( struct phantom_nic *phantom,
unsigned long reg ) {
unsigned long offset;
offset = phantom->crb_access ( phantom, reg );
return readl ( phantom->bar0 + offset );
}
/**
* Write to Phantom CRB register
*
* @v phantom Phantom NIC
* @v value Register value
* @v reg Register offset within abstract address space
*/
static void phantom_writel ( struct phantom_nic *phantom, uint32_t value,
unsigned long reg ) {
unsigned long offset;
offset = phantom->crb_access ( phantom, reg );
writel ( value, phantom->bar0 + offset );
}
/**
* Write to Phantom CRB HI/LO register pair
*
* @v phantom Phantom NIC
* @v value Register value
* @v lo_offset LO register offset within CRB
* @v hi_offset HI register offset within CRB
*/
static inline void phantom_write_hilo ( struct phantom_nic *phantom,
uint64_t value,
unsigned long lo_offset,
unsigned long hi_offset ) {
uint32_t lo = ( value & 0xffffffffUL );
uint32_t hi = ( value >> 32 );
phantom_writel ( phantom, lo, lo_offset );
phantom_writel ( phantom, hi, hi_offset );
}
/***************************************************************************
*
* Firmware message buffer access (for debug)
*
*/
/**
* Read from Phantom test memory
*
* @v phantom Phantom NIC
* @v offset Offset within test memory
* @v buf 8-byte buffer to fill
* @ret rc Return status code
*/
static int phantom_read_test_mem ( struct phantom_nic *phantom,
uint64_t offset, uint32_t buf[2] ) {
unsigned int retries;
uint32_t test_control;
phantom_write_hilo ( phantom, offset, UNM_TEST_ADDR_LO,
UNM_TEST_ADDR_HI );
phantom_writel ( phantom, UNM_TEST_CONTROL_ENABLE, UNM_TEST_CONTROL );
phantom_writel ( phantom,
( UNM_TEST_CONTROL_ENABLE | UNM_TEST_CONTROL_START ),
UNM_TEST_CONTROL );
for ( retries = 0 ; retries < PHN_TEST_MEM_TIMEOUT_MS ; retries++ ) {
test_control = phantom_readl ( phantom, UNM_TEST_CONTROL );
if ( ( test_control & UNM_TEST_CONTROL_BUSY ) == 0 ) {
buf[0] = phantom_readl ( phantom, UNM_TEST_RDDATA_LO );
buf[1] = phantom_readl ( phantom, UNM_TEST_RDDATA_HI );
return 0;
}
mdelay ( 1 );
}
DBGC ( phantom, "Phantom %p timed out waiting for test memory\n",
phantom );
return -ETIMEDOUT;
}
/**
* Dump Phantom firmware dmesg log
*
* @v phantom Phantom NIC
* @v log Log number
*/
static void phantom_dmesg ( struct phantom_nic *phantom, unsigned int log ) {
uint32_t head;
uint32_t tail;
uint32_t len;
uint32_t sig;
uint32_t offset;
union {
uint8_t bytes[8];
uint32_t dwords[2];
} buf;
unsigned int i;
int rc;
/* Optimise out for non-debug builds */
if ( ! DBG_LOG )
return;
head = phantom_readl ( phantom, UNM_CAM_RAM_DMESG_HEAD ( log ) );
len = phantom_readl ( phantom, UNM_CAM_RAM_DMESG_LEN ( log ) );
tail = phantom_readl ( phantom, UNM_CAM_RAM_DMESG_TAIL ( log ) );
sig = phantom_readl ( phantom, UNM_CAM_RAM_DMESG_SIG ( log ) );
DBGC ( phantom, "Phantom %p firmware dmesg buffer %d (%08lx-%08lx)\n",
phantom, log, head, tail );
assert ( ( head & 0x07 ) == 0 );
if ( sig != UNM_CAM_RAM_DMESG_SIG_MAGIC ) {
DBGC ( phantom, "Warning: bad signature %08lx (want %08lx)\n",
sig, UNM_CAM_RAM_DMESG_SIG_MAGIC );
}
for ( offset = head ; offset < tail ; offset += 8 ) {
if ( ( rc = phantom_read_test_mem ( phantom, offset,
buf.dwords ) ) != 0 ) {
DBGC ( phantom, "Phantom %p could not read from test "
"memory: %s\n", phantom, strerror ( rc ) );
break;
}
for ( i = 0 ; ( ( i < sizeof ( buf ) ) &&
( offset + i ) < tail ) ; i++ ) {
DBG ( "%c", buf.bytes[i] );
}
}
DBG ( "\n" );
}
/**
* Dump Phantom firmware dmesg logs
*
* @v phantom Phantom NIC
*/
static void __attribute__ (( unused ))
phantom_dmesg_all ( struct phantom_nic *phantom ) {
unsigned int i;
for ( i = 0 ; i < UNM_CAM_RAM_NUM_DMESG_BUFFERS ; i++ )
phantom_dmesg ( phantom, i );
}
/***************************************************************************
*
* SPI bus access (for flash memory)
*
*/
/**
* Acquire Phantom SPI lock
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_spi_lock ( struct phantom_nic *phantom ) {
unsigned int retries;
uint32_t pcie_sem2_lock;
for ( retries = 0 ; retries < PHN_SPI_LOCK_TIMEOUT_MS ; retries++ ) {
pcie_sem2_lock = phantom_readl ( phantom, UNM_PCIE_SEM2_LOCK );
if ( pcie_sem2_lock != 0 )
return 0;
mdelay ( 1 );
}
DBGC ( phantom, "Phantom %p timed out waiting for SPI lock\n",
phantom );
return -ETIMEDOUT;
}
/**
* Wait for Phantom SPI command to complete
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_spi_wait ( struct phantom_nic *phantom ) {
unsigned int retries;
uint32_t glb_status;
for ( retries = 0 ; retries < PHN_SPI_CMD_TIMEOUT_MS ; retries++ ) {
glb_status = phantom_readl ( phantom, UNM_ROMUSB_GLB_STATUS );
if ( glb_status & UNM_ROMUSB_GLB_STATUS_ROM_DONE )
return 0;
mdelay ( 1 );
}
DBGC ( phantom, "Phantom %p timed out waiting for SPI command\n",
phantom );
return -ETIMEDOUT;
}
/**
* Release Phantom SPI lock
*
* @v phantom Phantom NIC
*/
static void phantom_spi_unlock ( struct phantom_nic *phantom ) {
phantom_readl ( phantom, UNM_PCIE_SEM2_UNLOCK );
}
/**
* Read/write data via Phantom SPI bus
*
* @v bus SPI bus
* @v device SPI device
* @v command Command
* @v address Address to read/write (<0 for no address)
* @v data_out TX data buffer (or NULL)
* @v data_in RX data buffer (or NULL)
* @v len Length of data buffer(s)
* @ret rc Return status code
*/
static int phantom_spi_rw ( struct spi_bus *bus,
struct spi_device *device,
unsigned int command, int address,
const void *data_out, void *data_in,
size_t len ) {
struct phantom_nic *phantom =
container_of ( bus, struct phantom_nic, spi_bus );
uint32_t data;
int rc;
DBGCP ( phantom, "Phantom %p SPI command %x at %x+%zx\n",
phantom, command, address, len );
if ( data_out )
DBGCP_HDA ( phantom, address, data_out, len );
/* We support only exactly 4-byte reads */
if ( len != UNM_SPI_BLKSIZE ) {
DBGC ( phantom, "Phantom %p invalid SPI length %zx\n",
phantom, len );
return -EINVAL;
}
/* Acquire SPI lock */
if ( ( rc = phantom_spi_lock ( phantom ) ) != 0 )
goto err_lock;
/* Issue SPI command as per the PRM */
if ( data_out ) {
memcpy ( &data, data_out, sizeof ( data ) );
phantom_writel ( phantom, data, UNM_ROMUSB_ROM_WDATA );
}
phantom_writel ( phantom, address, UNM_ROMUSB_ROM_ADDRESS );
phantom_writel ( phantom, ( device->address_len / 8 ),
UNM_ROMUSB_ROM_ABYTE_CNT );
udelay ( 100 ); /* according to PRM */
phantom_writel ( phantom, 0, UNM_ROMUSB_ROM_DUMMY_BYTE_CNT );
phantom_writel ( phantom, command, UNM_ROMUSB_ROM_INSTR_OPCODE );
/* Wait for SPI command to complete */
if ( ( rc = phantom_spi_wait ( phantom ) ) != 0 )
goto err_wait;
/* Reset address byte count and dummy byte count, because the
* PRM asks us to.
*/
phantom_writel ( phantom, 0, UNM_ROMUSB_ROM_ABYTE_CNT );
udelay ( 100 ); /* according to PRM */
phantom_writel ( phantom, 0, UNM_ROMUSB_ROM_DUMMY_BYTE_CNT );
/* Read data, if applicable */
if ( data_in ) {
data = phantom_readl ( phantom, UNM_ROMUSB_ROM_RDATA );
memcpy ( data_in, &data, sizeof ( data ) );
DBGCP_HDA ( phantom, address, data_in, len );
}
err_wait:
phantom_spi_unlock ( phantom );
err_lock:
return rc;
}
/***************************************************************************
*
* Firmware interface
*
*/
/**
* Wait for firmware to accept command
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_wait_for_cmd ( struct phantom_nic *phantom ) {
unsigned int retries;
uint32_t cdrp;
for ( retries = 0 ; retries < PHN_ISSUE_CMD_TIMEOUT_MS ; retries++ ) {
mdelay ( 1 );
cdrp = phantom_readl ( phantom, UNM_NIC_REG_NX_CDRP );
if ( NX_CDRP_IS_RSP ( cdrp ) ) {
switch ( NX_CDRP_FORM_RSP ( cdrp ) ) {
case NX_CDRP_RSP_OK:
return 0;
case NX_CDRP_RSP_FAIL:
return -EIO;
case NX_CDRP_RSP_TIMEOUT:
return -ETIMEDOUT;
default:
return -EPROTO;
}
}
}
DBGC ( phantom, "Phantom %p timed out waiting for firmware to accept "
"command\n", phantom );
return -ETIMEDOUT;
}
/**
* Issue command to firmware
*
* @v phantom_port Phantom NIC port
* @v command Firmware command
* @v arg1 Argument 1
* @v arg2 Argument 2
* @v arg3 Argument 3
* @ret rc Return status code
*/
static int phantom_issue_cmd ( struct phantom_nic_port *phantom_port,
uint32_t command, uint32_t arg1, uint32_t arg2,
uint32_t arg3 ) {
struct phantom_nic *phantom = phantom_port->phantom;
uint32_t signature;
int rc;
/* Issue command */
signature = NX_CDRP_SIGNATURE_MAKE ( phantom_port->port,
NXHAL_VERSION );
DBGC2 ( phantom, "Phantom %p port %d issuing command %08lx (%08lx, "
"%08lx, %08lx)\n", phantom, phantom_port->port,
command, arg1, arg2, arg3 );
phantom_writel ( phantom, signature, UNM_NIC_REG_NX_SIGN );
phantom_writel ( phantom, arg1, UNM_NIC_REG_NX_ARG1 );
phantom_writel ( phantom, arg2, UNM_NIC_REG_NX_ARG2 );
phantom_writel ( phantom, arg3, UNM_NIC_REG_NX_ARG3 );
phantom_writel ( phantom, NX_CDRP_FORM_CMD ( command ),
UNM_NIC_REG_NX_CDRP );
/* Wait for command to be accepted */
if ( ( rc = phantom_wait_for_cmd ( phantom ) ) != 0 ) {
DBGC ( phantom, "Phantom %p could not issue command: %s\n",
phantom, strerror ( rc ) );
return rc;
}
return 0;
}
/**
* Issue buffer-format command to firmware
*
* @v phantom_port Phantom NIC port
* @v command Firmware command
* @v buffer Buffer to pass to firmware
* @v len Length of buffer
* @ret rc Return status code
*/
static int phantom_issue_buf_cmd ( struct phantom_nic_port *phantom_port,
uint32_t command, void *buffer,
size_t len ) {
uint64_t physaddr;
physaddr = virt_to_bus ( buffer );
return phantom_issue_cmd ( phantom_port, command, ( physaddr >> 32 ),
( physaddr & 0xffffffffUL ), len );
}
/**
* Create Phantom RX context
*
* @v phantom_port Phantom NIC port
* @ret rc Return status code
*/
static int phantom_create_rx_ctx ( struct phantom_nic_port *phantom_port ) {
struct phantom_nic *phantom = phantom_port->phantom;
struct phantom_create_rx_ctx_rqrsp *buf;
int rc;
/* Prepare request */
buf = &phantom->dma_buf->create_rx_ctx;
memset ( buf, 0, sizeof ( *buf ) );
buf->hostrq.rx_ctx.host_rsp_dma_addr =
cpu_to_le64 ( virt_to_bus ( &buf->cardrsp ) );
buf->hostrq.rx_ctx.capabilities[0] =
cpu_to_le32 ( NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN );
buf->hostrq.rx_ctx.host_int_crb_mode =
cpu_to_le32 ( NX_HOST_INT_CRB_MODE_SHARED );
buf->hostrq.rx_ctx.host_rds_crb_mode =
cpu_to_le32 ( NX_HOST_RDS_CRB_MODE_UNIQUE );
buf->hostrq.rx_ctx.rds_ring_offset = cpu_to_le32 ( 0 );
buf->hostrq.rx_ctx.sds_ring_offset =
cpu_to_le32 ( sizeof ( buf->hostrq.rds ) );
buf->hostrq.rx_ctx.num_rds_rings = cpu_to_le16 ( 1 );
buf->hostrq.rx_ctx.num_sds_rings = cpu_to_le16 ( 1 );
buf->hostrq.rds.host_phys_addr =
cpu_to_le64 ( virt_to_bus ( phantom_port->desc->rds ) );
buf->hostrq.rds.buff_size = cpu_to_le64 ( PHN_RX_BUFSIZE );
buf->hostrq.rds.ring_size = cpu_to_le32 ( PHN_NUM_RDS );
buf->hostrq.rds.ring_kind = cpu_to_le32 ( NX_RDS_RING_TYPE_NORMAL );
buf->hostrq.sds.host_phys_addr =
cpu_to_le64 ( virt_to_bus ( phantom_port->desc->sds ) );
buf->hostrq.sds.ring_size = cpu_to_le32 ( PHN_NUM_SDS );
DBGC ( phantom, "Phantom %p port %d creating RX context\n",
phantom, phantom_port->port );
DBGC2_HDA ( phantom, virt_to_bus ( &buf->hostrq ),
&buf->hostrq, sizeof ( buf->hostrq ) );
/* Issue request */
if ( ( rc = phantom_issue_buf_cmd ( phantom_port,
NX_CDRP_CMD_CREATE_RX_CTX,
&buf->hostrq,
sizeof ( buf->hostrq ) ) ) != 0 ) {
DBGC ( phantom, "Phantom %p port %d could not create RX "
"context: %s\n",
phantom, phantom_port->port, strerror ( rc ) );
DBGC ( phantom, "Request:\n" );
DBGC_HDA ( phantom, virt_to_bus ( &buf->hostrq ),
&buf->hostrq, sizeof ( buf->hostrq ) );
DBGC ( phantom, "Response:\n" );
DBGC_HDA ( phantom, virt_to_bus ( &buf->cardrsp ),
&buf->cardrsp, sizeof ( buf->cardrsp ) );
return rc;
}
/* Retrieve context parameters */
phantom_port->rx_context_id =
le16_to_cpu ( buf->cardrsp.rx_ctx.context_id );
phantom_port->rds_producer_crb =
( UNM_CAM_RAM +
le32_to_cpu ( buf->cardrsp.rds.host_producer_crb ));
phantom_port->sds_consumer_crb =
( UNM_CAM_RAM +
le32_to_cpu ( buf->cardrsp.sds.host_consumer_crb ));
DBGC ( phantom, "Phantom %p port %d created RX context (id %04x, "
"port phys %02x virt %02x)\n", phantom, phantom_port->port,
phantom_port->rx_context_id, buf->cardrsp.rx_ctx.phys_port,
buf->cardrsp.rx_ctx.virt_port );
DBGC2_HDA ( phantom, virt_to_bus ( &buf->cardrsp ),
&buf->cardrsp, sizeof ( buf->cardrsp ) );
DBGC ( phantom, "Phantom %p port %d RDS producer CRB is %08lx\n",
phantom, phantom_port->port, phantom_port->rds_producer_crb );
DBGC ( phantom, "Phantom %p port %d SDS consumer CRB is %08lx\n",
phantom, phantom_port->port, phantom_port->sds_consumer_crb );
return 0;
}
/**
* Destroy Phantom RX context
*
* @v phantom_port Phantom NIC port
* @ret rc Return status code
*/
static void phantom_destroy_rx_ctx ( struct phantom_nic_port *phantom_port ) {
struct phantom_nic *phantom = phantom_port->phantom;
int rc;
DBGC ( phantom, "Phantom %p port %d destroying RX context (id %04x)\n",
phantom, phantom_port->port, phantom_port->rx_context_id );
/* Issue request */
if ( ( rc = phantom_issue_cmd ( phantom_port,
NX_CDRP_CMD_DESTROY_RX_CTX,
phantom_port->rx_context_id,
NX_DESTROY_CTX_RESET, 0 ) ) != 0 ) {
DBGC ( phantom, "Phantom %p port %d could not destroy RX "
"context: %s\n",
phantom, phantom_port->port, strerror ( rc ) );
/* We're probably screwed */
return;
}
/* Clear context parameters */
phantom_port->rx_context_id = 0;
phantom_port->rds_producer_crb = 0;
phantom_port->sds_consumer_crb = 0;
/* Reset software counters */
phantom_port->rds_producer_idx = 0;
phantom_port->rds_consumer_idx = 0;
phantom_port->sds_consumer_idx = 0;
}
/**
* Create Phantom TX context
*
* @v phantom_port Phantom NIC port
* @ret rc Return status code
*/
static int phantom_create_tx_ctx ( struct phantom_nic_port *phantom_port ) {
struct phantom_nic *phantom = phantom_port->phantom;
struct phantom_create_tx_ctx_rqrsp *buf;
int rc;
/* Prepare request */
buf = &phantom->dma_buf->create_tx_ctx;
memset ( buf, 0, sizeof ( *buf ) );
buf->hostrq.tx_ctx.host_rsp_dma_addr =
cpu_to_le64 ( virt_to_bus ( &buf->cardrsp ) );
buf->hostrq.tx_ctx.cmd_cons_dma_addr =
cpu_to_le64 ( virt_to_bus ( &phantom_port->desc->cmd_cons ) );
buf->hostrq.tx_ctx.dummy_dma_addr =
cpu_to_le64 ( virt_to_bus ( phantom->dma_buf->dummy_dma ) );
buf->hostrq.tx_ctx.capabilities[0] =
cpu_to_le32 ( NX_CAP0_LEGACY_CONTEXT | NX_CAP0_LEGACY_MN );
buf->hostrq.tx_ctx.host_int_crb_mode =
cpu_to_le32 ( NX_HOST_INT_CRB_MODE_SHARED );
buf->hostrq.tx_ctx.cds_ring.host_phys_addr =
cpu_to_le64 ( virt_to_bus ( phantom_port->desc->cds ) );
buf->hostrq.tx_ctx.cds_ring.ring_size = cpu_to_le32 ( PHN_NUM_CDS );
DBGC ( phantom, "Phantom %p port %d creating TX context\n",
phantom, phantom_port->port );
DBGC2_HDA ( phantom, virt_to_bus ( &buf->hostrq ),
&buf->hostrq, sizeof ( buf->hostrq ) );
/* Issue request */
if ( ( rc = phantom_issue_buf_cmd ( phantom_port,
NX_CDRP_CMD_CREATE_TX_CTX,
&buf->hostrq,
sizeof ( buf->hostrq ) ) ) != 0 ) {
DBGC ( phantom, "Phantom %p port %d could not create TX "
"context: %s\n",
phantom, phantom_port->port, strerror ( rc ) );
DBGC ( phantom, "Request:\n" );
DBGC_HDA ( phantom, virt_to_bus ( &buf->hostrq ),
&buf->hostrq, sizeof ( buf->hostrq ) );
DBGC ( phantom, "Response:\n" );
DBGC_HDA ( phantom, virt_to_bus ( &buf->cardrsp ),
&buf->cardrsp, sizeof ( buf->cardrsp ) );
return rc;
}
/* Retrieve context parameters */
phantom_port->tx_context_id =
le16_to_cpu ( buf->cardrsp.tx_ctx.context_id );
phantom_port->cds_producer_crb =
( UNM_CAM_RAM +
le32_to_cpu(buf->cardrsp.tx_ctx.cds_ring.host_producer_crb));
DBGC ( phantom, "Phantom %p port %d created TX context (id %04x, "
"port phys %02x virt %02x)\n", phantom, phantom_port->port,
phantom_port->tx_context_id, buf->cardrsp.tx_ctx.phys_port,
buf->cardrsp.tx_ctx.virt_port );
DBGC2_HDA ( phantom, virt_to_bus ( &buf->cardrsp ),
&buf->cardrsp, sizeof ( buf->cardrsp ) );
DBGC ( phantom, "Phantom %p port %d CDS producer CRB is %08lx\n",
phantom, phantom_port->port, phantom_port->cds_producer_crb );
return 0;
}
/**
* Destroy Phantom TX context
*
* @v phantom_port Phantom NIC port
* @ret rc Return status code
*/
static void phantom_destroy_tx_ctx ( struct phantom_nic_port *phantom_port ) {
struct phantom_nic *phantom = phantom_port->phantom;
int rc;
DBGC ( phantom, "Phantom %p port %d destroying TX context (id %04x)\n",
phantom, phantom_port->port, phantom_port->tx_context_id );
/* Issue request */
if ( ( rc = phantom_issue_cmd ( phantom_port,
NX_CDRP_CMD_DESTROY_TX_CTX,
phantom_port->tx_context_id,
NX_DESTROY_CTX_RESET, 0 ) ) != 0 ) {
DBGC ( phantom, "Phantom %p port %d could not destroy TX "
"context: %s\n",
phantom, phantom_port->port, strerror ( rc ) );
/* We're probably screwed */
return;
}
/* Clear context parameters */
phantom_port->tx_context_id = 0;
phantom_port->cds_producer_crb = 0;
/* Reset software counters */
phantom_port->cds_producer_idx = 0;
phantom_port->cds_consumer_idx = 0;
}
/***************************************************************************
*
* Descriptor ring management
*
*/
/**
* Allocate Phantom RX descriptor
*
* @v phantom_port Phantom NIC port
* @ret index RX descriptor index, or negative error
*/
static int phantom_alloc_rds ( struct phantom_nic_port *phantom_port ) {
struct phantom_nic *phantom = phantom_port->phantom;
unsigned int rds_producer_idx;
unsigned int next_rds_producer_idx;
/* Check for space in the ring. RX descriptors are consumed
* out of order, but they are *read* by the hardware in strict
* order. We maintain a pessimistic consumer index, which is
* guaranteed never to be an overestimate of the number of
* descriptors read by the hardware.
*/
rds_producer_idx = phantom_port->rds_producer_idx;
next_rds_producer_idx = ( ( rds_producer_idx + 1 ) % PHN_NUM_RDS );
if ( next_rds_producer_idx == phantom_port->rds_consumer_idx ) {
DBGC ( phantom, "Phantom %p port %d RDS ring full (index %d "
"not consumed)\n", phantom, phantom_port->port,
next_rds_producer_idx );
return -ENOBUFS;
}
return rds_producer_idx;
}
/**
* Post Phantom RX descriptor
*
* @v phantom_port Phantom NIC port
* @v rds RX descriptor
*/
static void phantom_post_rds ( struct phantom_nic_port *phantom_port,
struct phantom_rds *rds ) {
struct phantom_nic *phantom = phantom_port->phantom;
unsigned int rds_producer_idx;
unsigned int next_rds_producer_idx;
struct phantom_rds *entry;
/* Copy descriptor to ring */
rds_producer_idx = phantom_port->rds_producer_idx;
entry = &phantom_port->desc->rds[rds_producer_idx];
memcpy ( entry, rds, sizeof ( *entry ) );
DBGC2 ( phantom, "Phantom %p port %d posting RDS %ld (slot %d):\n",
phantom, phantom_port->port, NX_GET ( rds, handle ),
rds_producer_idx );
DBGC2_HDA ( phantom, virt_to_bus ( entry ), entry, sizeof ( *entry ) );
/* Update producer index */
next_rds_producer_idx = ( ( rds_producer_idx + 1 ) % PHN_NUM_RDS );
phantom_port->rds_producer_idx = next_rds_producer_idx;
wmb();
phantom_writel ( phantom, phantom_port->rds_producer_idx,
phantom_port->rds_producer_crb );
}
/**
* Allocate Phantom TX descriptor
*
* @v phantom_port Phantom NIC port
* @ret index TX descriptor index, or negative error
*/
static int phantom_alloc_cds ( struct phantom_nic_port *phantom_port ) {
struct phantom_nic *phantom = phantom_port->phantom;
unsigned int cds_producer_idx;
unsigned int next_cds_producer_idx;
/* Check for space in the ring. TX descriptors are consumed
* in strict order, so we just check for a collision against
* the consumer index.
*/
cds_producer_idx = phantom_port->cds_producer_idx;
next_cds_producer_idx = ( ( cds_producer_idx + 1 ) % PHN_NUM_CDS );
if ( next_cds_producer_idx == phantom_port->cds_consumer_idx ) {
DBGC ( phantom, "Phantom %p port %d CDS ring full (index %d "
"not consumed)\n", phantom, phantom_port->port,
next_cds_producer_idx );
return -ENOBUFS;
}
return cds_producer_idx;
}
/**
* Post Phantom TX descriptor
*
* @v phantom_port Phantom NIC port
* @v cds TX descriptor
*/
static void phantom_post_cds ( struct phantom_nic_port *phantom_port,
union phantom_cds *cds ) {
struct phantom_nic *phantom = phantom_port->phantom;
unsigned int cds_producer_idx;
unsigned int next_cds_producer_idx;
union phantom_cds *entry;
/* Copy descriptor to ring */
cds_producer_idx = phantom_port->cds_producer_idx;
entry = &phantom_port->desc->cds[cds_producer_idx];
memcpy ( entry, cds, sizeof ( *entry ) );
DBGC2 ( phantom, "Phantom %p port %d posting CDS %d:\n",
phantom, phantom_port->port, cds_producer_idx );
DBGC2_HDA ( phantom, virt_to_bus ( entry ), entry, sizeof ( *entry ) );
/* Update producer index */
next_cds_producer_idx = ( ( cds_producer_idx + 1 ) % PHN_NUM_CDS );
phantom_port->cds_producer_idx = next_cds_producer_idx;
wmb();
phantom_writel ( phantom, phantom_port->cds_producer_idx,
phantom_port->cds_producer_crb );
}
/***************************************************************************
*
* MAC address management
*
*/
/**
* Add/remove MAC address
*
* @v phantom_port Phantom NIC port
* @v ll_addr MAC address to add or remove
* @v opcode MAC request opcode
* @ret rc Return status code
*/
static int phantom_update_macaddr ( struct phantom_nic_port *phantom_port,
const uint8_t *ll_addr,
unsigned int opcode ) {
union phantom_cds cds;
int index;
/* Get descriptor ring entry */
index = phantom_alloc_cds ( phantom_port );
if ( index < 0 )
return index;
/* Fill descriptor ring entry */
memset ( &cds, 0, sizeof ( cds ) );
NX_FILL_1 ( &cds, 0,
nic_request.common.opcode, UNM_NIC_REQUEST );
NX_FILL_2 ( &cds, 1,
nic_request.header.opcode, UNM_MAC_EVENT,
nic_request.header.context_id, phantom_port->port );
NX_FILL_7 ( &cds, 2,
nic_request.body.mac_request.opcode, opcode,
nic_request.body.mac_request.mac_addr_0, ll_addr[0],
nic_request.body.mac_request.mac_addr_1, ll_addr[1],
nic_request.body.mac_request.mac_addr_2, ll_addr[2],
nic_request.body.mac_request.mac_addr_3, ll_addr[3],
nic_request.body.mac_request.mac_addr_4, ll_addr[4],
nic_request.body.mac_request.mac_addr_5, ll_addr[5] );
/* Post descriptor */
phantom_post_cds ( phantom_port, &cds );
return 0;
}
/**
* Add MAC address
*
* @v phantom_port Phantom NIC port
* @v ll_addr MAC address to add or remove
* @ret rc Return status code
*/
static inline int phantom_add_macaddr ( struct phantom_nic_port *phantom_port,
const uint8_t *ll_addr ) {
struct phantom_nic *phantom = phantom_port->phantom;
DBGC ( phantom, "Phantom %p port %d adding MAC address %s\n",
phantom, phantom_port->port, eth_ntoa ( ll_addr ) );
return phantom_update_macaddr ( phantom_port, ll_addr, UNM_MAC_ADD );
}
/**
* Remove MAC address
*
* @v phantom_port Phantom NIC port
* @v ll_addr MAC address to add or remove
* @ret rc Return status code
*/
static inline int phantom_del_macaddr ( struct phantom_nic_port *phantom_port,
const uint8_t *ll_addr ) {
struct phantom_nic *phantom = phantom_port->phantom;
DBGC ( phantom, "Phantom %p port %d removing MAC address %s\n",
phantom, phantom_port->port, eth_ntoa ( ll_addr ) );
return phantom_update_macaddr ( phantom_port, ll_addr, UNM_MAC_DEL );
}
/***************************************************************************
*
* Link state detection
*
*/
/**
* Poll link state
*
* @v phantom Phantom NIC
*/
static void phantom_poll_link_state ( struct phantom_nic *phantom ) {
struct net_device *netdev;
struct phantom_nic_port *phantom_port;
uint32_t xg_state_p3;
unsigned int link;
int i;
/* Read link state */
xg_state_p3 = phantom_readl ( phantom, UNM_NIC_REG_XG_STATE_P3 );
/* If there is no change, do nothing */
if ( phantom->link_state == xg_state_p3 )
return;
/* Record new link state */
DBGC ( phantom, "Phantom %p new link state %08lx (was %08lx)\n",
phantom, xg_state_p3, phantom->link_state );
phantom->link_state = xg_state_p3;
/* Indicate per-port link state to gPXE */
for ( i = 0 ; i < phantom->num_ports ; i++ ) {
netdev = phantom->netdev[i];
phantom_port = netdev_priv ( netdev );
link = UNM_NIC_REG_XG_STATE_P3_LINK ( phantom_port->port,
phantom->link_state );
switch ( link ) {
case UNM_NIC_REG_XG_STATE_P3_LINK_UP:
DBGC ( phantom, "Phantom %p port %d link is up\n",
phantom, phantom_port->port );
netdev_link_up ( netdev );
break;
case UNM_NIC_REG_XG_STATE_P3_LINK_DOWN:
DBGC ( phantom, "Phantom %p port %d link is down\n",
phantom, phantom_port->port );
netdev_link_down ( netdev );
break;
default:
DBGC ( phantom, "Phantom %p port %d bad link state "
"%d\n", phantom, phantom_port->port, link );
break;
}
}
}
/***************************************************************************
*
* Main driver body
*
*/
/**
* Refill descriptor ring
*
* @v netdev Net device
*/
static void phantom_refill_rx_ring ( struct net_device *netdev ) {
struct phantom_nic_port *phantom_port = netdev_priv ( netdev );
struct io_buffer *iobuf;
struct phantom_rds rds;
unsigned int handle;
int index;
for ( handle = 0 ; handle < PHN_RDS_MAX_FILL ; handle++ ) {
/* Skip this index if the descriptor has not yet been
* consumed.
*/
if ( phantom_port->rds_iobuf[handle] != NULL )
continue;
/* Allocate descriptor ring entry */
index = phantom_alloc_rds ( phantom_port );
assert ( PHN_RDS_MAX_FILL < PHN_NUM_RDS );
assert ( index >= 0 ); /* Guaranteed by MAX_FILL < NUM_RDS ) */
/* Try to allocate an I/O buffer */
iobuf = alloc_iob ( PHN_RX_BUFSIZE );
if ( ! iobuf ) {
/* Failure is non-fatal; we will retry later */
netdev_rx_err ( netdev, NULL, -ENOMEM );
break;
}
/* Fill descriptor ring entry */
memset ( &rds, 0, sizeof ( rds ) );
NX_FILL_2 ( &rds, 0,
handle, handle,
length, iob_len ( iobuf ) );
NX_FILL_1 ( &rds, 1,
dma_addr, virt_to_bus ( iobuf->data ) );
/* Record I/O buffer */
assert ( phantom_port->rds_iobuf[handle] == NULL );
phantom_port->rds_iobuf[handle] = iobuf;
/* Post descriptor */
phantom_post_rds ( phantom_port, &rds );
}
}
/**
* Open NIC
*
* @v netdev Net device
* @ret rc Return status code
*/
static int phantom_open ( struct net_device *netdev ) {
struct phantom_nic_port *phantom_port = netdev_priv ( netdev );
int rc;
/* Allocate and zero descriptor rings */
phantom_port->desc = malloc_dma ( sizeof ( *(phantom_port->desc) ),
UNM_DMA_BUFFER_ALIGN );
if ( ! phantom_port->desc ) {
rc = -ENOMEM;
goto err_alloc_desc;
}
memset ( phantom_port->desc, 0, sizeof ( *(phantom_port->desc) ) );
/* Create RX context */
if ( ( rc = phantom_create_rx_ctx ( phantom_port ) ) != 0 )
goto err_create_rx_ctx;
/* Create TX context */
if ( ( rc = phantom_create_tx_ctx ( phantom_port ) ) != 0 )
goto err_create_tx_ctx;
/* Fill the RX descriptor ring */
phantom_refill_rx_ring ( netdev );
/* Add MAC addresses
*
* BUG5583
*
* We would like to be able to enable receiving all multicast
* packets (or, failing that, promiscuous mode), but the
* firmware doesn't currently support this.
*/
if ( ( rc = phantom_add_macaddr ( phantom_port,
netdev->ll_protocol->ll_broadcast ) ) != 0 )
goto err_add_macaddr_broadcast;
if ( ( rc = phantom_add_macaddr ( phantom_port,
netdev->ll_addr ) ) != 0 )
goto err_add_macaddr_unicast;
return 0;
phantom_del_macaddr ( phantom_port, netdev->ll_addr );
err_add_macaddr_unicast:
phantom_del_macaddr ( phantom_port,
netdev->ll_protocol->ll_broadcast );
err_add_macaddr_broadcast:
phantom_destroy_tx_ctx ( phantom_port );
err_create_tx_ctx:
phantom_destroy_rx_ctx ( phantom_port );
err_create_rx_ctx:
free_dma ( phantom_port->desc, sizeof ( *(phantom_port->desc) ) );
phantom_port->desc = NULL;
err_alloc_desc:
return rc;
}
/**
* Close NIC
*
* @v netdev Net device
*/
static void phantom_close ( struct net_device *netdev ) {
struct phantom_nic_port *phantom_port = netdev_priv ( netdev );
struct io_buffer *iobuf;
unsigned int i;
/* BUG5671
*
* When the last TX context is destroyed, the firmware will
* pause the Egress Packet Generator (EPG). The corresponding
* code that is supposed to unpause the EPG when the first TX
* context is created is #if 0'd out (with a comment saying
* FIXME). The net result of this is that if you close and
* then reopen the interface, you will no longer be able to
* transmit packets.
*/
/* Shut down the port */
phantom_del_macaddr ( phantom_port, netdev->ll_addr );
phantom_del_macaddr ( phantom_port,
netdev->ll_protocol->ll_broadcast );
phantom_destroy_tx_ctx ( phantom_port );
phantom_destroy_rx_ctx ( phantom_port );
free_dma ( phantom_port->desc, sizeof ( *(phantom_port->desc) ) );
phantom_port->desc = NULL;
/* Flush any uncompleted descriptors */
for ( i = 0 ; i < PHN_RDS_MAX_FILL ; i++ ) {
iobuf = phantom_port->rds_iobuf[i];
if ( iobuf ) {
free_iob ( iobuf );
phantom_port->rds_iobuf[i] = NULL;
}
}
for ( i = 0 ; i < PHN_NUM_CDS ; i++ ) {
iobuf = phantom_port->cds_iobuf[i];
if ( iobuf ) {
netdev_tx_complete_err ( netdev, iobuf, -ECANCELED );
phantom_port->cds_iobuf[i] = NULL;
}
}
}
/**
* Transmit packet
*
* @v netdev Network device
* @v iobuf I/O buffer
* @ret rc Return status code
*/
static int phantom_transmit ( struct net_device *netdev,
struct io_buffer *iobuf ) {
struct phantom_nic_port *phantom_port = netdev_priv ( netdev );
union phantom_cds cds;
int index;
/* Get descriptor ring entry */
index = phantom_alloc_cds ( phantom_port );
if ( index < 0 )
return index;
/* Fill descriptor ring entry */
memset ( &cds, 0, sizeof ( cds ) );
NX_FILL_3 ( &cds, 0,
tx.opcode, UNM_TX_ETHER_PKT,
tx.num_buffers, 1,
tx.length, iob_len ( iobuf ) );
NX_FILL_2 ( &cds, 2,
tx.port, phantom_port->port,
tx.context_id, phantom_port->port );
NX_FILL_1 ( &cds, 4,
tx.buffer1_dma_addr, virt_to_bus ( iobuf->data ) );
NX_FILL_1 ( &cds, 5,
tx.buffer1_length, iob_len ( iobuf ) );
/* Record I/O buffer */
assert ( phantom_port->cds_iobuf[index] == NULL );
phantom_port->cds_iobuf[index] = iobuf;
/* Post descriptor */
phantom_post_cds ( phantom_port, &cds );
return 0;
}
/**
* Poll for received packets
*
* @v netdev Network device
*/
static void phantom_poll ( struct net_device *netdev ) {
struct phantom_nic_port *phantom_port = netdev_priv ( netdev );
struct phantom_nic *phantom = phantom_port->phantom;
struct io_buffer *iobuf;
unsigned int cds_consumer_idx;
unsigned int raw_new_cds_consumer_idx;
unsigned int new_cds_consumer_idx;
unsigned int rds_consumer_idx;
unsigned int sds_consumer_idx;
struct phantom_sds *sds;
unsigned int sds_handle;
unsigned int sds_opcode;
/* Check for TX completions */
cds_consumer_idx = phantom_port->cds_consumer_idx;
raw_new_cds_consumer_idx = phantom_port->desc->cmd_cons;
new_cds_consumer_idx = le32_to_cpu ( raw_new_cds_consumer_idx );
while ( cds_consumer_idx != new_cds_consumer_idx ) {
DBGC2 ( phantom, "Phantom %p port %d CDS %d complete\n",
phantom, phantom_port->port, cds_consumer_idx );
/* Completions may be for commands other than TX, so
* there may not always be an associated I/O buffer.
*/
if ( ( iobuf = phantom_port->cds_iobuf[cds_consumer_idx] ) ) {
netdev_tx_complete ( netdev, iobuf );
phantom_port->cds_iobuf[cds_consumer_idx] = NULL;
}
cds_consumer_idx = ( ( cds_consumer_idx + 1 ) % PHN_NUM_CDS );
phantom_port->cds_consumer_idx = cds_consumer_idx;
}
/* Check for received packets */
rds_consumer_idx = phantom_port->rds_consumer_idx;
sds_consumer_idx = phantom_port->sds_consumer_idx;
while ( 1 ) {
sds = &phantom_port->desc->sds[sds_consumer_idx];
if ( NX_GET ( sds, owner ) == 0 )
break;
DBGC2 ( phantom, "Phantom %p port %d SDS %d status:\n",
phantom, phantom_port->port, sds_consumer_idx );
DBGC2_HDA ( phantom, virt_to_bus ( sds ), sds, sizeof (*sds) );
/* Check received opcode */
sds_opcode = NX_GET ( sds, opcode );
switch ( sds_opcode ) {
case UNM_RXPKT_DESC:
case UNM_SYN_OFFLOAD:
/* Process received packet */
sds_handle = NX_GET ( sds, handle );
iobuf = phantom_port->rds_iobuf[sds_handle];
assert ( iobuf != NULL );
iob_put ( iobuf, NX_GET ( sds, total_length ) );
iob_pull ( iobuf, NX_GET ( sds, pkt_offset ) );
DBGC2 ( phantom, "Phantom %p port %d RDS %d "
"complete\n",
phantom, phantom_port->port, sds_handle );
netdev_rx ( netdev, iobuf );
phantom_port->rds_iobuf[sds_handle] = NULL;
break;
default:
DBGC ( phantom, "Phantom %p port %d unexpected SDS "
"opcode %02x\n",
phantom, phantom_port->port, sds_opcode );
DBGC_HDA ( phantom, virt_to_bus ( sds ),
sds, sizeof ( *sds ) );
break;
}
/* Update RDS consumer counter. This is a lower bound
* for the number of descriptors that have been read
* by the hardware, since the hardware must have read
* at least one descriptor for each completion that we
* receive.
*/
rds_consumer_idx = ( ( rds_consumer_idx + 1 ) % PHN_NUM_RDS );
phantom_port->rds_consumer_idx = rds_consumer_idx;
/* Clear status descriptor */
memset ( sds, 0, sizeof ( *sds ) );
/* Update SDS consumer index */
sds_consumer_idx = ( ( sds_consumer_idx + 1 ) % PHN_NUM_SDS );
phantom_port->sds_consumer_idx = sds_consumer_idx;
wmb();
phantom_writel ( phantom, phantom_port->sds_consumer_idx,
phantom_port->sds_consumer_crb );
}
/* Refill the RX descriptor ring */
phantom_refill_rx_ring ( netdev );
/* Occasionally poll the link state */
if ( phantom_port->link_poll_timer-- == 0 ) {
phantom_poll_link_state ( phantom );
/* Reset the link poll timer */
phantom_port->link_poll_timer = PHN_LINK_POLL_FREQUENCY;
}
}
/**
* Enable/disable interrupts
*
* @v netdev Network device
* @v enable Interrupts should be enabled
*/
static void phantom_irq ( struct net_device *netdev, int enable ) {
struct phantom_nic_port *phantom_port = netdev_priv ( netdev );
struct phantom_nic *phantom = phantom_port->phantom;
static const unsigned long sw_int_mask_reg[UNM_FLASH_NUM_PORTS] = {
UNM_NIC_REG_SW_INT_MASK_0,
UNM_NIC_REG_SW_INT_MASK_1,
UNM_NIC_REG_SW_INT_MASK_2,
UNM_NIC_REG_SW_INT_MASK_3
};
phantom_writel ( phantom,
( enable ? 1 : 0 ),
sw_int_mask_reg[phantom_port->port] );
}
/** Phantom net device operations */
static struct net_device_operations phantom_operations = {
.open = phantom_open,
.close = phantom_close,
.transmit = phantom_transmit,
.poll = phantom_poll,
.irq = phantom_irq,
};
/**
* Map Phantom CRB window
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_map_crb ( struct phantom_nic *phantom,
struct pci_device *pci ) {
unsigned long bar0_start;
unsigned long bar0_size;
/* CRB window is always in the last 32MB of BAR0 (which may be
* a 32MB or a 128MB BAR).
*/
bar0_start = pci_bar_start ( pci, PCI_BASE_ADDRESS_0 );
bar0_size = pci_bar_size ( pci, PCI_BASE_ADDRESS_0 );
DBGC ( phantom, "Phantom %p BAR0 is %08lx+%lx\n",
phantom, bar0_start, bar0_size );
switch ( bar0_size ) {
case ( 128 * 1024 * 1024 ) :
DBGC ( phantom, "Phantom %p has 128MB BAR\n", phantom );
phantom->crb_access = phantom_crb_access_128m;
break;
case ( 32 * 1024 * 1024 ) :
DBGC ( phantom, "Phantom %p has 32MB BAR\n", phantom );
phantom->crb_access = phantom_crb_access_32m;
break;
case ( 2 * 1024 * 1024 ) :
DBGC ( phantom, "Phantom %p has 2MB BAR\n", phantom );
phantom->crb_access = phantom_crb_access_2m;
break;
default:
DBGC ( phantom, "Phantom %p has bad BAR size\n", phantom );
return -EINVAL;
}
phantom->bar0 = ioremap ( bar0_start, bar0_size );
if ( ! phantom->bar0 ) {
DBGC ( phantom, "Phantom %p could not map BAR0\n", phantom );
return -EIO;
}
/* Mark current CRB window as invalid, so that the first
* read/write will set the current window.
*/
phantom->crb_window = -1UL;
return 0;
}
/**
* Read Phantom flash contents
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_read_flash ( struct phantom_nic *phantom ) {
struct unm_board_info board_info;
int rc;
/* Initialise flash access */
phantom->spi_bus.rw = phantom_spi_rw;
phantom->flash.bus = &phantom->spi_bus;
init_m25p32 ( &phantom->flash );
/* Phantom doesn't support greater than 4-byte block sizes */
phantom->flash.nvs.block_size = UNM_SPI_BLKSIZE;
/* Read and verify board information */
if ( ( rc = nvs_read ( &phantom->flash.nvs, UNM_BRDCFG_START,
&board_info, sizeof ( board_info ) ) ) != 0 ) {
DBGC ( phantom, "Phantom %p could not read board info: %s\n",
phantom, strerror ( rc ) );
return rc;
}
if ( board_info.magic != UNM_BDINFO_MAGIC ) {
DBGC ( phantom, "Phantom %p has bad board info magic %lx\n",
phantom, board_info.magic );
DBGC_HD ( phantom, &board_info, sizeof ( board_info ) );
return -EINVAL;
}
if ( board_info.header_version != UNM_BDINFO_VERSION ) {
DBGC ( phantom, "Phantom %p has bad board info version %lx\n",
phantom, board_info.header_version );
DBGC_HD ( phantom, &board_info, sizeof ( board_info ) );
return -EINVAL;
}
/* Identify board type and number of ports */
switch ( board_info.board_type ) {
case UNM_BRDTYPE_P3_4_GB:
phantom->num_ports = 4;
break;
case UNM_BRDTYPE_P3_HMEZ:
case UNM_BRDTYPE_P3_IMEZ:
case UNM_BRDTYPE_P3_10G_CX4:
case UNM_BRDTYPE_P3_10G_CX4_LP:
case UNM_BRDTYPE_P3_10G_SFP_PLUS:
case UNM_BRDTYPE_P3_XG_LOM:
phantom->num_ports = 2;
break;
case UNM_BRDTYPE_P3_10000_BASE_T:
case UNM_BRDTYPE_P3_10G_XFP:
phantom->num_ports = 1;
break;
default:
DBGC ( phantom, "Phantom %p unrecognised board type %#lx; "
"assuming single-port\n",
phantom, board_info.board_type );
phantom->num_ports = 1;
break;
}
DBGC ( phantom, "Phantom %p board type is %#lx (%d ports)\n",
phantom, board_info.board_type, phantom->num_ports );
return 0;
}
/**
* Initialise the Phantom command PEG
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_init_cmdpeg ( struct phantom_nic *phantom ) {
uint32_t cold_boot;
uint32_t sw_reset;
physaddr_t dummy_dma_phys;
unsigned int retries;
uint32_t cmdpeg_state;
uint32_t last_cmdpeg_state = 0;
/* If this was a cold boot, check that the hardware came up ok */
cold_boot = phantom_readl ( phantom, UNM_CAM_RAM_COLD_BOOT );
if ( cold_boot == UNM_CAM_RAM_COLD_BOOT_MAGIC ) {
DBGC ( phantom, "Phantom %p coming up from cold boot\n",
phantom );
sw_reset = phantom_readl ( phantom, UNM_ROMUSB_GLB_SW_RESET );
if ( sw_reset != UNM_ROMUSB_GLB_SW_RESET_MAGIC ) {
DBGC ( phantom, "Phantom %p reset failed: %08lx\n",
phantom, sw_reset );
return -EIO;
}
} else {
DBGC ( phantom, "Phantom %p coming up from warm boot "
"(%08lx)\n", phantom, cold_boot );
}
/* Clear cold-boot flag */
phantom_writel ( phantom, 0, UNM_CAM_RAM_COLD_BOOT );
/* Set port modes */
phantom_writel ( phantom, UNM_CAM_RAM_PORT_MODE_AUTO_NEG,
UNM_CAM_RAM_PORT_MODE );
phantom_writel ( phantom, UNM_CAM_RAM_PORT_MODE_AUTO_NEG_1G,
UNM_CAM_RAM_WOL_PORT_MODE );
/* Pass dummy DMA area to card */
dummy_dma_phys = virt_to_bus ( phantom->dma_buf->dummy_dma );
DBGC ( phantom, "Phantom %p dummy DMA at %08lx\n",
phantom, dummy_dma_phys );
phantom_write_hilo ( phantom, dummy_dma_phys,
UNM_NIC_REG_DUMMY_BUF_ADDR_LO,
UNM_NIC_REG_DUMMY_BUF_ADDR_HI );
phantom_writel ( phantom, UNM_NIC_REG_DUMMY_BUF_INIT,
UNM_NIC_REG_DUMMY_BUF );
/* Tell the hardware that tuning is complete */
phantom_writel ( phantom, 1, UNM_ROMUSB_GLB_PEGTUNE_DONE );
/* Wait for command PEG to finish initialising */
DBGC ( phantom, "Phantom %p initialising command PEG (will take up to "
"%d seconds)...\n", phantom, PHN_CMDPEG_INIT_TIMEOUT_SEC );
for ( retries = 0; retries < PHN_CMDPEG_INIT_TIMEOUT_SEC; retries++ ) {
cmdpeg_state = phantom_readl ( phantom,
UNM_NIC_REG_CMDPEG_STATE );
if ( cmdpeg_state != last_cmdpeg_state ) {
DBGC ( phantom, "Phantom %p command PEG state is "
"%08lx after %d seconds...\n",
phantom, cmdpeg_state, retries );
last_cmdpeg_state = cmdpeg_state;
}
if ( cmdpeg_state == UNM_NIC_REG_CMDPEG_STATE_INITIALIZED ) {
/* Acknowledge the PEG initialisation */
phantom_writel ( phantom,
UNM_NIC_REG_CMDPEG_STATE_INITIALIZE_ACK,
UNM_NIC_REG_CMDPEG_STATE );
return 0;
}
mdelay ( 1000 );
}
DBGC ( phantom, "Phantom %p timed out waiting for command PEG to "
"initialise (status %08lx)\n", phantom, cmdpeg_state );
return -ETIMEDOUT;
}
/**
* Read Phantom MAC address
*
* @v phanton_port Phantom NIC port
* @v ll_addr Buffer to fill with MAC address
*/
static void phantom_get_macaddr ( struct phantom_nic_port *phantom_port,
uint8_t *ll_addr ) {
struct phantom_nic *phantom = phantom_port->phantom;
union {
uint8_t mac_addr[2][ETH_ALEN];
uint32_t dwords[3];
} u;
unsigned long offset;
int i;
/* Read the three dwords that include this MAC address and one other */
offset = ( UNM_CAM_RAM_MAC_ADDRS +
( 12 * ( phantom_port->port / 2 ) ) );
for ( i = 0 ; i < 3 ; i++, offset += 4 ) {
u.dwords[i] = phantom_readl ( phantom, offset );
}
/* Copy out the relevant MAC address */
for ( i = 0 ; i < ETH_ALEN ; i++ ) {
ll_addr[ ETH_ALEN - i - 1 ] =
u.mac_addr[ phantom_port->port & 1 ][i];
}
DBGC ( phantom, "Phantom %p port %d MAC address is %s\n",
phantom, phantom_port->port, eth_ntoa ( ll_addr ) );
}
/**
* Initialise Phantom receive PEG
*
* @v phantom Phantom NIC
* @ret rc Return status code
*/
static int phantom_init_rcvpeg ( struct phantom_nic *phantom ) {
unsigned int retries;
uint32_t rcvpeg_state;
uint32_t last_rcvpeg_state = 0;
DBGC ( phantom, "Phantom %p initialising receive PEG (will take up to "
"%d seconds)...\n", phantom, PHN_RCVPEG_INIT_TIMEOUT_SEC );
for ( retries = 0; retries < PHN_RCVPEG_INIT_TIMEOUT_SEC; retries++ ) {
rcvpeg_state = phantom_readl ( phantom,
UNM_NIC_REG_RCVPEG_STATE );
if ( rcvpeg_state != last_rcvpeg_state ) {
DBGC ( phantom, "Phantom %p receive PEG state is "
"%08lx after %d seconds...\n",
phantom, rcvpeg_state, retries );
last_rcvpeg_state = rcvpeg_state;
}
if ( rcvpeg_state == UNM_NIC_REG_RCVPEG_STATE_INITIALIZED )
return 0;
mdelay ( 1000 );
}
DBGC ( phantom, "Phantom %p timed out waiting for receive PEG to "
"initialise (status %08lx)\n", phantom, rcvpeg_state );
return -ETIMEDOUT;
}
/**
* Probe PCI device
*
* @v pci PCI device
* @v id PCI ID
* @ret rc Return status code
*/
static int phantom_probe ( struct pci_device *pci,
const struct pci_device_id *id __unused ) {
struct phantom_nic *phantom;
struct net_device *netdev;
struct phantom_nic_port *phantom_port;
int i;
int rc;
/* Phantom NICs expose multiple PCI functions, used for
* virtualisation. Ignore everything except function 0.
*/
if ( PCI_FUNC ( pci->devfn ) != 0 )
return -ENODEV;
/* Allocate Phantom device */
phantom = zalloc ( sizeof ( *phantom ) );
if ( ! phantom ) {
rc = -ENOMEM;
goto err_alloc_phantom;
}
pci_set_drvdata ( pci, phantom );
/* Fix up PCI device */
adjust_pci_device ( pci );
/* Map CRB */
if ( ( rc = phantom_map_crb ( phantom, pci ) ) != 0 )
goto err_map_crb;
/* Read flash information */
if ( ( rc = phantom_read_flash ( phantom ) ) != 0 )
goto err_read_flash;
/* Allocate net devices for each port */
for ( i = 0 ; i < phantom->num_ports ; i++ ) {
netdev = alloc_etherdev ( sizeof ( *phantom_port ) );
if ( ! netdev ) {
rc = -ENOMEM;
goto err_alloc_etherdev;
}
phantom->netdev[i] = netdev;
netdev_init ( netdev, &phantom_operations );
phantom_port = netdev_priv ( netdev );
netdev->dev = &pci->dev;
phantom_port->phantom = phantom;
phantom_port->port = i;
}
/* Allocate dummy DMA buffer and perform initial hardware handshake */
phantom->dma_buf = malloc_dma ( sizeof ( *(phantom->dma_buf) ),
UNM_DMA_BUFFER_ALIGN );
if ( ! phantom->dma_buf )
goto err_dma_buf;
if ( ( rc = phantom_init_cmdpeg ( phantom ) ) != 0 )
goto err_init_cmdpeg;
/* Initialise the receive firmware */
if ( ( rc = phantom_init_rcvpeg ( phantom ) ) != 0 )
goto err_init_rcvpeg;
/* Read MAC addresses */
for ( i = 0 ; i < phantom->num_ports ; i++ ) {
phantom_port = netdev_priv ( phantom->netdev[i] );
phantom_get_macaddr ( phantom_port,
phantom->netdev[i]->ll_addr );
}
/* Register network devices */
for ( i = 0 ; i < phantom->num_ports ; i++ ) {
if ( ( rc = register_netdev ( phantom->netdev[i] ) ) != 0 ) {
DBGC ( phantom, "Phantom %p could not register port "
"%d: %s\n", phantom, i, strerror ( rc ) );
goto err_register_netdev;
}
}
return 0;
i = ( phantom->num_ports - 1 );
err_register_netdev:
for ( ; i >= 0 ; i-- )
unregister_netdev ( phantom->netdev[i] );
err_init_rcvpeg:
err_init_cmdpeg:
free_dma ( phantom->dma_buf, sizeof ( *(phantom->dma_buf) ) );
phantom->dma_buf = NULL;
err_dma_buf:
i = ( phantom->num_ports - 1 );
err_alloc_etherdev:
for ( ; i >= 0 ; i-- ) {
netdev_nullify ( phantom->netdev[i] );
netdev_put ( phantom->netdev[i] );
}
err_read_flash:
err_map_crb:
free ( phantom );
err_alloc_phantom:
return rc;
}
/**
* Remove PCI device
*
* @v pci PCI device
*/
static void phantom_remove ( struct pci_device *pci ) {
struct phantom_nic *phantom = pci_get_drvdata ( pci );
int i;
for ( i = ( phantom->num_ports - 1 ) ; i >= 0 ; i-- )
unregister_netdev ( phantom->netdev[i] );
free_dma ( phantom->dma_buf, sizeof ( *(phantom->dma_buf) ) );
phantom->dma_buf = NULL;
for ( i = ( phantom->num_ports - 1 ) ; i >= 0 ; i-- ) {
netdev_nullify ( phantom->netdev[i] );
netdev_put ( phantom->netdev[i] );
}
free ( phantom );
}
/** Phantom PCI IDs */
static struct pci_device_id phantom_nics[] = {
PCI_ROM ( 0x4040, 0x0100, "nx", "NX" ),
};
/** Phantom PCI driver */
struct pci_driver phantom_driver __pci_driver = {
.ids = phantom_nics,
.id_count = ( sizeof ( phantom_nics ) / sizeof ( phantom_nics[0] ) ),
.probe = phantom_probe,
.remove = phantom_remove,
};